
ON SOME SINGULAR MONOTONIC FUNCTIONS WHICH
ARE STRICTLY INCREASING

BY

R. SALEM

1. A continuous non-decreasing function /(x) denned for 0 ^ x j£ 1 (/(0) = 0,

/(l) = 1) and which is purely singular, that is to say, which has the property

df/dx - 0

almost everywhere, may be constant in every interval contiguous to a perfect

set of measure zero: it is usually said, in this case, that/(x) is of the Cantor

type. There are, however, monotonic continuous functions, purely singular,

which are increasing in the strict sense, that is, f(x') >f(x) whenever x'>x.

While the existence of functions of the Cantor type is almost intuitive

and their construction is immediate by successive approximations, the exist-

ence of strictly increasing singular functions lies deeper. Actually, if we except

Minkowski's function ?(x), of which we shall speak later (and whose singular-

ity is by no means obvious), no simple direct construction of such functions

seems to be known. Functions of this type usually have been obtained by

"convolutions" of functions of the Cantor type and the proof that they are

singular strictly increasing functions is somewhat difficult(*). Thus, it seems

to be of interest to give simple direct constructions of strictly increasing singu-

lar functions.

2. Let us consider, in the plane, the straight line PQ joining the point P

of cartesian coordinates x, y, to the point Q of cartesian coordinates x-f-Ax,

y+Ay, Ax>0, Ay>0. Let X0, Xi be two numbers, essentially positive, such

that Xo+Xi = 1 (Xor^Xi). Let us now consider the point R whose coordinates are

x + Ax/2,      y + \<fiy,

that is to say, the horizontal distance between P, R or between Q, R is Ax/2,

while the vertical distance between P, R is XoAy, and the vertical distance

between R, Q is Xi Ay. If we replace the straight line PQ by the broken line

PRQ, we will say that we perform on PQ the transformation 7\X0, Xi).

Presented to the Society, November 28, 1942; received by the editors October 8, 1942.

(') See for example Jessen and Wintner, Distribution functions and the Riemann zeta func-

tion, Trans. Amer. Math. Soc. vol. 38 (1935) pp. 48-88 and particularly p. 61; Kershner and

Wintner, On symmetric Bernoulli convolutions, Amer. J. Math. vol. 57 (1935) pp. 541-548;

Wiener and Wintner, Fourier-Stieltjes transforms and singular infinite convolutions, Amer. J.

Math. vol. 60 (1938) pp. 513-522 and particularly p. 521. For earlier examples see Denjoy,

J. Math.Pures Appl. 1915 pp. 204-209 (which was the first example given); Sierpinski, Giornale

di Matematiche vol. 54 (1916) pp. 314-334; Rajchman, Fund. Math. vol. 2 (1921) pp. 50-63.
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Definition of a function f(x). Let now/0(x) be for O^x^l the function

equal to x, that is to say represented by the straight line OA joining the origin

0 to the point .4(1, 1). Let us perform on OA the transformation 7\X0, Xi).

We get a broken line consisting of two straight lines and representing an in-

creasing function fi(x). Let us perform on each of those two straight lines the

transformation T(ko, Xi). We get a broken line consisting of 22 straight lines

and representing an increasing function fcix). Proceeding in the same way we

get after p operations a function fP(x) strictly increasing (fP(0) = 0,/p(l) = 1)

represented by a polygonal line consisting of 2p straight lines, the vertices

having for abscissae the points k/2r (k = l, 2, • • • , 2p — 1).

Putting

(1) max (X0, Xi) = p

we have essentially, by our hypothesis, p < 1, and it is immediately seen that

I/Wi ̂     3 p".
Thus fP(x) converges uniformly to a continuous function f(x) (/(0)=0,

/(1) = 1). This function fix) is strictly increasing because for every p the

vertices of the curve y=fP(x) belong to the curve y=f(x): thus if f(x) was

constant in some interval, there would be a p for which two different vertices

of y =fP(x) would have the same Ordinate, which is impossible.

The ordinate of the vertex of y=fP(x) whose abscissa is given by

0i/2 4- 6>2/22 -1-4- 6p/2"     ' ($i = 0 or 1)

is given by

Xo[0i + Xe^ 4~ X9,X«203 + *•*• + XejXflj • • • X^^öp],

and thus, by continuity, if

(2) x = 0i/2 4- 02/22 4- • • ■ 4- dp/2" +■■■ ,

we have

(3) /(*) = X0[Ö! + X9l02 + X9lX92Ö3 + ■ • • + X9lX<,2 • • • \lrJ}„ H-J

the series being obviously convergent. If x has two different dyadic develop-

ments, the formula (3) gives for/(x) the same value.

Let us remark also that if x and x' >x have the first p digits of their dyadic

developments identical, and equal to 0i, 62, ■ • ■ , 0P, then

(4) f{x') - f(x) < \eM ■ ■ ■

This is seen immediately by the formula (3) or geometrically.

Proof that fix) is singular. We shall now prove that the function fix) is

singular.
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It is well known that almost all numbers in (0, 1) are "normal" in the

scale of 2, that is, are such that

0i + 62 + • ■ ■ + 8p = p/2 + o{p) when   p —> «>.

Let N be the set of these normal numbers. We have meas N=l. Let

us fix an x belonging to N. Let x be given by (2). p being a positive integer

the number x+ep+i/2p+1, where

«jh-i = 1 if Op+i = 0>

«p+i = — 1   if   6p+i = 1)

has a dyadic development whose first p digits are the same as for x, that is,

0i, 02, • • • , 0P.

Hence by (4)

I f(x + e^i/2"+1) - /(*) I < \Bl\H ■ ■ ■ Xv

Now x being normal

0i + 02 + • • • + ep = p/2 + 4>(p)

with \<f>ip)\ /p—»0 when p—»°o. Hence

J>/2-*(j>)    p/2+«Hj>)        .        . p/2-l«(p)|
A«iAe2 • • • A0„ = Ao Ai < (AoAi; ,

hence

(5) 2H-11 fix + «p+i/2^1) - fix) I < (2(X„\i)1/2)"-2/(X„Xi)l*CH.

Now X0 and Xi being essentially different and X0+Xi being equal to 1, we have

2(X0X1)1'2 < 1.

This, together with Iim |<£(£)| /P~^ proves that the second member of (5)

tends to zero for p= oo, and thus, if fix) has a derivative at the point x, this

derivative cannot have a value different from zero. But by a classical theorem

fix) exists and is finite almost everywhere, hence almost everywhere in TV.

Hence, also almost everywhere, fix) =0 which proves our theorem.

Modulus of continuity of fix). The vertical distance between two vertices

of abscissae k/2p, k +1 /2p being less than pp where n is defined by (1), we have

immediately that if l/2p+1^x'—x<l/2" then

fix') - fix) < 2m" ^ 2At-Vlog c*'-*)-»/1»«« = 2ß~1ix' - $»>mMtm»,

Hence fix) satisfies a Lipschitz condition of order | log p \ /log 2.

Fourier-Stieltjes coefficients of /(x/27r). Let

enixdfix/2w).
o
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We divide the y-axis by the points of subdivision corresponding to the ver-

tices existing at the pth stage of the construction of the function and we ob-

serve that the vertical distance between the vertex whose abscissa is

2t(0i/2 + 02/22 + • • ■ + 0p/2>)

and the following one, which can be written

2*W2 + 02/22 + • • • + ep/2" + £ (1/2«)),

has the value XsjXs, • • • Xep. We thus get for approximate expression of the

integral

the summation being extended to the 2" combinations of the values 0 and 1

of the 0{. This sum is equal to

and thus, making      °°, we have

00

cn = n [XO + X****'*].

We can also write

00 , 00

cn = II «"•"^•[Xoe-™*72* + Xie'"*'2*] = e'^JJ free-™'72' + X^*""2*],

or, putting Xo = (1 -r)/2, Xi = (1 +r)/2

00

cn = c'-'H [cos (im/2*) + ir sin (wfr/2*)]

that gives

00

I    |2 = II [cos2 fr«/2*) + r2 sin2 (am/2*)].
*=i

If we take n = 2m, we have

I Ca» |2 > r2 cos2 (tt/4) cos2 (r/8) cos2 (x/16) • • •

and thus c„ does not tend to zero for n = w.

3. Generalization of the preceding function. Instead of constructing our

function with an infinity of identical transformations T(K0, Xi), let us change

the transformation used at every step of the construction.

Thus F0(x) being equal to x in (0, 1) let 0 be the point (0, 0), A the point
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(1, 1) and let us perform on OA the transformation !T(Xo\ «m )• We get a

broken line consisting of two straight lines and representing Fi(x). On each

of those two straight lines we perform the transformation T(\02\ X®); on

the 22 straight lines constituting Fz(x) we perform the transformation

T(\0S), X[3)) to get Fi(x), and so on.

Let

Xo*' = (1 - rk)/2,     \[k) = (1 + rk)/2.

We assume that — 1 <rk < 1 for every k and that if we put

the seriesZMp converges. (This is certainly the case, for example, if — a <rk <a,

0<a<l, but can be secured under less stringent conditions.) Then there is

no change in the argument used in §2 to prove that Fp(x) tends uniformly to

a continuous function F(x) strictly increasing from 0 to 1 in the interval (0, 1).

In the same way as before we prove that if

(6) x = 6l/2 + 02/22 + • • • + ep/2' + ■■• ,

we have

(7) F{x) - 6^ + 02X^Xo2) + es\™6eX3) + . i . .

Finally, if x and x'>x have the same first p digits in their dyadic develop-

ment, we have

(8) F{x') - Fix) < ■ ■ ■ x£' = (1/2P) II (1 - ekrk)
k~i

where
(« = 1   if   9k = 0,       e* = - 1   if   6k = 1.

It will be useful to observe that if x is given by (6) we can also write

xV = (l/2)(l - «***) = (l/2)(l - Mx)n)

where {^(x)} denotes the system of Rademacher's functions (k = l,2, • • • ).

Thus, with this notation, the inequality (8) is written

F(x') - F(x) < (1/2") f[ (1 - <t>k(x)rk).

We can now prove the following theorem.

Theorem. The function F{x) is purely singular when, and only when, the

series ZHt diverges.
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We shall make use of the following theorem, due to Zygmund(2): for al-

most all x we have
n

lim inf Z ~ rk<f>k(x) = — oo
l

if the series diverges.

We deduce immediately from this result and from the inequality

1 — rk<t>k(x) < (r«**»(*3

that for almost all x

V

(9) lim inf H (I - r&h(x)) = 0
P=» k=l

provided that £*»= 00 •

The proof of the first part of our theorem is now immediate. Taking an x

belonging to the set E (meas E=l) for which (9) holds, we have

I F(x + (ep+1/>+>)) " F(x) I < (1/2") f[ (1 - Mx)rk) ,
k—l

hence

lim inf 2*+» | F(x + (ep+l/2"+1)) - F(x) | = 0

and if F'(x) exists it is equal to zero. The proof is completed as above.

To prove the second part of our theorem let us suppose that < 00 •

We know by a classical theorem that in this case the series52ri4>k(x) converges

in a set £ of measure 1. From this and from the hypothesis £?t< oo it is

easy to deduce that the infinite product

00

(10) IT (1 - nMx))
i

is convergent when x belongs to £. Fixing an x belonging to £, let us remark

that ep+i having the same signification as above the dyadic developments of x

and x + ep+i/2p+1 have all their digits equal except the digits of rank p + l.

From this it is easy to deduce, for example geometrically, that

1 - I rP+l L CD , CP)      I „ /      ,    «P+l \

-x„  :      <\F\* + -^)-FW

1+1 Tp+l I     (1) (p)
<-h$,  • • ■ A« .

(2) Zygmund, On lacunary trigonometric series, Trans. Amer. Math. Soc. vol. 34 (1932)

p. 435. The proof given there for lacunary trigonometric series is immediately applicable to

Rademacher's functions.
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Now the first part of this inequality together with the convergence of the

product (10) shows that

(xlim inf 2"+* \F[x + -S- ) - F(x)
€p+l_\

2p+i/
> 0.

Hence, whenever F'(x) exists for x££, F'(x) is not zero. Remembering

that F'(x) exists and is finite almost everywhere, we have that F'(x)^0 al-

most everywhere, and thus F(x) cannot be purely singular. This completes

the proof of the theorem.

Modulus of continuity of F(x). The argument is the same as before. If

l/2"+1 S x' - x < 1/2",

we have

F(x')-F{x)<2fl(^^-\
4=1 \        2 /

Thus if co(5) is the modulus of continuity, we have

(liog«i/iog«) n+\rk\( log ä I/log 2) /i    i     _ \

„(s)<4 n

Fourier-Stielt]es coefficients of F(x/2ir). There is no change in the argument

used above for f(x) to prove that if

C2T         (x\

we have for approximate expression of cn

Z(l) (p) 2Tni(9l/2+92/22+---+9!,/2!')
A«! • • • X«„ e

the summation being extended to the 2" combinations of the values 0 and 1

of the t?i. We get thus

[X0   + Xi e I

mi ,  U) -irni/J1 (k)  *ni/2k -,

= e     11 [X0 e        + Xi e \

e     II [cos (rn/2k) + irk sin (wn/2k)]

and
I 2 ttt    r Z .    K 3      .     Z K I

c« I  = II Lcos i.irn/2 ) + rk sin (xw/2 )J.
*=1
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It is immediately seen—as in the case of /(x)—that if r* does not tend

to zero, we have | c„| 5^0(1).

4. The Minkowski function ?(x). This function was defined by Minkow-

ski(3) for the purpose of establishing a one-one correspondence between the

rational numbers of (0, 1) and the quadratic irrationals of (0, 1). The prop-

erties of the function have been recently investigated by Denjoy(4) who has

proved that it is purely singular and given other important properties and

generalizations of Minkowski's function.

We propose to give here some new indications about this function, con-

cerning particularly its modulus of continuity and its Fourier-Stieltjes coeffi-

cients. For the sake of completeness we shall give the definition of the func-

tion and the proof of its singularity.

Definition of the function ?(x). We define first

?(0) = ?(0/l) = 0,      ?(1) = ?(1/1) = L .

We next take the "mediant" 1/2 = (0 + l)/(l +1) of the two Farey fractions

0/1 and 1/1 and we define ?(0 + l/l+l) to be the arithmetic mean between

?(0) and ?(1), that is, 1/2.

We define in the same way

?(0) + ?(l/2)
= 2 = V4,

Al + 2/

->(—)-
\2+ 1/

?(l/2) + ?(1)

Generally if, by this process, we have defined ?(p/q) and ?(p'/q') for two

consecutive irreducible fractions p/q, p'/q', we define

Kp/q) + KP'/q')(P + A =

At the »th stage the function is defined for 2n4-l values of x and the

ordinates corresponding to these values of x are of the form k/2n

(k = 0, 1, 2, • • • , 2"). The definition of ?(x) for every x follows by continuity.

Let now x be a rational number put in the form of a finite continued frac-

tion:

x = (a0, «1,-, a„),     a0 = 0 (0 & * £ 1).

Let po/qo, pi/qi, • • • , pn/qn — x be the successive convergents (p0/qo = 0,

pi/qi = l/ai, • • • )• Let us assume that at a certain stage (the with) of the

(») H. Minkowski, Gesammelte Abhandlungen vol. 2 (1911) pp. 50-51.

(4) A. Denjoy, C. R. Acad. Sei. Paris vol. 194 (1932) pp. 44^16 and J. Math. Pures Appl.

vol. 17 (1938) pp. 105-151.
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construction of ?(x) the fractions ph-z/qk-t, pk-i/qk-\ are consecutive. (This

happens certainly for £0/2o = 0 and p\lq\ = \/a\, 1/ai appearing as consecutive

to 0/1 at the (ai — l)th stage of the construction.) Let

yt-2 = ? (^—),     yk-i = ? .

\?*-2/ \qk-i/

(Pk-l + pk-2~\

qk-i + qk-J

*.o*-2/ \qk

By definition
yk-i + jk-i

Now it is well known that (pk-i+pk-i)/(qk-i+qk-2) is irreducible and thus

at the next stage (the (w + l)th) the fraction (irreducible) {2pk-\-\-pk-i)

/{Iqk-x+qk-i) will appear with

^/2pk-\ + pk-i\    jk-i + {yk-i + yk-i) 12(2pk-\ + Pk-i\ _

2qk-i + qk-2/\2qk-i + qk-2/ 2

Continuing in the same way we see that

\qk/       \akqk-\ + qk-2/

m y*-i   y*-i y*-i y*-2
2        22 2°*       2a* '

hence, if we put ?(pk/qk) =yk,

y» = (1 - (l/2°*))y*-i + y*-2/2s*

or

yk - yk-i = - (l/2'*)(yt_1 - yi_2).

Now pk/qk when it appears is consecutive to pk-i/qk-i. Hence we can repeat

the argument, and if y„= ?(pn/qn) = ?(*), we have

y„ - yn-i = (- 1/2-X- 1/2—0 • • • (- l/2-)(yi - y0).

Now y0 = 0, yd   1/2**"*, hence

y„-y„-, = (- r^,,^'
and thus

111 1
y    =-1-...-)_(_ -. .

2"1_1     2(ai+oa)_1     2 ("1+02+0,)-1 2     • • -+0»)-1

Now by continuity we get the following result: if

x = (0, 01, 0s, • • • , 0«, • ' • ),
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we have

(11)    ?(x) =
1 1

2«i-i 2(<I1+a2)_1
+ •■•+(- 1)«-

2 (nH-hOn)-l
+

and it is easy to see that if x is rational, the two different developments of x

give the same ?(x).

From this we deduce the more elementary properties of ?(x), namely:

If x is rational, ?(x) is of the form k/2" (k, s integers).

If x is irrational, the dyadic development of ?(x) is infinite.

If x is a quadratic irrational (0, <Zi, ffg, • • • ) is periodic and thus ?(x), being

the difference of two periodic dyadic developments, is rational.

It is not difficult to see that the reciprocals of these results are true.

The fact that ?(x) is strictly increasing is an immediate consequence of its

construction.

Proof of the singularity of ?(x). Let x = (0, öi, • ■ • , an, ■ ■ ■ ). We know

that for almost all x lim sup an = °o. Let N be the set of such numbers (meas.

N = l) and let us fix an x belonging to N. Let x = (0, a%, ■ • • , a„, ■ • • ), let

?(x) =y and let

r„ = p„/qn = (0, au ■ ■ ■ , an),     p„ = ?(r„),

and let us write, as usual a„'+i = (an+i, an+2, ••*■•)• We have

and thus

d'n+lpn + Pn-l

«»+l?n + ?n-l

1

1

(a„+i + 2)ql
< x —

Pn

In

(«»+l?n + 0„_l)ffn '

<

«»+10»

and

n r 1
P"     ^     ^  L 2(oi+" 2("lH-h*„+2)-l

+

which gives

1

2<"lH— •+o»+i
< I y - Pn I <

1

2<<*H-l-on+l)—1

Hence, we have

Sn =
y — Pn

x — r.
<

2(an+1 + 2)qn

2"i+ • • •+«»+!

and
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2

y — pn-\ I anqn-i

x — r„_i I 201+--~|-°»

Consequently,

5n _J_ / «n+i + 2\ / g, y

5„_i 20»«\     a„ J\qn-J

<2J_(±±l+l)(an+ir<C^,
2°»+1\    a„     / 2a»+»

C being an absolute constant.

Now we can certainly find an infinite subsequence {ank\ of the \an) such

that a„t <a„i+i and ant—*00, hence

lim inf oj5n_i = 0.

Now if dy/dx exists, is finite, and is different from zero at the point x,

Sn/5„_i must tend to 1. Hence, at any point x£iV, dy/dx cannot exist, be

finite, and be different from zero. But dy/dx exists and has a finite value al-

most everywhere. Then the only possible conclusion is dy/dx = 0 almost every-

where, which proves the singularity of the function.

Modulus of continuity of ?(x). We need the following result on continued

fractions, which to our knowledge has not been stated:

Lemma. Let £n/<Zn = (0, au a2, • ■ • , an). Let 6 be the Fibonacci number

(l/2)(51/2 + l). We have the inequality qn<eai+a2+---+a".

We shall prove this lemma by induction. We have qi=ai<6ai for it is

easily seen that m<dm for every positive integer m. We have also go = l =0°.

And we have generally qk=akqk-\Jrqk-i{k = 2, 3, • • • , n). If supposing the

lemma true for n=k — 2 and n=k — \ we prove that it is true for n=k, we

will have proved the result as stated. Let

fi-t < 0ol+'- ■+a"-1,      qk-2 ^ 0O1+'' -+ak~2.

It is sufficient to prove that

akBai+'' '+0*-1 4- -Nu < ö«ih-h>tf

that is, ojtö"*-1 +1 ■^dak-l+ak or afc + l/0°*-1 ^6ak. Hence it is sufficient to prove

that a* + l/0g0o*. Now for at. = 1 we have the equality 1+1/0 = 0 and it is

easy to see that 2 + l/0 = 02 and that the function 8x — x increases when xS;2.

Hence the lemma is proved. (It is easy to see, by considering the number

(0, 1, 1, 1, • • • ) that this result is the best possible of its kind, in order of

magnitude.)

We can now proceed to determine the modulus of continuity of ?(x). In

the definition of the function by successive approximations, we start from the

o"n-i =
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Farey fractions 0/1 and 1/1 and in a first operation we introduce the mediant

1/2, in a second operation the two mediants 1/3 and 2/3, in a third operation,

four mediants, and so on. In the pth operation we introduce 2"~l mediants

and we get a sequence of fractions containing

2 + (1 4- 2 + ••• 4- 2*-1) = 2" + 1

fractions, which we can call the Minkowski sequence of order p and denote by

Tip. To the sequence 3Jlp corresponds, by the transformation y = ?(x), the se-

quenceof numbers£/2p (k = 0,1, 2, • • • , 2"). The formula (11) giving the value

of ?(x) shows that the fractions belonging to SD^are those which, when written

in the form (0, at, ch, • • • , a„), are such that Z"a» does not exceed p + 1.

Hence, by the lemma, if a/0 belongs to 2flp, we have ß<8"+1, and this order

of magnitude is actually attained for the fraction (0, 1, 1, • • • , 1) where 1 is

repeated £ + 1 times. Now it is immediately seen, by induction, that if a/ß,

a.'Iß' are two consecutive fractions of 5D?,,, we have \ß'a—ßa'\ =1 and thus

the distance between two consecutive fractions of 3RP is greater than l/02p+2.

Let now x, x' be two irrational points of (0, 1),y = ?(*), y'= ?(*')• At a

certain stage of the dissection one fraction xo appears for the first time in

(x, x'). Let us continue the dissection until one fraction appears for the first

time in (x, Xq) or in (x0, x') or in both intervals. Let this stage of the dissection

be the pth, then we have x'— x> l/02p+2 and y'—y<4/2". Hence,

(2p + 2) log 0 > log

which proves that

1

X — X

(p - 2) log 2 < log
y' - y

I y - y\ < I x' - «IrMci/ic».

C being an absolute constant, and this relation being true for every couple of

irrationals x, x' is also valid for x or x' or both rational. Hence: the function

?(*) satisfies a Lipschitz condition of order a=(l/2)log 2/log 0 where 0 is the

Fibonacci number (l/2)(51/2+l).

We shall now prove that a is the best possible exponent for the Lipschitz

condition of ?(x) and that it cannot be improved.

Let us consider, in fact, the number

X = (0, 1, 1, ■ • • ) = (51'2 - l)/2 = 1/0.

The corresponding value of the function is

r, = ?(x) = 1 - 1/2 + 1/22-= 2/3.

Let pn/qn be the successive convergents of x- It is well known that

qn = (l/5^)[d^ - (- l)«+1(l/0"+1)], Pn =
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Now

5 = I X — Pnfq* | < 1/ql

which is of the same order as 1/02", whereas

V - ?(*/*) = (- l)"(l/2") + (- l)"+1(l/2»+1) + • • •

is of order 1/2", that is, of order 521 Iog 2/logwhich proves that the number a

of our Lipschitz condition is the best possible one.

Fourier-Stieltjes coefficients of ?(x/2ir). Let

en<xd?(x/2ir).
o

It is immediately seen that

where the summation is extended to all fractions p belonging to Tip.

It does not seem to be known whether c„ tends to zero for «= «>. If we

confine ourselves to the behavior of c„ "in the average," we get the following

result. It is well known by a theorem of Wiener(6) that

I Ci |2 4- I c212 4- • • • 4- I Cn |2 < Anu(lfn)

being the modulus of continuity of the function and A an absolute con-

stant. Hence, by our result on the modulus of continuity of ?(x) we have

I ci |2 + I c212 H-+ I cn |2 = OO1-2-1'»' 2'10' o)

and, by Schwarz's inequality

I ci I + I Ci I H-4- I Cn I = 0(«1-4_llog 2'l0« e).

(s) See, for example, Zygmund, Trigonometrical series, p. 221.
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