GALOIS CONNEXIONS

BY
OYSTEIN ORE

This paper contains in the main a section of my Colloquium lectures on
the theory of Mathematical relations given in 1941 at the Summer Meeting of
the American Mathematical Society at the University of Chicago. (A brief
review of these lectures can be found in the report of the Summer meeting
at Chicago, Bull. Amer. Math. Soc. vol. 48 (1942) pp. 169-182.) Due to vari-
ous causes it has been necessary for me to postpone the book on the subject in
the Colloquium Series, probably until after the war. I have found it desirable,
however, to publish certain parts of this theory at the present time. A con-
tributing reason for this decision is the fact that I have at various times
discussed aspects of the theory with others who have become interested in
these problems to the extent of wishing to publish contributions of their own.

The object of this paper is to discuss a general type of correspondence
between structures which I have called Galois connexions. These correspond-
ences occur in a great variety of mathematical theories and in several in-
stances in the theory of relations. It seemed desirable therefore to give a sepa-
rate exposition of their main properties and interpretations. The name is
taken from the ordinary Galois theory of equations where the correspondence
between subgroups and subfields represents a special correspondence of this
type.

After some introductory remarks on closure relations the general proper-
ties of Galois connexions are discussed. Next it is shown that every Galois
connexion can be conceived of as being defined by means of a continuous
mapping and conversely every mapping of a closure relation defines a Galois
connexion. A different interpretation can be given by means of binary rela-
tions. It has already been pointed out by Garrett Birkhoff that any binary
relation defines a correspondence of the type of a Galois connexion between
the subsets of two sets and it is easily seen that conversely every Galois con-
nexion can be constructed in this manner. As an illustrative example all
binary relations with a perfect Galois connexion are determined. The Galois
connexion defines a pair of dual topologies so that such topologies can be
defined by means of binary relations. The construction of self-dual topologies
is discussed. The possibility of a general Galois theory for relation’s is indi-
cated briefly and the case of an equivalence relation is solved as an example..
There are some final remarks on the Galois connexion defined by a permuta-
tion group.
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1. Closure operations. Let P be a partially ordered set. Any correspond-
ence

(¢)) a—d

which associates with each element @ some other element @ in P shall be called
a closure operation provided it satisfies the three conditions:

(1) g=gq,

(2) @Da,

(3) aDbimplies aD5.

Any image element @ in the correspondence (1) is called a closed element. One
sees that an element b is closed if and only if 5=25. It is also seen from the
axioms that the closure @ of an element a is the least closed element con-
taining a.

We shall assume next that P= 2 is a structure with a universal element %
and. a zero element 0. The definition of a closure relation implies that u is
closed, #=u. When a zero element exists in the partially ordered set it is cus-
tomary to make the fourth axiomatic assumption:

(4) The zero element is closed: d=o.

Next let {a;} be a set of elements in =. The union of these elements shall
be denoted by Va:. One can then show:

(2) Vé; = Va; 2 V..
To prove this relation we observe that for every 3
Vé; 2 Va; 2 a..
By taking the closures one obtains
Va2V 2 Va;

and when the closure operation is applied a second time (2) follows.
Similarly one shows for the crosscut,

3 N = N\ad; 2 Na..
To prove this result we notice that
a; 2 a; 2 Na;,

hence when the closures are taken
A& = Na..
This may be applied to the elements d; instead of the a; so that
NAa; 2 Na;
and (3) follows.
When one assumes that T is a complete structure the relations (2) and
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(3) hold for the union and crosscut of arbitrary sets of elements. According
to (3) the crosscuts of closed sets are closed.

We shall say that a structure Z, is order contained in another structure 2
when 2, is a subset of 2 such that when @, Db, for two elements in Z; then
a1 Dby also in Z. Furthermore Z, is order contained over Z when the universal
element and the zero element of Z and Z; are the same. Also 2, is a sub-
structure of Z with respect to crosscut when the crosscut operation in 2, co-
incides with the crosscut operation in. Z both for finite and infinite sets. From
the previous remarks one obtains without difficulty:

THEOREM 1. Let T be a complete structure in which a closure operation is
defined. The closed elements in = form a complete structure Z, which is a sub-
structure over = with respect to crosscut. Conversely when Z, is a given substruc-
ture over Z with respect to crosscut one obtains a closure operation in Z by
associating with each element a in 2, as its closure a, the least element in =,
containing a.

This theorem in a slightly different formulation is due to Morgan Ward
[1](?). It should be mentioned that this theorem can be expressed in other
ways which connect it with the theory of closure relations in sets in general
(Ore [1]).

Any complete structure 2 can be conceived of as being the structure of
closed sets for some closure relation I' defined in any subset S of 2 which
constitutes a basis for T in the sense that all other elements in 2 can be ob-
tained by forming unions of elements in S.

2. Galois connexions. Let P and Q denote two partially ordered sets. We
shall assume that there exists a correspondence from P to Q,

4 p — Q(p),
and also a correspondence from Q to P,
(5) g— B(g)-

These two correspondences (4) and (5) together shall be called a Galois corre-
spondence between P and Q provided the two following conditions are fulfilled :
() When p;Dp. are two elements in P or g1 D¢ two elements in Q then

Li(p1) S Q(pa), B(g1) S Plga)-
(B) For any element p in P or ¢ in Q
(6) PA(P) D p OB 24

We shall also say that there exists a Galois connexion between P and Q when
a pair of Galois correspondences (4).and (5) has been defined.

(Y) Numbers in brackets refer to the bibliography at the end of the paper.
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The condition («) states that the two correspondences P and Q are order
inverting. Through a combination of (a) and (8) one obtains directly

Q) OPA(p) = Q(p), BOB(Q = B(9)-

The operations PLQ and QP represent correspondences of P to a subset and
of Q to a subset. From (a) and (B) together with (7) it is easily shown that the
correspondence P has the properties:

(1) If prDps then PLQ(p1) 2 BPL(P2).

(2) BL(p)20.

(3) BLQBPLQ(p)=PLUP).
The analogous properties hold for P and they show that the two operations

®) p—p=PBA(), ¢—7=2%0

are closure operations in P and Q respectively. The following facts about
Galois connexions are easily derived.

THEOREM 2. Let P and Q be partially ordered sets connected through the
Galois correspondences (4) and (5). The application of one of these correspond-
ences after the other defines a closure operation in P and in Q. The closed elements
are the image elements P(q) and Q(p). Under the Galois correspondence each
element has the same image as its closure:

9) Q@) = Q@), Bl =B@D,

and the Galois correspondences represent a one-to-one order inverting correspond-
ence between the closed elements in P and (.

It shall be assumed from now on that the two partially ordered sets P
and Q are complete structures. The universal elements in P and Q shall be
denoted by up and uq respectively and the zero elements are op and 0g. Sub-
sequently also the following additional condition for the Galois correspond-
ences shall be postulated:

(v) 0e=L(up), 0r=B(uq)- .
This assures that in the corresponding closure relations the zero elements are
closed:

op = 0Op, 0Q = 0q.

In this case the closed elements in P and Q form complete structures P;
and Q: which are substructures with respect to crosscut over P and Q respec-
tively. According to Theorem 2 there exists a one-to-one order inverting
correspondence between the structures P, and Q. Consequently this corre-
spondence must be a dual isomorphism which takes unions in P; into cross-
cuts in @, and crosscuts in P; into unions in Q. Thus if

ﬁl = SB(Q-I), ﬁ? = ‘B(q_2)a
it follows that
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QPN p2) = 1\J gay
QBN P2) =N Ge

and similarly for the correspondence from Q; to P;. The rules (10) hold also
for the unions and crosscuts of arbitrary sets of closed elements. In terms of
arbitrary elements in Q the formulas (10) may be expressed in the following

i Q@) N Ble) = OB(a: U a9,
Q(Pgn) Y B(g2)) = QB(g1) N QP(g2),

and analogously for the elements in P.

The preceding results show that one can obtain all Galois connexions be-
tween the two complete structures P and Q by the following construction:
All pairs of complete structures P, and Q, must be determined for which P,
is a substructure over P with respect to crosscut and Q; a substructure over Q
with respect to crosscut such that P, and Q, are dually isomorphic. With each
element p in P one associates as its closure $ the smallest element in P, con-
taining it and analogously in Q. The Galois correspondences are then defined

by
p—2@), ¢—-B@

where P denotes the dual isomorphism from @ to P; and Q its inverse.

Let P and Q be two partially ordered sets with a Galois connexion and P,
and Q; the subsets of their closed elements. The Galois connexion shall be
said to be perfect in P when every element in P is closed, hence when P =P,.
In terms of the Galois correspondences (4) and (S) the connexion is perfect

in P when
PQ(p) =2

for every element p in P. Similarly the connexion is perfect in Q when Q =0,
so that every element in Q is closed and

LQPg) = ¢

for every element ¢ in Q. Finally the Galois connexion is perfect when it is
perfect in both P and Q.

It is an important problem in the application of the theory of Galois con-
nexions to determine when a given Galois connexion is perfect. This for in-
stance represents the main content of the ordinary Galois theory of equations.
The following criterion for a Galois connexion to be perfect is sometimes
useful.

(10)

THEOREM 3. A Galois connexion between two structures P and Q is perfect
in P if and only if any two distinct elements p1Dps in P always have distinct
images

Q(p1) C Q(pa).
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Proof. When the Galois connexion is not perfect in P there exists an ele-
ment p different from its closure $, and p and p have the same image in Q.
Conversely when the Galois connexion is perfect in P every element p in P
is closed and, since there is a one-to-one correspondence between the elements
in P; and (, distinct elements in P must have distinct images under Q.

3. Mappings and Galois connexions. It is possible to express the theory of
Galois connexions in many forms. Later we shall give a formulation by means
of binary relations. In this section we shall indicate an interpretation of the
theory in terms of continuous mappings. This presentation is based upon cer-
tain investigations on closure relations and mappings which are as yet unpub-
lished. However, since they will be prepared for publication shortly, I have
taken the liberty of applying certain consequences in this section in order to
give a more complete form to the present exposition.

We have already mentioned in §1 that any complete structure P can be
considered to be the structure of closed sets for a suitable topological space.
Any substructure P; of P with respect to crosscut corresponds to a mapping
of this space onto a space whose structure of closed sets is isomorphic to P;.
Furthermore it shall be recalled that any substructure P, over P with respect
to union can be considered to be the structure of closed sets of some dense
relative space of a space with P as its structure of closed sets (Ore [2, p. 778]).
Next let Q be the structure of closed sets of some other space and Q, a sub-
structure over Q with respect to crosscut. To Q there exists a dual structure
Q* with the same elements as Q but with the operations of union and crosscut
interchanged. The dual Q;i* of Q1 becomes a substructure over Q* with respect
to union. In the case of a Galois connexion between the structures P and Q
the substructures P; and Q; of closed elements are dually isomorphic. But
then P; and Qj* are isomorphic so that any space whose structure of closed
sets is P can be mapped onto a space whose structure of closed sets is Q:*.
On the other hand Q+* is the structure of closed sets of some dense relative
space of a space for which Q* is the structure of closed sets. It follows there-
fore that any Galois connexion between P and Q corresponds to a mapping
of a space with a structure of closed sets isomorphic to P onto a dense sub-
space of a space whose structure of closed sets is isomorphic to the dual struc-
ture Q* of Q.

It may be of interest to go somewhat further into details about this rela-
tion between mappings and Galois connexions. Let S and T be two spaces
with the structures of closed sets P and Q respectively. Furthermore « shall
be a mapping of .S onto the relative space T, of T. Each closed set g in T
defines a closed set

(11) 9% =9qT,

in T,. The closed sets g, in T, form a complete structure which we shall de-
note by Q,. Among all closed sets ¢ in T giving rise to the same closed g,
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in T, by means of (11) there is a unique minimal one which we shall denote
by ¢i. It is the intersection of all those sets ¢ for which (11) holds. Thus to
each closed set g, in T, there is associated in a one-to-one manner a closed
set ¢1in T. The sets ¢; are seen to form a substructure Q; of Q with respect to
union and because the correspondence between Q, and Q is order preserving
these two structures are isomorphic. Furthermore since we shall suppose that
T, is a dense subspace of T the structure Q, is a substructure over Q.
By the mapping « of the space .S onto the space T, the inverse images
' §

P1=‘1:

of the closed sets in T, are closed in S according to the general mapping the-
ory and they form a substructure P; with respect to crosscut over the struc-
ture P of closed sets in S. This leads to an order preserving correspondence
from Q to P, when one defines

(12) q—q-T.— (g-To)="".
Conversely a correspondence from P to Q, is obtained by putting
(13) p—opTo=q@—q

where p2 is the closure of p= in T and ¢ the element in Q; which corresponds
to ¢,. It is verified immediately that these two correspondences (12) and (13)
define a Galois connexion between P and the dual structure Q* of Q such that
P; and Qjf form the structures of closed elements.

4. Galois connexions within a structure: It is possible to define Galois
correspondences between a structure P and itself. For such Galois connexions
within a structure P one deduces immediately:

THEOREM 4. Let P denote a complete structure. Every Galois connexion within
P is defined by means of a pair of substructures P, and Qy over P with respect to
crosscut such that Py and Qy are dually isomorphic.

The actual Galois correspondences which define the connexion within P
may be obtained explicitly as follows: Let p be an element in P and $ the
least element in P; containing p. Similarly ? is the least element in Q; con-
taining p. The Galois correspondences can then be written

(14) p—»fa, p—-—»;a-l,

where a denotes the dual isomorphism from P; to Q.

A special case of a Galois connexion within a structure occurs when the
two defining substructures P; and Q, are identical. In this case we shall say
that the Galois connexion is structure self-dual. To express the condition for
such a Galois connexion we shall call a one-to-one correspondence « of a
structure P to itself a dual automorphism when
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(a\J b)* = a= M b, (eMN b)e = a=\U b
From Theorem 4 one concludes:

THEOREM 5. All structure self-dual Galois conmnexions within a complete
structure P are defined by some substructure Py over P with respect to crosscut
which has a dual automorphism a. The Galois correspondences defining the con-
nexion within P are of the form

a a”?
(15) p—p, PP,
where P is the least element in P, containing the element p in P.

A Galois connexion within a structure P shall be called self-dual when the
two defining correspondences (14) are identical. It follows immediately that
a self-dual Galois connexion is structure self-dual. From Theorem 5 and (15)
one derives: ‘

THEOREM 6. All self-dual Galois connexions within a complete structure P
are defined by those substructures Py over P with respect to crosscut which possess
a dual automorphism o such that

a=al,
A dual automorphism of this kind may be called an involution.
A still more special type of structures are those in which there exists an
orthogonality or polarity. A polarity shall be defined to be an involution

a2 a*
with the additional property that a* is the complement of a,
aNa* = o, a\Ja* = u

Because of the importance of the applications such polarities are of particular
interest.

We shall consider briefly the Galois connexions between a complete struc-
ture P and its dual P*. It follows from the general theory that any such Galois
connexion is defined by a pair of isomorphic structures P, and @1, where P,
is a substructure with respect to crosscut and Q; a substructure with respect
to union both over P. To each element p in P one associates the least element
$ in P; containing p and the greatest element p* in Q contained in p. The
Galois correspondences become

(16) p—o B p—o (N

where a is a fixed isomorphism between P; and Qi. In the special case where
Py =, it follows that any substructure P; over P defines a Galois connexion
between P and P*. The correspondences in this case have the same form
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(16), where § is the least element in P; containing p and p* the greatest ele-
ment in P; contained in p and « some automorphism of P;. The following
special type of such a Galois connexion may be of sufficient interest to be
mentioned separately.

THEOREM 7. Let P be a complete structure, P* its dual and a a complete
structure homomorphism of P. Then for any element p in P there exists a least
element p, and a greatest element p, such that

P =t =11
and the correspondences
?— b P— b
define a Galois connexion between P and P*.

5. Binary relations and Galois connexions. There are a great number of
applications of the theory of Galois connexions. The term Galois connexion
is of course chosen with the Galois theory of equations in mind. In this case
one is concerned with a Galois connexion between the subfields of an alge-
braic extension K of a given field K, and the subgroups of the group of all
those automorphisms of K which leave K, elementwise fixed. The basic result
of the Galois theory of equations is that when K is a finite separable algebraic
extension of K, this Galois connexion is perfect. In the more general case
where the extension K of K, is not finite the Galois connexion is not perfect
and as Krull [1] has shown there can be established a one-to-one correspond-
ence only between the subfields and certain closed subgroups (see also
Krasner [1]).

We shall not enter into this theory, nor into various other well known
examples of Galois connexions. For the remaining part of this paper we shall
consider the interrelation between Galois connexions and the theory of binary
relations along the lines indicated in the Colloquium lectures in Chicago in
1941. .

Let S and S’ be two sets which under circumstances may be permitted to
be identical. A binary relation R from S to S’ is an association

17 a— R, = R(a)

of a subset R, of S’ to each element @ of S. When &’ is an element belonging
to R, one writes

(18) a'Ra

and says that a’ is <n the relation R to a. The sets R, in (17) shall be called the
basic sets for R.
Let us assume next that the sets R, cover S’, that is, each element in S’
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belongs to at least one set R,. Then one can define a converse relation R*
from S’ to S such that

(19) aR*a’

holds if and only if (18) is satisfied. The basic sets R} for R* consist of all
elements a for which (18) holds for the fixed element a’.

The relational notation (18) can be extended to arbitrary subsets by writ-
ing

A’RA

whenever the elements @’ in the subset 4’ of S’ satisfy the relation (18) for
every a in 4. To each set 4 in S one can define a set R(4) consisting of all
elements a’ for which

a’'RA.
Clearly one must have
(20) R4) = ]I R(a).
aCA

This shows that the sets R(4) form a complete intersection ring of sets in S’.
If one adjoins the whole set S’ and the void set O’ to the family of sets R(4)
a closure relation I''=T¢ is defined in S’. We shall call I/ the closure relation
induced by R in S’. It is often convenient to assume that the void set O’
already belongs to the family (20). This is the case if and only if there exists
no element a’ in S’ such that the relation (18) holds for every a in S since then
R(S)=0'. The analogous observations may be made in connexion with the
converse relation R*. To each subset A’ of S’ there exists a set R*(A4’) consist-
ing of all elements @ in S for which

aR*A4’'.
Corresponding to (20) one finds
- (21) R¥4") = I R*a).
a’'CA’

These sets R*(A’) form a complete intersection ring of sets in S, hence they
induce a closure relation I'=Tg+ in S. The void set O belongs to the family
(21) if and only if there exists no element a in S such that (18) holds for every
a’in §’.
From (20) one finds that if 4,4, are two sets in .S then
R(4:) € R(4)
and similarly for R*. One also verifies that
R*R(4) D A4, RR*(A4") D A'.

These results lead immediately to the following result formulated first by
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Garrett Birkhoff [1] in a slightly different manner:

THEOREM 8. Every binary relation R and its converse R* between the two sets
S and S’ define a Galois connexion between the subsets of these sets through the
correspondences
A — R(4), A’ — R*(4").

All the consequences bof the previous theory of Galois connexions follow.
One has
RR*R(A) = R(4), R*RR*(4) = R*(4)

and also the identities corresponding to the rules (10) which express the dual
isomorphism between the two families of closed sets.

It has already been observed that in the generality in which Theorem 8
has been stated the sets R(4) and R*(A4’) do not necessarily form a closure
relation in S and S’ since the sets 0, 0’, S, S’ are not always closed. To bring
Theorem 8 in complete agreement with our previous theory of Galois con-
nexions between structures we shall restate Theorem 8 in the restricted form:

THEOREM 9. Let R and R* denote a binary relation and its converse defined
between the two sets S and S’. These relations shall be subject to only the restriction
that there shall be no element a’ in S’ such that

a’Ra

Jor every a in S, nor any a in S such that this relation holds for every a’ in S’.
Then the correspondences

A — R(4), A’ — R*(4")

supplemented with
o=s, o0o=S

define a Galois connexion between S and S’ such that there exists a dual 1somor-
phism between the closed sets under the two induced closure relations T'gs in S
and Tpin S'.

We have just observed that any binary relation R defines a Galois con-
nexion between the structures of all subsets of the two sets S and S’. It is not
difficult to show that the converse is also true (see Everett’s paper in the
present issue of these Transactions).

THEOREM 10. Any Galois connexion between the structures of all subsets of
the two sets S and S’ can be defined by means of a binary relation R between the
two sets.

Proof. We denote by P and Q the structures of all subsets of the two sets
Sand S’ and by P; and @, the substructures with respect to crosscuts defining
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the Galois connexion. The Galois correspondences are
4-2(4), A4A'->BMA)
for the subsets 4 and 4’ in S and S’. We also write
4 =9Q(4), 4" =20%PM4)

for the two closures defined in the sets by the connexion. Between the struc-
tures P; and @ there exists a dual isomorphism

A-4"=9@ = QWM),
A2 = @A) = PA).
To define the Galois connexion we introduce the two binary relations

(23) a'Ra, aRa’

(22)

which shall hold respectively when
(24) a C a* = ge, aC (a) " =7

By the Galois connexion one of these conditions implies the other so that in
(23) R;=R* is the converse of R. Furthermore one has

R4) =TI R@@) = I a-

aCA aC4A

and by the dual structure isomorphism between P; and Q, this gives
RA) =(V o)y =4
aCA
so that a comparison with (22) shows that the relation R defines the Galois
connexion. '

6. Relations with perfect Galois connexion. Let us investigate when the
Galois connexion defined between the subsets of two sets by a binary relation
can be perfect. We shall use the previous notations. The binary relation R
defines a Galois connexion between the structures P and Q of all subsets of
the sets S and S’. When the Galois connexion defined by R shall be perfect
in Q every subset of .S’ must be the intersection of sets R(a). This can be the
case only when every maximal subset of S’, ‘

M, =S -d
containing all but a single element @’ of .S/, belongs to the family of sets R,.
By selecting one element @, in S for each element a’ in S’ such that

R, =8 -4,

a one-to-one correspondence
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is defined between S’ and the set S; of all elements a;. This leads to the result:

THEOREM 11. The Galois connexion between the subsets of two sets S and S’
defined by a binary relation R is perfect in the subsets of S’ if and only if R can
be constructed as follows: Let a be a one-to-one correspondence from a subset Sy
of Sto S’. For an element a, in Sy the relation

a’Ra
shall hold if and only if
o' # ay.
For the elements in S— S, the relation R may be defined arbitrarily.

We shall determine next when the Galois connexion is perfect both ways.
In this case the two sets .S and S’ must have the same cardinal number ac-
cording to Theorem 11. For each set R} corresponding to an element a’ in
S’ there is at least one element in S, namely

a, = (a/)a_l'
which does not belong to it. But if the connexion shall be perfect in the sub-
sets of S the converse sets R must include all maximal sets

M,=S—a
in S. One concludes that this is possible only when the set S; is the whole
set S and the sets R} are the maximal subsets of S,

Ry =S — (a).
This shows that « is a one-to-one correspondence between S and S’ and the
relation a’Ra is equivalent to the statement
a’ # a°.

For any relation R one can introduce a complementary relation R¢ which
holds,

a'Rea,
if and only if the relation ¢’Ra does not hold. One can then state our result

as follows:

THEOREM 12. The Galois connexion defined by a binary relation R between
the structures of all subsets of two sets S and S’ is perfect if and only if R is the
complementary relation to a one-to-one correspondence,

a’ 2 a°,
between S and S’.

7. Dual topologies and binary relations. This section contains results es-
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sentially due to Garrett Birkhoff [1], however in a somewhat different for-
mulation and with certain supplementary results. Let S and S’ be two spaces
with the closure relations I' and T/ respectively. We shall say that S and S’
are dual spaces (Ore [2]) when the structure of all closed sets in .S is dually iso-
morphic to the structure of all closed sets in .S’. From our Theorems 9 and 10
one obtains immediately:

THEOREM 13. Any binary relation R between two sets S and S’, such that
a’'Ra

cannot hold for a fixed a in S and all a’ in S’ and conversely, defines dual topolo-
gies in the two sets by means of the Galois connexion it induces. Conversely any
patr of dual spaces can be obtained from some binary relation in this manner.

It may well happen that a space S can be topologized by two topologies
I' and I’ which are dual. Through specialization of Theorem 13 one obtains
immediately:

THEOREM 14. Let R be a binary relation in a set S satisfying the condition that

aRb

shall not hold for all b by a fixed a and conversely. Then R induces a Galois con-
nexion within the family of all subsets of S and also two corresponding dual
topologies in S. Conversely any space S with two dual closure relations can be
obtained from some suitable binary relation in S in this way.

From the proof of Theorem 10 follows that the dual topologies may be
defined by the two relations

(25) aRb, bR*a,
which hold if and only if
(26) aCbs, bCa,

where 4 and 4 denote the closure operation under the two topologies and «
the dual isomorphism between their structures of closed sets.

A space is said to be self-dual when its structure of closed sets has a dual
automorphism . One can also define self-duality of a space by the property
that there shall exist a one-to-one order preserving correspondence between
the family of closed sets and the family of open sets. As a special case a space
or topology shall be called ¢nvolutory when there exists an involution in its
structure of closed sets. It follows from the preceding that a self-dual topology
in a space S is definable by a binary relation R in S, where R and its converse
R* in (25) hold respectively when

(27) eCl, bCa,
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where a is the dual automorphism of the structure of closed sets.
For an involutory topology « is a correspondence for which a=a~! and
the two relations (27) reduce to

a Cbe, +bCa-
This shows that the relation R is identical with its converse
R = R*.

Such a relation is called a symmetric relation. Thus any involutory topology
in a set can be induced by a symmetric binary relation in the set. Conversely
any symmetric relation induces an involutory topology in the set, because
when R is symmetric the Galois connexion induced by R within the structure
of all subsets 4 of S is defined by the single correspondence

A — R(4) = I] R).

aCA
We state therefore:

THEOREM 15. Any symmetric relation R in a set S subject to the condition that
aRb

cannot hold for all b, for a fixed element a,defines an involutory Galois connexion
and topology within the structure of all subsets of S. Conversely any complete in-
volutory structure or topology can be obtained from a symmetric relation in this
manner.

It is of interest to determine also how the self-dual spaces can be defined
by means of binary relations. From (27) one sees that a self-dual space is de-
fined by means of a binary relation R for which the basic sets

R, = a°

are closed under the closure relation I'gs induced by the converse relation R*,
and analogously for R*. Hence R and R* generate the same closure relation
in S. But on the other hand, when a relation R and its converse do define the
same closure relation, the Galois connexion expresses that this topology is
self-dual. As a consequence we can state:

THEOREM 16. Any relation R in a set S (subject only to the condition in
Theorem 14) such that R and R* define the same closure relation induces a self-
dual topology in S and every self-dual topology is obtainable in this manner.

One may wish to express the condition for R and R* to generate the same
closure operation in .S more directly in terms of relational properties. This
may be done as follows. In order that the sets closed under I'g shall be closed
under I'gs it is necessary and sufficient that each set R, be the intersection
of sets Ry*, hence that there exists a representation
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R.= II R;

bCBa

where the elements b run through some fixed set B, associated with a. Analo-
gously when every set closed under I'gs is closed under I'r there must exist
a set B such that
*
R. = ]I R.

bCB;
This leads to the criterion:

THEOREM 17. The necessary and sufficient condition for a relation R and its
converse R* in a set S to define the same self-dual closure relation is that to each
element a in S there exist two sets B, and B such that the two relations

xRa, aRx
hold if and only if
b.Rx,  xRb,
respectively for every b, in B, and b} in B}.

When the closure relation defined by R and R* satisfies the finite chain
condition or particularly when S is a finite set the condition for the two in-
duced closure relations to be the same can be expressed more simply. In this
case there exists for R a fundamental family of basic sets {R(ao) } consisting of
those sets R, which are not the intersection of others. Clearly R and R* define
the same closure relation when their fundamental families of sets are the same.

A binary relation R in a set .S is said to be reflexive when aRa for every a
in S. Similarly we shall define R to be anti-reflexive when aRa holds for no
element @ in S. The converse relation R* is reflexive or anti-reflexive at the
same time as R. When R is anti-reflexive the set R(e) does not contain a,
hence in general for any set 4

A-R(4) =0
and this property may also be used to define an anti-reflexive relation. From
R(4)-RR(4) = 0

one concludes by the duality defined by the Galois connexion through R in
the subsets of S

R*(R(A)-RR(4)) = R*R(A) U R*RR(4) = S
and similarly one obtains
RR*(4) U RR*R*(4) = S.

Let us assume next that the relation R is both symmetric and anti-
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reflexive. In this case the previous results reduce to
R(A)-RR(4) = 0, R(A)\J.RR(4) =S

for any subset 4 of S. This shows that the involution in the structure of closed
sets defined by R is a polarity. Conversely let us assume that 2 is some com-
plete structure with a polarity. Since a polarity « is a special case of an involu-
tion the symmetric relation aRb defining it will hold if and only if

a C be, a?=1.

But for polarity the two sets @ and @< are disjoint, hence a is not contained
in @* and R is an anti-reflexive relation. Thus it has been shown:

THEOREM. Any symmetric anti-reflexive binary relation in a set S defines a
Galois connexion within the structure of all subsets of S such that the structure
of closed sets has a polarity. Conversely any complete structure with a polarity
can be generated from some symmetric anti-reflexive relation in this manner.

It should be noted that this result gives an actual method for the construc-
tion of all complete structures which have a polarity.
8. Galois theory for relations. To every binary relation R in a set S there
is associated a group of automorphisms ®g. An automorphism a of the relation
is a one-to-one correspondence of the set S such that any relation

aRb

implies
a*Rbe,  @* 'Rb="".

We shall not discuss the general theory of automorphisms of binary rela-
tions here. It may be observed only that through the group of automorphisms
of a relation one can introduce a Galois theory with respect to this relation.
To every subset 4 of S there exists a subgroup ®&(4) of the group ® of all
automorphisms of R consisting of those automorphisms which leave 4 ele-
mentwise fixed. Similarly to each subgroup % of ® there exists a subset S(3)
consisting of those elements in S which are left invariant by the automor-
phisms in %. One verifies immediately that in this manner a Galois connexion
has been established between the subsets of S and the subgroups of ®. (See
also A. R. Richardson [1].)

We shall consider only as an example the case of an equivalence E in S.
The equivalence relation defines a partition B(B) of .S into disjoint blocks B,
each block a maximal set of equivalent elements. For each cardinal number «
let us assume that there exists a family

&) o)

(28) 8 = T ), F, = E%x

of n, blocks BY each with k elements. The automorphisms of E are seen to
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be those one-to-one correspondences of .S which transform a block BY into
itself or takes it in its entirety into some other block in the same family ..
As a consequerice one finds that the group of automorphisms of E is a direct
product

(29) 6 =[] ®.

with one factor ®, for each family §.. Each factor is a complete monomial
group of dimension 7, over the symmetric group on « elements (Ore [3, p. 610;

4]
(30) & = Zn,(zx)

defined as a permutation group over the set F, in (28).

Now let 4 be a subset of S and let us determine the subgroup ®&(4) of
those automorphisms of E which leave 4 elementwise invariant. From the
representation (29) of the group of automorphisms one sees that &(4) is also
a direct product

(31) ®4) = [16.4),

where the direct factor ®.(4) consists of all permutations in the group (30)
leaving the intersection 4 - F, elementwise invariant.

In regard to the set 4 the blocks in the family §, fall into two categories,
namely, in the first category those blocks B, without common elements with
A4, in the second those blocks B/’ which have a non-void intersection with 4.
The elements in a block B,/ may be permuted arbitrarily or such a block may
be transformed entirely into some other block of the same category. To leave
the elements in 4 invariant the blocks B)’ of the second category must be
transformed into themselves in such a manner that the intersections 4 - B/’
remain elementwise fixed. These remarks show that in (31) each factor ®,(4)
is itself the product of two direct factors

(32) O(4) = 6! (4) X G, (4).
Here the first factor is a complete monomial group
(33) @xl (A) = En'(zx)v

where the dimension #»’ =#, is the number of blocks B, and Z, the symmetric
group over a set with k elements. The second factor in (32) is a direct product
of the symmetric groups corresponding to the various residual sets B’'—4,
(39) 0. (4) = I1Zs-a.
BII
In this manner the closed subgroups ®(4) in the Galois theory defined by
the equivalence relation E have been determined. Conversely let us find the
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closed subsets 4. The closure 4 is the set of all elements in S left invariant
by all automorphisms belonging to the group ®&(4). It follows from the pre-
ceding that for any « the elements in a block B/ cannot belong to 4 since
there are permutations in ®(4) for which they are not invariant. The only
exceptional case occurs when there is only a single set B, and when this block
consists of a single element, hence k=1. Similarly the elements in a residual
set B)'—A are not left invariant by all permutations in ®(4) except in the
case where it consists of a single element. We can summarize these results in
the following way:

THEOREM 18. In the Galois theory defined by an equivalence relation E in
a set S the closed subgroups of the group of automorphisms of E are determined
by (31), (32), (33) and (34). The closed subsets A of S are those which have the
property that for each cardinal number k1 and each block B, with « elements
the set A either contains B, entirely or omsits at least two of its elements. For k=1
the set A must either contain all blocks B, or omsit at least two of them.

It may be observed in general that when a group © is represented as a
permutation group on a set .S there exists a Galois connexion between the
subgroups of & and the subsets of S. To each subset 4 corresponds the sub-
group &(4) of all permutations in @ leaving 4 elementwise invariant and
to each subgroup $ corresponds the subset S(9) of the elemerits left invariant
by 9.

We consider first the case where ® is represented as a transitive group
on S. Let $= 9., be the subgroup leaving a single element a, in S fixed. The
group which leaves an arbitrary element a of .S invariant is then a conjugate
group 9, of H. According to the general representation theory the elements
in S are in one-to-one correspondence with the cosets m 9 of @ with respect

tO@,
® = 2 m9,

and the permutation corresponding to an element x can be represented in

the form
P.= ( 0 )
xm

We say that the representation is effected by the subgroup 9. For any sub-
set A of S the subgroup leaving 4 invariant is

&) = IT 9.

aCA
This leads to the statement:

THEOREM 19. Let & be a group represented transitively as a permutation
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group on a set S. By the Galois connexion between the subgroups of ® and the
subsets of S the closed subgroups are the crosscuts of the conjugates of the group O
effecting the representation.

The preceding argument can easily be extended to the case when @ is an
intransitive group. We denote the transitive systems by S; so that

S=2 5

is a partition of S. In each set S; the group ® is represented transitively by
means of some subgroup .. The representation is isomorphic or homo-
morphic depending on whether $: contains or does not contain any normal
subgroup of @. Since the group leaving an element a of S; invariant is a con-
jugate @ of 9. one obtains:

THEOREM 20. Let © be a group represented as a permutation group on a set
S by means of a set of subgroups { 9:}. In the Galois connexion between ® and S
the closed subgroups are those which are the intersection of conjugates of the

groups { O } .

This theorem shows that the closure relation defined in & through the
Galois connexion depends only upon the subgroups $: and their conjugates.
A family §(9) of subgroups $ of @ may be called a normal family when it
contains all conjugates of any of its groups. Every representation of a group
® defines a normal family of subgroups consisting of those subgroups which
leave one element in the representation set S fixed. Conversely any normal
family of subgroups §(9) can be used to construct representations of ©.
These representations are, however, not uniquely defined since the same
group $ may be used to construct several transitive constituents in the repre-
sentation. The representation is isomorphic only if the groups in the normal
family have the unit group for their intersection. Theorem 20 may be restated :

THEOREM 21. Let ® be a group whose isomorphic representation as a per-
mutation group on a set S corresponds to the normal family of subgroups F(9:).
In the corresponding Galois connexion the closed subgroups are the intersection
of subgroups in § and the Galois connexion is perfect in © if and only if every
subgroup of ® is such an intersection.

This theorem reduces the question of finding those representations which
give a perfect Galois connexion in the group to the problem of finding all sets
of subgroups generating all subgroups of ® by forming conjugates and inter-
sections.
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