Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Theory of reduction for arithmetical equivalence


Author: Hermann Weyl
Journal: Trans. Amer. Math. Soc. 48 (1940), 126-164
MSC: Primary 10.0X
DOI: https://doi.org/10.1090/S0002-9947-1940-0002345-2
MathSciNet review: 0002345
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Journal für die reine und angewandte Mathematik, vol. 129 (1905), pp. 220-274; also Gesammelte Abhandlungen II, Leipzig, 1911, pp. 53-100. Cited as M with the page number in the Gesammelte Abhandlungen.
  • [2] Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1928, pp. 510-535; 1929, p. 508.
  • [3] Quarterly Journal of Mathematics, vol. 9 (1938), pp. 259-262.
  • [4] H. Weyl, On geometry of numbers, soon to appear in the Proceedings of the London Mathematical Society. On the whole subject see H. Hancock, Development of the Minkowski Geometry of Numbers, New York, 1939. MR 0006212 (3:273a)
  • [5] Another short proof by H. Davenport, Quarterly Journal of Mathematics, vol. 10 (1939), pp. 119-121.
  • [6] Compositio Mathematica, vol. 5 (1938), pp. 368-391.
  • [7] Cf. Minkowski's definition in $ {\text{M}}$, p. 59.
  • [8] See Mahler, loc. cit. (3 above), and the author, loc. cit. (4 above), Theorem V.
  • [9] Weyl, loc. cit. (4 above), ``Generalized Theorem V."
  • [10] See M, pp. 56-58.
  • [11] For more details see L. E. Dickson, Algebren und ihre Zahlentheorie, Zürich, 1927, chap. 9; C. G. Latimer, American Journal of Mathematics, vol. 48 (1926), pp. 57-66; M. Deuring, Algebren, Ergebnisse der Mathematik, vol. 4, no. 1, Berlin, 1935, chap. 6.
  • [12] Vorlesungen über die Zahlentheorie der Quaternionen, Berlin, 1919.
  • [13] The larger part of E. H. Moore's ``Algebra of Matrices'' (General Analysis, Part I, Memoirs of the American Philosophical Society, Philadelphia, 1935) deals with the formalism of ``Hamiltonian'' forms.
  • [14] Cf. Weyl, loc. cit. (4 above), §8, and the more complicated argument in Bieberbach-Schur, loc. cit. (2 above), pp. 521-523.
  • [15] Loc. cit. (6 above), equation (25).
  • [16] See M, p. 53.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.0X

Retrieve articles in all journals with MSC: 10.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1940-0002345-2
Article copyright: © Copyright 1940 American Mathematical Society

American Mathematical Society