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1. Introduction and summary. It is well known that the equation

(1) Ix + my + n = 0,

with rational integral coefficients, has either no solution in rational integers

or an infinite number of solutions. The same result is true in quadratic fields,

that is, when /, m and n are integers of a given quadratic field, and solutions

are sought among the integers of the field.

We are here concerned with the number of integral solutions of the gen-

eral quadratic equation

(2) ax2 + bxy + cy2 + dx -f- ey + / = 0, a    0; A = b2 — iac,

with integral coefficients from the field of rational numbers or from some

quadratic field. The quantity A is defined for convenient reference. We can

take a^O without any loss of generality, by the use (if necessary) of linear

transformations of determinant unity (so that the number of integral solu-

tions is not changed).

First, suppose that the coefficients of (2) are rational integers. If A is

negative, then the graph of (2) is finite in extent, and there is at most a finite

number of solutions in integers. If ^4^0, the graph of (2) is a parabola, an

hyperbola, or two straight lines, and we prove the following result.

Theorem 1. Let the coefficients of equation (2) be rational integers, with

A =0. Then if (2) has one solution in integers, it has an infinite number, with

the following exceptions: if (2) represents two essentially irrational straight lines,

it has at most one integral solution; if (2) is an hyperbola whose asymptotes are

essentially rational, then it has at most a finite number of integral solutions.

By an essentially rational straight line, we mean one whose equation can

be put in the form (1), with rational integral coefficients; otherwise we say

that a line is essentially irrational.

Next, suppose that the coefficients of (2) are from a real quadratic field.

It turns out in this case that we can have an infinite number of integral solu-

tions when the curve is finite in extent. Also, the hyperbola does not divide

into two cases, as it does in Theorem 1. Before stating the theorem, we recall

the definition that a totally negative quadratic integer is a negative integer
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whose conjugate is also negative. Thus — 5 — 21/2 is totally negative, whereas

— 5—4 (21/2) is negative but not totally negative.

Theorem 2. Let the coefficients of (2) be integers of a real quadratic field F.

Then if (2) has one solution in integers of F, it has an infinite number, except

in the following cases: if (2) represents a point, or a pair of straight lines whose

coefficients are essentially outside the field F, then it has at most one integral

solution in F;if (2) represents an ellipse (so that A is negative), and A is totally

negative, then it has at most a finite number of integral solutions in F.

Finally, suppose the coefficients of (2) are from an imaginary quadratic

field. Our result is much the same, but there are interesting differences.

Theorem 3. Let the coefficients of (2) be integers of an imaginary quadratic

field F. Then one solution of (2) in integers implies an infinite number of such

solutions, with the following exceptions: if the left side of (2) factors into two lin-

ear expressions in x and y, with coefficients essentially outside F, then (2) has at

most one integral solution in F; if A 5*0 is the square of an integer of F, and the

left side of (2) is not factorable into linear expressions in x and y, then (2) has

at most a finite number of integral solutions in F.

In proving Theorems 2 and 3, we use the Pell equation in quadratic fields,

(3) e - yv2 = 1.

In this connection, we prove the following theorem.

Theorem 4. Let y be an integer, not zero, of a quadratic field F. Then equa-

tion (3) has an infinite number of integral solutions (£, n) in the field F if and

only if y is not the square of an integer of F when F is imaginary, and y is not

totally negative when F is real.

That the conditions of this theorem are sufficient to insure an infinite

number of solutions of (3), is proved in the next two sections. The necessity

of the conditions follows from Theorems 2 and 3, as we shall see at the end

of §3.
Theorems 1, 2, and 3 are sufficiently similar that the principal results can

be proved by a common method; this is presented in §4. Then the theorems

are completed in the last three sections. The methods employed throughout

the paper are elementary.

2. The Pell equation in quadratic fields. If 7 is a positive rational integer,

not a square, it is well known that equation (3) has an infinite number of

solutions in rational integers. We can obtain a similar result for quadratic

fields from a classical theorem on the units of relatively cyclic fields.

Let 7 now be an integer of a quadratic field F. If 7 is not a perfect square

in F, and not a rational integer, then the biquadratic field K = R(yin) is rela-
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tively cyclic of prime order two over F. It is known(1) that there exists a rela-

tive unit of norm 1 in the field K over F, provided that among the four

conjugate fields determined by K there are twice as many real fields as there

are among the two conjugate fields determined by F. This condition is satis-

fied when Fis an imaginary field, because the conjugate of F, being identical

with F, is also imaginary; consequently, equation (3) has a non-trivial in-

tegral solution (that is, a solution with 77 0) in F provided 7 is not a perfect

square in F.

On the other hand, if F is a real quadratic field, then it is again identical

with its conjugate, and we require K and its conjugates to be real. Now K and

its conjugates are identical in pairs, each field being either i?(71/2) or R(y112),

where 7 is the conjugate of 7 in F. These are real provided that 7 and 7 are

positive, or in other words, provided that 7 is totally positive. Hence we can

conclude that if 7 is a totally positive integer of a real quadratic field F, then

equation (3) has a non-trivial integral solution in F.

Having one solution of (3), we can obtain more by means of the composi-

tion formula

2222 2 2

($1 — 71i)(£2 — yvi) = (£i£2 + 7'?i'?2)  — t(£i?2 + £211) •

This provides an infinitude of different solutions. For example, a non-trivial

solution compounds with itself to give a different non-trivial solution. We

have proved this lemma.

Lemma 1. Let 7 be an integer, not a square, of any quadratic field F. Let 7

be totally positive if Fis real. Then equation (3) has an infinite number of integral

solutions in F.

3. Real quadratic fields. Lemma 1 is not the best possible result for real

quadratic fields. We now prove:

Lemma 2. If y is a positive, but not totally positive, integer of a real quadratic

field F, then equation (3) has an infinite number of integral solutions in F.

We prove this by a method analogous to that of Dirichlet(2) for rational

and Gaussian integers. Let F be obtained by extending the rational numbers

by m112, m being positive, square-free, and greater than 1. Then 7 has the

form a + bm112, where a — bm112 is negative. For convenience, let 8 denote

the positive square root of 7. For any positive rational integer n, we let v

range over the values 1, 2, • • ■ , n+1. Let u be the greatest integer less than

vm112, that is, u = [vm112], and we have

C1) Cf. David Hilbert, Die Theorie der algebraischen Zahlkörper, Jahresbericht der Deutschen

Mathematiker-Vereinigung, vol. 4, p. 275 (Theorem 92) and p. 279.

(2) Cf. Dickson, History of the Theory of Numbers, vol. 2, p. 373.
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(4) I m — vm1'21 < 1.

Choose y and x as follows:

y = [8(u + w»1/2)/(2m1/2)],      x = [8(u + vm112) — ym1'2] + 1.

These equations imply the inequalities

0 £ 8(u + vm112) - 2ym1'2 < 2m112,

and

(5) 0 < x + ym1'2 - 8{u + vm1'2) S 1,

respectively, and these add to give the result

(6) 0 < x - ym1'2 < 1 + 2m1'2.

As v ranges over the integers 1, 2, • • • , w + l the expression involved in (5)

takes values between 0 and 1, at least two of which differ by less than 1/w.

We subtract these to obtain

1
(7) X + Ym1'2 - 5(77 + Vm1'2) < —,

n

and the inequalities (4) and (6) imply that the rational integers X, Y, U and

V satisfy

(8) I U - Vm1'21 < 2,       I X - Ym"2 \ < i + 2m1'2.

Using the fact that | V\ Sn, we can write

I X + Ym"2 + 8(U + Vm1'2) \

S I X + Ym1'2 - 5(77 + Vm1'2) \ + 2 \ 5(7/ + Vm1'2) |

1 i i i
<-h 25 I 77 - Vm1'21 + 25 I 2Vm>'2 \

n

1
<-V 25(2 + 2nm1'2).

n

The multiplication of this inequality by (7) gives

I (X + Ym1'2)2 - 52(77 + Vm1'2)2 \< i + 25(2 + 2m1'2),

and we set £ = X+ Ym112 and 77= U+ Vm1'2 to obtain

(9) I £2 - yr,21 < 1 + 25(2 + 2w1/2).

We now show that this inequality is satisfied by an infinitude of pairs

(£, 77). The left side of inequality (7) is not zero, for otherwise 5 would be an

element of the field F. Then 7, being the square of an element of F, would be

totally positive, contrary to hypothesis. Now if the number of pairs of quad-
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ratic integers satisfying (9) were finite, the rational integer n could be chosen

so large that none of these pairs would satisfy (7). Our method would there-

fore give another pair of values satisfying (7) and (9).

Having shown that (9) represents an infinite number of inequalities, we

now show that £2 — 7?72 assumes only a finite set of values. We cannot conclude

this directly from inequality (9), because there are infinitely many integers

of a real quadratic field which are less in absolute value than a given positive

quantity. However, there is but a finite number of integers of such a field

which, together with their conjugates, are bounded in absolute value. Since y is

negative, we can use (8) to obtain

[|« - ff«| = (JT - Ym1'2)2 - y(77 - Fm"2)2 < (1 + 2m1'2)2 - y(4).

Hence the infinite set of quadratic integers £2 — 777s of inequality (9) ranges

over a finite set of values. At least one of these values, say p, is equal to

|2 — yrj2 for an infinite number of pairs

(10) (fi, vi), (fe,

We now show that it is possible to select from (10) an infinite subsequence

(11) din mt)i ($<». Vn), ■ ■ •,

such that

(12)

Let the quantities £i, £2,

(13) + IW'2, X2 + Y2m112,

the Xi and F< being rational integers. Let 7V(p) denote the norm of p. Since

each Xi (i = 1, 2, • • • ) is congruent to some term of the complete residue sys-

tem 0, 1, 2, • • • , N(p) — 1, modulo 7V(p), it follows that an infinite number

of these are congruent to one particular term of this residue system. Thus

from (13) we have selected an infinite subsequence, and from the latter we

can select another so that the Yj are congruent to one another modulo N(p).

We continue this process of selecting subsequences with the terms 77; of (10),

and obtain finally a sequence (11) such that congruences analogous to (12)

hold modulo 7V(p), and these imply (12).

We now select two different pairs from (11), say (£r, rjr) and (£s, 77«); let

these be independent in the sense that one pair is not the negative of the other

pair. They satisfy the relations

2222

(14) kr - 7Vr = |« — 7»?. = Pi

and we multiply these equations to get

hi ~ £h'= 0 (modp),
0- * = 1- 2, 3, • • • ),

Vij - Vik = 0 (mod p).

• • of (10) be written as
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(15) (£r£. — yVrVi)2 — y(^rVs — ksVr)2 = p2.

But the congruences (12) imply that the integer i;TV* — ZsVr is divisible by p.

Consequently £r£s— ynrns is divisible by p, and we obtain a solution of (3) by

dividing (15) by p2. The solution thus obtained is not trivial, that is,

irfis — £8t?r^0. For otherwise we could write £r = &£8 and vT = kr]s with ±1,

and these relationships contradict (14). Noting that an infinite number of

solutions of (3) can now be obtained by the method set forth at the end of §2,

we have completed the proof of the lemma.

Lemma 3. Let y be a negative, but not totally negative, integer of a real quad-

ratic field F. Then equation (3) has infinitely many integral solutions in F.

This is a direct consequence of Lemma 2. For, by hypothesis the integer y

is positive. Hence there are infinitely many solutions of

The conjugates of these solutions are solutions of (3), and the lemma is

proved.

Lemma 4. Suppose that y=a2^0, where a is an integer of a real quadratic

field F. Then equation (3) has an infinite number of integral solutions in F.

As in Lemma 2, we take F to be R(m112). When a is multiplied by its

conjugate ä, the result is a rational integer, the norm of a, say n. Now there

are infinitely many pairs of rational integers satisfying

since mn2 is not a square. Taking £ = m and r] — mll2äv, we obtain infinitely

many solutions of (3).

Lemmas 1, 2, 3, and 4 give all cases of Pell equations (3) in quadratic

fields with an infinite number of solutions, for it is a consequence of Theorems

2 and 3 that equation (3) can have but a finite number of integral solutions

for values of y other than those stated in the above lemmas. Thus, upon

proving these theorems, we shall have Theorem 4 as a consequence.

4. The general theory. We return our attention to equation (2), the coeffi-

cient field F being the rational numbers or some quadratic field. Solving for x

we get

£2 - tV = 1.

m2 — mn2v2 = 1,

(16) x
1 . >

= — {- by - d + (Ay2 + By -f-C)1'2},
la

where B = 2bd-4ae and C = d2 - 4a/.

Case 1. B2—4ACy£0; A is positive and not a square when Pis the field of

rational numbers; A is neither zero nor totally negative when F is a real quad-
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ratic field; A is not the square of an integer of F when F is an imaginary-

quadratic field. With these hypotheses, we show that one integral solution

of (2) implies an infinite number. Let there be such a solution (xo, yo)- Then

there exists an integer to such that the equation

(17) t2 = Ay2 + By + C

is satisfied by the values to, yo- We substitute these values in (17), and sub-

tract the result from (17), to get an equation which can be written in the form

(18) (t - to)(t + to) = (y - yo)(Ay + AyQ + B).

We look for integral solutions of this equation. We write

(19) p(y - y0) = 2aq(t + h),   2aq(Ay + Ayo + B) = p(t - t0),

where p and q will be specified later. Eliminating t from these equations, we

get

(20) (p2 - 4a2Aq2)y = p2y0 + 4a2q2(Ay0 + B) + 4pqat0.

By the hypotheses of the case under discussion, and by the lemmas of the

last two sections, we can choose the integers p and q in infinitely many ways

so that

(21) p2 - 4a2Aq2 = 1.

Thus we obtain integral values for y in (20). These, in turn, give integral val-

ues for t in (19), as can be seen by eliminating y from these equations.

We now make certain that these values of y give integral values of x in

(16). Multiplying the first equation in (19) by p, and eliminating p2 by the

use of (21), we see that

(y — yo) + 4a2A(y — y0) = 2apq{t + ta).

Hence y=y0 (mod 2a), and the same argument applied to the second equation

in (19) shows that t = to (mod 2a). These imply the congruence

— by — d + t = — by0 — d + to (mod 2a).

Since yo and t0 give the integral value Xo in (16), this congruence shows that

our method gives integral values for x, provided that the sign is chosen prop-

erly.

Finally we must demonstrate that the above procedure gives an infinitude

of solutions of (16). Using (21) to eliminate p2 from (20), we have

(22) y = y0 + 4aq {aq(2A y0 + B) + ptQ}.

First, suppose that t0 = 0. Then 2Ay0+B?£0, for otherwise we could write

yo= —B/2A, and these values of t0 and y0, when substituted in (17), give

B2 — 4AC = 0, contrary to hypothesis. Also aj^O, so that the coefficient of q2
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in (22) is not zero. Consequently, each different value of q2 gives a different

value of y.

In the second place, if to^O, we show that of all the values satisfying (21),

only a finite number give y =y0 in (22). Values of p and q giving y = y0 satisfy

aq(2Ay0+B) +pt0 = 0, and the result of eliminating p from (21) by means of

this equation is

2 2 2 2)2
q {(2aA y0 + aB)  — 4a At0] = to-

This is satisfied by not more than two values of q.

Suppose now that equation (22) gives only a finite set of values, say

yo, yi, •* • i yr- We select a rational prime tt which does not divide any of

yi—yo, yi — yo, ■ ■ ■ , yr — yo- Let (P, Q) be such a solution of

P2 - 4a2Air2Q2 = 1

that the corresponding solutions p = P, q = irQ of (21) do not give y=yo in

(22). Then the value y thus obtained from (22), having the property that

y —yo is divisible by ir, is different from yi, y2, • ■ • , yr. We have shown, there-

fore, that (22) gives an infinite set of different values.

Case 2. A =0, B2 — 4AC^0, so that B^O. Again we assume one integral

solution (x0, yo) of (16), and show that it can be used to generate an infinite

number. Proceeding as we did in the first case, we get the following equation

analogous to (18)

E\y - yo) = (t - to)U + to).

We write

y — yo = 2aq(t + to),      t — t0 = 2aqB,

where q is any integer of F. Eliminating t from these equations, we have

y = 4a2q2B + 4aqt0 + y0.

The coefficient of q2 is not zero, and hence this formula gives an infinitude of

integral values of y. As in Case 1, we have y=yo and t=to (mod 2a), so that

the values of y give integral values of x in (16).

Case 3. B2 — 4AC = 0; neither A nor C is negative when F is a real field.

In other words, we are now treating the case where the left side of equation

(2) factors into two linear expressions, both being real when F is real. Equation

(16) can be written in the form

2ax + by + d = + (Al'2y + C112).

If both A1/2 and C1/2 are in F, then these linear equations have integral

coefficients from F. As was remarked at the beginning of §1, one integral

solution implies an infinite number.
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If A112 is in F, but C1/2 is not, then obviously there is no integral solution

in F, for such a solution would enable us to write C1'2 as an element of F.

If C1'2 is in F, but A112 is not, then any solution (x0, yo) must have yo = 0.

Also, since 5 = 2,41/2C1/2, and B is in F, it follows that C = 0. Hence the only

possible solution isy0 = 0, xo = —d/2a.

If neither A1/2 nor C112 is in F, any integral solution (xo, yo) must be such

that All2y0+C112 = 0, which fixes the value of y0; and x0 must therefore satisfy

2ax-\-by0-\-d = 0, so that there cannot be more than one solution.

5. The rational case. We now prove Theorem 1; the coefficients of (2) are

taken to be rational integers. The case in which (2) represents a pair of

straight lines was treated in Case 3 in the last section. If (2) represents a

parabola, then .4=0 and B?±0. This was discussed in Case 2 in the last sec-

tion. Hence we can complete the proof of Theorem 1 by treating the hyper-

bola. We prove this lemma.

Lemma 5. Let (2) represent an hyperbola, so that A >0 and B2 — 4AC?i0,

Then the asymptotes are essentially rational if and only if A is a perfect square.

First, if the asymptotes are rational, we can write (2) in the form

(23) a(x + aiy + ßi)(x + a2y + ß2) = 8,

where cti, «2, ßi, and ß2 are rational, and the asymptotes are obtained by

equating to zero the expressions in parentheses. Equating coefficients in (2)

and (23), we obtain

b = a(«i + a^),      c = aa\otz.

Hence we can write

A = b2 — 4ac = a2(ai + a2)2 — 4a2aia2 = a2(ai " on)2.

The integer A is the square of a rational number, and consequently is the

square of a rational integer.

Conversely, suppose that A —k29^0. In order to show that the asymptotes

are rational, we exhibit them. Multiplying (2) by 4a, we have

(2ax + by)2 - k2y2 + 4adx + 4aey + 4af = 0.

Multiplying by k2, and completing the squares, we obtain

(24) (2akx + bky + dk)2 - (k2y - 2ae + bd)2 = T,

where T is given by

(25) d2k2 - 4afk2 - (2ae - bd)2.

The asymptotes of the hyperbola are obtained by factoring the difference of

two squares on the left of (24), and equating the factors to zero. It is obvious

that they are rational lines, and this completes the proof of the lemma.
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We now consider Case 1 of §4 in the light of Lemma 5, and see that we

have proved that an hyperbola (2), with irrational asymptotes, has either no

integral solutions or an infinite number. To complete the proof of Theorem 1,

we must show that an hyperbola (2), with rational asymptotes, cannot have

an infinite number of integral solutions.

Let (x0, yo) be a point with integral coordinates lying on the hyperbola.

Let equation (1), with rational integral coefficients, denote an asymptote.

Then the distance from the point on the curve to the asymptote is

lxa + myö + n

(P + m2y>2

since Zxo+rayo+w is a nonzero integer. But the asymptotes approach the

curve, so that the points of the hyperbola whose distances from the adjacent

asymptote are greater than any given positive quantity, must lie in a finite

region of the plane. Consequently, only a finite number of points with integral

coordinates lie on the hyperbola.

6. The proof of Theorem 2. Let the coefficients of (2) be integers of a real

quadratic field. If (2) represents a point, then obviously it cannot have more

than one integral solution. The situation in which (2) represents a pair of

straight lines was treated in Case 3 of §4; a parabola in Case 2; an hyperbola,

or an ellipse with A not totally negative in Case 1. All that remains is the

last statement of Theorem 2, concerning the ellipse with A totally negative;

we turn to this now.

Multiplying equation (2) by 4a, we get

(2a* + by)2 - Ay2 + Aadx + 4aey + 4a/ = 0.

We multiply by —A, and complete the squares to arrive at

(26) - AX2 + Y2 = (bd - 2ae)2 - A{d2 - 4a/),

where

(27) X = lax + by + d,      Y = Ay + bd - lae.

Suppose that the quadratic field with which we are dealing is R(m112), where

m is positive. Then the integer A, being totally negative, has the form

(28) - p - qm"2,      p > \ qm1'2 | ^ 0,

where p and q are rational integers, or perhaps the halves of odd rational in-

tegers in case m = \ (mod 4). We are looking for integral values of x and y

in R(m112), so we suppose that X — w+tm112, and Y=u-\-vm112. Let the right

side of equation (26) be r+sm112. The quantities w, t, u, v, r, and s are rational

integers (or perhaps the halves of odd rational integers).

Substituting these values in (26), and equating the rational terms, we have

the result

1

(I2 + mP-Y'2



1942] QUADRATIC DIOPHANTINE EQUATIONS 11

(29) • p(w2 + t2m) + Iqmwt + w2 + v2m = r.

The inequality in (28) enables us to write

p(w2 + t2m) £i 2 | ^w"21 • | wtm1121 = | Iqmwt \,

so that r must not be negative if (29) is to have any solutions. Equation (29)

implies that

u2 + v2m S r,      pw2 + ptnt2 + Iqmwt < r.

Clearly the first of these inequalities has only a finite number of solutions in

integers (or halves of odd integers) u and v. The same is true of the second

inequality in w and t, because the discriminant of the left side is

Aq2m2 — Amp2 < 4q2m2 — Am(mq2) = 0,

by (28). Hence the number of integral solutions in X and F of (26) is finite,

and, by (27), the number of integral solutions of (2) is finite.

7. Imaginary quadratic fields. We now prove Theorem 3. The situation in

which B2 — AAC = 0, that is, in which the left side of (2) factors, was treated

in Case 3 of §4. When B2 — AAC^O, Cases 1 and 2 handle the situations

with A not a perfect square, and A zero, respectively. All that remains to be

proved, therefore, is that (2) cannot have an infinite number of solutions

when B2— AACy^O and A is a perfect square in F, say k2. We can proceed

as in §5, and obtain equations (24) and (25); T must be different from zero,

since otherwise the left side of (2) would be factorable into two linear factors.,

contrary to hypothesis. We use the substitution

X = 2akx + bky + dk,      Y = k2y — 2ae + bd,

to write (24) in the form X2 — Y2 = T, from which we get

(30) \ X - Y\ - \ X+ Y\ = \T\.

As in the last section, we show that there is only a finite number of solutions

in X and Y, and this implies the result we want. Now the positive rational

integer [ T\ can be factored into a pair of positive rational integers in but a

finite number of ways. Any integral solution of (30) must correspond to one

of these factorings. For any such factoring, say | T\ =rs, we can write

I X— Y\ =r and | X-\- Y\ =s, or vice versa. But there is only a finite number

of integers of any imaginary quadratic field with absolute value equal to a

given rational integer. Hence we have only a finite number of pairs (X — F,

X+Y) satisfying (30), and each pair gives at most one integral solution

(X, F).

University of Illinois,
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