Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Orthogonality and linear functionals in normed linear spaces


Author: Robert C. James
Journal: Trans. Amer. Math. Soc. 61 (1947), 265-292
MSC: Primary 46.0X
MathSciNet review: 0021241
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Guido Ascoli, Sugli spazi lineari metrici e le loro varietà lineari, Ann. Mat. Pura Appl. 10 (1932), no. 1, 33–81 (Italian). MR 1553181, 10.1007/BF02417133
  • [2] S. Banach, Théorie des opérations linéaires, Warsaw, 1932.
  • [3] Garrett Birkhoff, Orthogonality in linear metric spaces, Duke Math. J. 1 (1935), no. 2, 169–172. MR 1545873, 10.1215/S0012-7094-35-00115-6
  • [4] James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, 10.1090/S0002-9947-1936-1501880-4
  • [5] Frederick A. Ficken, Note on the existence of scalar products in normed linear spaces, Ann. of Math. (2) 45 (1944), 362–366. MR 0010255
  • [6] Robert Fortet, Remarques sur les espaces uniformément convexes, C. R. Acad. Sci. Paris 210 (1940), 497–499. MR 0002007
  • [7] R. Fortet, Remarques sur les espaces uniformément convexes, Bull. Soc. Math. France 69 (1941), 23–46 (French). MR 0013225
  • [8] M. Fréchet, Sur la notion de différentielle, J. Math. Pures Appl. vol. 16 (1937) pp. 233-250.
  • [9] -, Sur la définition axiomatique d'une classe d'espaces vectoriels distanciés applicables vectoriellement sur l'espaces de Hilbert, Ann. of Math. vol. 36 (1935) pp. 705-718.
  • [10] V. Gantmakher and V. Šmulian, Sur les espaces linéaires dont la sphere unitaire est faiblement compacte, C. R. (Doklady) Acad. Sci. URSS. vol. 17 (1937) pp. 91-94.
  • [11] R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291–302. MR 0012199
  • [12] P. Jordan and J. Von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719–723. MR 1503247, 10.2307/1968653
  • [13] H. Löwig, Komplexe Euklidische Räume von beliebiger endlicher oder transfiniter Dimensionzahl, Acta Litterarum Ac Scientiarum vol. 7 (1934-1935) pp. 1-33.
  • [14] S. Mazur, Über convexe Mengen in linearen normierten Räumen, Studia Mathematica vol. 4 (1933) pp. 70-84.
  • [15] -, Über schwache Konvergenz in den Räumen $ ({L^p})$, Studia Mathematica vol. 4 (1933) pp. 128-133.
  • [16] D. Milman, On some criteria for the regularity of spaces of the type $ (B)$, C. R. (Doklady) Acad. Sci. URSS. vol. 20 (1938) pp. 243-246.
  • [17] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, 10.1215/S0012-7094-39-00522-3
  • [18] B. D. Roberts, On the geometry of abstract vector spaces, Tôhoku Math. J. vol. 39 (1934) pp. 42-59.
  • [19] V. Šmulian, On some geometrical properties of the unit sphere in the space of the type $ (B)$, Rec. Math. (Mat. Sbornik) N. S. vol. 48 (1938) pp. 90-94.
  • [20] V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N. S.) 27 (1940), 643–648 (French). MR 0002704
  • [21] A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538–547. MR 0000345
  • [22] A. E. Taylor, Derivatives in the calculus, Amer. Math. Monthly 49 (1942), 631–642. MR 0007016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.0X

Retrieve articles in all journals with MSC: 46.0X


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1947-0021241-4
Article copyright: © Copyright 1947 American Mathematical Society