Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the Jacobi series


Author: J. H. Curtiss
Journal: Trans. Amer. Math. Soc. 49 (1941), 467-501
MSC: Primary 30.0X
DOI: https://doi.org/10.1090/S0002-9947-1941-0004299-2
MathSciNet review: 0004299
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] G. A. Bliss, Algebraic Functions, New York, 1933.
  • [2] E. Borel, Leçons Sur les Fonctions des Variables Réelles, Paris, 1905.
  • [3] T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series, 2d edition, London, 1926.
  • [4] J. H. Curtiss, A note on the Cesàro method of summation, Bull. Amer. Math. Soc. 43 (1937), no. 10, 703–708. MR 1563621, https://doi.org/10.1090/S0002-9904-1937-06630-4
  • [5] M. Fekete, Über den Schottkyschen Satz, Journal für die reine und angewandte Mathematik, vol. 165 (1931), pp. 217-224.
  • [6] G. Frobenius, Über die Entwicklung analytischer Funktionen in Reihen, die nach gegebenen Funktionen fortschreiten, ibid., vol. 73 (1871), pp. 1-30.
  • [7] Édouard Goursat, Cours d'Analyse, vol. 2, part 1; English translation by E. R. Hedrick and Otto Dunkel, Boston, 1916.
  • [8] C. G. J. Jacobi, Über Reihenentwicklungen, welche nach den Potenzen eines gegebenen Polynoms fortschreiten, und zu Coefficienten Polynome eines niedereren Grades haben, Journal für die reine und angewandte Mathematik, vol. 53 (1856-1857), pp. 103-126.
  • [9] P. W. Ketchum, On the expansion of a function analytic at distinct points, Bull. Amer. Math. Soc. 43 (1937), no. 2, 115–121. MR 1563498, https://doi.org/10.1090/S0002-9904-1937-06506-2
  • [10] A. Kienast, Über die Darstellung der analytischen Funktionen durch Reihen, die nach Potenzen eines Polynoms fortschreiten und Polynome eines niedereren Grades zu Koeffizienten haben, Dissertation, Zurich, 1906.
  • [11] P. Martinotti, Su le serie d'interpolazione, Rendiconti del'Istituto Lombardo, (2), vol. 43 (1910), pp. 391-401.
  • [12] P. Montel, Séries de Polynomes, Paris, 1910, pp. 47-49, 95-97.
  • [13] K. Rieder, Polynomische Entwicklungen von Funktionen einer komplexen Variabeln, Dissertation, Basel, 1911, pp. 66-85.
  • [14] Freidrich Riesz, Über die Randwerte einer analytischen Funktion, Math. Z. 18 (1923), no. 1, 87–95 (German). MR 1544621, https://doi.org/10.1007/BF01192397
  • [15] F. and M. Riesz, Über Randwerte einer analytischen Funktion, Quatrième Congrès des Mathematiciens Scandinaves, 1916, pp. 27-44.
  • [16] S. Saks, Theory of the Integral, 2d revised edition, Warsaw, 1937.
  • [17] J. D. Tamarkin, The Theory of Fourier Series, Providence, 1933 (mimeographed notes).
  • [18] E. C. Titchmarsh, The Theory of Functions, Oxford, 1932.
  • [19] J. L. Walsh, Approximation by Polynomials in the Complex Domain, Paris, 1935, pp. 13-14, 45-46.
  • [20] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
    J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR 0218588
  • [21] J. L. Walsh, Lemniscates and equipotential curves of Green's function, American Mathematical Monthly, vol. 52 (1935), pp. 1-17.
  • [22] A. Zygmund, Trigonometrical Series, Warsaw, 1935.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.0X

Retrieve articles in all journals with MSC: 30.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1941-0004299-2
Article copyright: © Copyright 1941 American Mathematical Society