
POWER-ASSOCIATIVE RINGS

BY

A. A. ALBERT

INTRODUCTION

We use the term ring for any additive abelian group closed with respect

to a product operation such that the two-sided distributive law holds. When

the associative law for products also holds we call the ring an associative

ring. Every element x of any ring 21 generates a subring 2I(x) of 21 consisting

of all finite sums of terms each of which is a finite product whose factors are

all equal to x. We call 21 a power-associative ring when every 2I(x) is an associa-

tive subring of 21.
We have shown elsewhere(*) that a ring 21 whose characteristic is zero is

power-associative if and only if xx2=x2x and x2x2 = (x2x)x for every x of 21.

This result is also true for all commutative rings having characteristic prime

to 30, and the stated restrictions on the characteristic are actually necessary.

Our present investigation begins with a derivation of results on the de-

compositions of a power-associative ring relative to its idempotents. When e

is an idempotent of a commutative power-associative ring 21, the correspond-

ing (right) multiplication Re is an endomorphism of A having simple ele-

mentary divisors and roots 0, 1/2, 1. There is a resulting decomposition of 21 as

the supplementary sum 2íe(l)+2le(l/2)-|-2Ic(0) of submodules 2íe(X) such that

xe=Xx. Moreover the multiplication relations for these submodules are

nearly those holding for the case(2) where 21 is a Jordan ring. However, the

situation becomes much more complicated when 21 is not commutative since

then the elementary divisors of 7^e need not be simple and the characteristic

roots are quite arbitrary.

It is true, nevertheless, that a decomposition theory may be obtained for

all power-associative rings 21 in which the equation 2x = a has a unique solu-

tion x in 21 for every a of 21. In this case we may always attach to 21 a com-

mutative ring 2í(+) which is the same additive group as 21 and which has a

product x-y defined in terms of the product xy of 21 by 2(x-y) =xy+yx. The

ring 2I<+) is power-associative when 21 is, and every idempotent of 21 is also

an idempotent of 2I(+). This yields a decomposition of 2I = 2Ie(l)-r-2I(!(l/2)

+ 2Ie(0) where 2le(X) is the set of all x such that xe+ex = 2Xx, and the sub-

modules always have some of the multiplicative properties of the Jordan
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case. The list of properties grows when we assume that 21 is a flexible ring,

that is, x(yx) = (xy)x for every x and y of 21. It becomes essentially complete

when 2l(+) is assumed to have one further property of Jordan rings.

While the theory of the decomposition relative to an idempotent is a

basic part of a general structure theory for power-associative rings and alge-

bras, one can hardly hope to derive a complete structure theory even for

commutative power-associative algebras. It then becomes desirable to re-

strict the study by a proper selection of additional hypotheses. One possible

line of investigation lies in the study of what are known as shrinkable alge-

bras. We shall discuss all commutative shrinkable algebras of shrinkability

level two here, and shall show that those algebras belonging to the classes of

algebras containing algebras with a unity element are either Jordan algebras

or are defined by the identity x2y2+(xy)2 = (x2y)y+(y2x)x. We shall also give

a structure theory for algebras of the latter type.

A second line of investigation consists of an attempt at generalizing the

Jordan algebra so as to delete the commutative law. We shall give a two

postulate definition of a class of algebras including both Jordan and associa-

tive algebras and shall give a complete structure theory for these "standard"

algebras. The simple standard algebras turn out to be merely associative or

Jordan algebras and so this investigation does not yield any new types of

simple algebras.

The final line of investigation we shall present here is a complete deter-

mination of those algebras 21 such that 2I(+) is a simple Jordan algebra. We

are first led to attach to any algebra 33 over a field % an algebra 33(X) defined

for every X of %. This algebra is the same vector space over g as 33 but the

product xy in 33(X) is defined in terms of the product xy of 33 by x-y=\xy

+ (1—X)yx. We then call an algebra 2Í over § a quasiassociative algebra if

there exists a scalar extension $ of $ (necessarily of degree » = 1,2 over %), a

quantity X in Si, and an associative algebra S3 over SÎ, such that 21$ = 33(X).

The structure of quasiassociative algebras is readily determined and we shall

conclude our work by showing that if 2I(+) is a simple Jordan algebra then 21

is either 2l(+) or is a simple quasiassociative algebra.

Chapter I. Nilrings and idempotents

1. Power-associativity. While our results on power-associativity have been

published elsewhere (2) they may not be accessible readily and so will be sum-

marized here.

If 21 is any ring we shall say that the characteristic of 21 is prime to w if the

sum rex = 0 only if x = 0. We shall also say that 21 has characteristic zero

providing that the characteristic is prime to re for all integers re> 1.

The right powers of the elements x of a ring 21 are defined by the formula

xk+1=xkx, & = 1. Then 21 is power-associative if and only if xaxß = xa+ß for all

positive integers a, ß. Assume first that the characteristic of 21 is prime to
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two and define

[x, y] = xy — yx.

Then the hypothesis x8 = xx2 may be written as [x, x2] =0 and a linearization

process implies that

(1) [xy + yx, z] + [yz + zy, x] + [zx + xz, y] = 0.

Conversely (1) implies that xx2=x2x if the characteristic of 21 is prime to six.

Formula (1) may then be used to obtain

Lemma 1. Let the characteristic of 21 be prime to two, re ̂ 4, and xxx" = xx+"

for all positive integers X, p such that X+/¿ <re. Then

(2) re[xn-\ x] = 0,     [xn~°, Xa] = a[xn~l, x] (a = 1, • • ■ , re — 1).

The hypothesis x2x2 = x3x yields, as the consequence of a linearization

process, the relation

(3) 22 (xy + yx)(zw + wz) = 22   22 (zw + wz)y x
6 4    L     3 J

for any ring 21 whose characteristic is prime to two. Here the sums are taken

over all possible selections of the symbols involved and 22* is a sum °f k

terms. Conversely (3) implies that x2x2 = x3x providing that the characteristic

of 21 is prime to six.

If the characteristic of 21 is prime to two, the symbol 2~1[xn_1, x] has

meaning, since either [xn-1, x]=0 or [xn_1, xJy^O, m[xn~l, x] = 0, and

2~1[xn~1, x]=»?[xn_1, x] where m^-j-2r¡ = l and m is an odd divisor of re. We

use this concept in the statement of

Lemma 2. Let 21 be a ring whose characteristic is prime to 30, reä5, x^*1

= xx+"/or X+ju<w. Then

a-l ,
(4) x"-axa = x"~lx -\-[x"-1, x] (a = 1, • • • , re — 1),

from which we may derive [xn~a, xa]=a[xn_1, x], re[xn_1, x]=0 and thus

xn_"x" = x" if re is prime to the characteristic of 21.

The proof of the lemma above is made by replacing x by x", y by x", z by xy,

w by x{ in (3) where a-f-/3+y-|-5 = «. It has the following consequences.

Lemma 3. Let 21 be a ring of characteristic zero and x2x=xx2, x2x2 = (x2x)x

for every x of 21. Then 21 is power-associative.

Lemma 4. Let Hi be a commutative ring whose characteristic is prime to 30

and let x2x2 = (x2x)x. Then 21 is power-associative.
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The conditions on the characteristic given in these results are actually

necessary as has been shown (x) by counterexamples.

2. The ring 2I<+). We shall restrict our attention to power-associative

rings whose characteristic is prime to six. We shall also assume that the

equation 2x = a has a unique solution x in 21 for every a of 21. Then we may

define an attached ring 2l<+) which is the same additive group as 2Í but which

has a product operation x-y defined in terms of the product operation xy of

21 by 2(x-y) =xy+yx. The ring 2l(+) is a commutative ring and powers in

2lc+) coincide with powers in 2Í. Thus 2I(+) is power-associative. Note that

the construction of 2l(+> could yield a power-associative ring even when 21

itself is not power-associative. Indeed consider the algebra 21 over the field

% with a basis a, a2, aa2, a2a defined so that all products a ■ • ■ a with «3:4

factors are zero. In 2I(+) the identity x-x2=x2-x is a trivial consequence of

the commutative law, and x"-xß = 0 if a+/3^4, x"-xß = xa+ß for all positive

integers a, ß. Then 2I(+) is power-associative but aa29£a2a in 21.

In any ring 21 the mapping a—>ax is an endomorphism Rx of the additive

group 21 and is called a right multiplication of 21. Similarly the endomorphism

Lx defined by a^>xa = aLx is called a left multiplication of 21. Under the as-

sumption we have made, every endomorphism S of 21 determines a unique

endomorphism S/2 and the mapping

(5) Tx = 2~liRx + Lx)

is the unique endomorphism of 21 defining the generic multiplication a-x

= aTx of 2I(+). We shall use this property when we apply the theory of the

decomposition of a commutative ring relative to an idempotent to non-

commutative rings.

3. Multiplication identities. If 21 is a power-associative ring whose char-

acteristic is prime to six we have in (1) a result which may be written as

(6) Rxy+yx — Lxy+yx = (Rx +■ LX)(RV — Lv) + (Ry + Ly)(Rx — Lx).

Also (3) holds and may be written as

J-*(zy+yx)z T~ L(yz±Zy) x -+- L(zx+xz)y

= (Rx +~ Lx){RyZ+zy -4- Lyz+zy — RyRz      RzRy)

(1) + (Ry + Ly)(Rxz+zx -f- LXZ+ZX — RXRZ — RZRX)

+   (Rz +  Lz)(Rxy+yx -4- Lxy+yx  —   RxRy  —   RyRx)

\-L' xy+yx-K-z ~T~ Ltxz-i-zi-K-y ~r -Lyz+zy-K-x)-

Take x=y in (6) and obtain

(8) Rxx-Lxx= iRx + Lx)iRx- Lx).

Also take y=z = x in (7) and obtain
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2

(9) L(XX)X = (Rx -\- LX)(RXX + Lxx — Rx) — LXXRX.

We may now prove

Lemma 5. Let 21* be the set of all finite sums of products of finite numbers of

factors equal to Rx, Lx or Rxx so that 2Ii is either zero or an associative ring for

every x of 21. Then 21z contains Rw and Lwfor all positive integral powers w = xk

of x.

The result has already been shown true for k = l, 2 by (8). Assume it true

for k^t-+l and write w = xt+2. Put y =xí+1 in (6) and have, since xy+yx = 2w,

(10) 2(RW - Lw) = (Rx + Lx)(Ry - Lv) + (Ry + Ly)(Rx - Lx).

Next replace 3 by x' and y by x in (7) so that (xy+yx)3= (y3+zy)x = (zx

+xz)y = 6w. The right member of (7) is then in 21* by the hypothesis of our

induction, Lw is in 2iz, Rw is in 2Ix by (10).

In the particular case where x = e = e2 formulas (8) and (9) take the form

(11) (Re + Le- I)(Re- Le) = 0,

(12) (Re + Le)2 - (Re + Le)R2e - Le(Re + I) = 0,

where 7 is the identity endomorphism of 21. It is not possible to eliminate R,

or L, between these two equations so as to obtain a fixed characteristic equa-

tion of finite degree for either Re or Le. For the characteristic roots of Re, in

the case of a noncommutative power-associative algebra, may be completely

arbitrary. We shall give an example illustrating this property later.

When 21 is commutative (7) becomes

Rx(,yz) + Ry(zx) +■ Rz(xy)

(13) =  i(RxRyZ + RyR¡x +  RzRxy)   —   (RyzRx +  RzxRy -\- RxyRz)

— [Rx(RyRz + RzRy) + Ry(RzRx + RxRz) + Rz(RxRy + RyRx)\,

and (6) is vacuous. Also (8) is vacuous while (9) becomes

3

(14) R(xx)x = 4RXRXX — RxxRx — 2Rx-

We may then use (13) with y=x, s = x2 to obtain a relation which may be

combined with (14) to yield

2 2 4

(15) R(xx)(xx) = Rxx + 107? xRxx — 6RxRxxRx — 47?!.

We shall use these formulas later.

4. Nilrings and nilideals. In a power-associative ring 21 all positive

integral powers ak of any element a of 21 are uniquely determined and so the

meaning of the nilpotency of the elements of 2Í should be clear. We shall say

that 21 is a nilring if all elements of 21 are nilpotent and shall say that 21 has



1948] POWER-ASSOCIATIVE RINGS 557

bounded index t>l if a' = 0 for every a of 21, bt~19é0for some element b of 21.

An ideal 33 of 21 will be called a nilideal if 33^0 is a nilring. The sum of

two nilideals is a nilideal. For if 33 and S are nilideals their sum (33, S) con-

sists of all sums b-\-c of elements b of 33 and c of S. Then bk = 0, (b+-c)k

= bk-\-ci = Ci is in Ë, ¿i = ib-\-c)kl = 0 for some t. Thus (33, Ë) is a nilideal.

It follows trivially that the sum (33i, • • • , 33r) of any finite number of

nilideals is a nilideal. We define the union 91 of all nilideals of 21 to be the set

of all finite sums b = bi+- ■ • • -+br where &,- is in a nilideal 33¡ of 21. Then b

is in (33i, • • • , S3,-) and is nilpotent. Evidently 9Í is a nilideal of 21. We shall

call 9Î the nilradical of 2Í and see that 21— 31 must have no nilideals.

In the case of a Jordan algebra 21 the maximal nilideal of 21 actually coin-

cides with the maximal solvable ideal of 21 and is, indeed, the maximal nil-

potent ideal of 21 in the sense that there exists an integer k such that all

products of k elements of 9Î are zero. In the general power-associative ring

case no such result is to be expected and indeed every simple Lie algebra is a

nilring. One can then hardly expect to be able to prove that a nilring is nil-

potent but a limited result of this type is provable.

Theorem 1. Let Hi. be a commutative power-associative ring of nilindex

t ^ 4. Then 21* is zero or a nilpotent associative ring for every x of 21.

We first observe that if 21 has nilindex two then ia-+-b)2 = a2-\-2ab-\-b2

= 2ab = 0 and so ab = 0, 21 is a zero ring, 2IX consists of the zero endomorphism

only. We next let t = 3 so that there exists an element z in 2Í such that 32^0,

Rz^O. The relation x2x = 0 implies that

(16) (xy)z + ixz)y -4- iyz)x = 0.

Indeed the left member of (16) arises in the derivation of (1) from the term

x2x in x2x = xx2. But then

(17) Rxy + RxRy + RyRx = 0.

Then 7?^= —2R\, Rxx is commutative with Rx and 21 is actually a Jordan

ring. Also i?(XX)x= — 2RxRxx = <iRx = 0 by (17) and so 21* is actually generated

by the nilpotent endomorphism Rx, 2L is nilpotent of nilindex at most three.

In the case where 21 is a Jordan algebra it is actually known that the union of

all of the algebras 2IX is a nilpotent algebra.

There remains the case t = 4. The hypothesis x2x2 = (x2x)x implies that

4[(xy)(zw) + (xz)(yw) + (xw)(yz)\

(18) = x[y(zw) + z(wy) + w(yz)] + y[x(zw) + z(wx) + w(xz)]

+ z[x(yw) + y(wx) + w(xy)] + w[x(yz) + y(zx) + z(xy)]

when 21 is commutative, and the left member of (18) arises from the lineariza-

tion of x2x2. Then x2x2 = 0 implies that the left member of (18) is zero, that is,
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(19) RxRyz +  RyRzx +  RzRxy   =   0.

It follows that RxRxx = 0 and we may use (15) to obtain 7?|c = 47?x. But then

RxRlx = 47^ = 0, 7?x is nilpotent. To prove that 2lx is nilpotent we observe that

the quantities of 2ix are finite sums S of products Si • ■ ■ Sa where «2:1 and

Si = Rx or Si = Rxx. Then every product of six elements of 21* is a finite sum of

products P = Si • ■ ■ Sß where j3^6. If Si = Rx then P = 0 regardless of the

values of the Ss. If Si = 7?xx = S2 then 5152 = 47?* and SiS2S3=47?x or 47?*7?M

and in either case P = 0. Finally let Si = Rxx and S2 = Rx- Then S2 ■ • • S6 = 0 in

every case and P = 0, 21* is nilpotent.

We shall leave open the question as to whether or not commutative nil-

rings of index t ^ 5 possess the property of the theorem and pass on now to the

case of a noncommutative ring not possessing this property. Indeed, let 21

be an algebra over a field $ with a basis u, v, uv over g such that

u2 = v2 = (rew)2 = 0,        vu + uv = 0,

iuv)u = — u(uv) = v,        iuv)v = — viuv) — u.

Then if x=\u-\-¡xv-\-vuv the quantity x2=\2u2-\-y.2v2-\-v2iuv)2-\-\ixiuv-\-vu)

■+-\v[uiuv) + iuv)u]-\-uv[viuv) + iuv)v]=0. It follows that 21 is a power-

associative nilring of nilindex two. But evidently both of the transformations

7?„ and T?„ are not nilpotent. Indeed, their matrices are

(0     0     0\ /0     0      1\

0     0 -lj,       Í0     0     oj,

0      10/ \l      0     0/

and 7?£ and 7?„ are idempotent.

It is easily verified that the algebra defined above is a simple Lie algebra.

Indeed, if 21 is any simple Lie algebra then 21 has nilindex two. However En-

gel's theorem states that the multiplications 7?x are all nilpotent only when

21 is nilpotent. Note that even in the case of the solvable Lie algebra with a

basis u, v, uv such that u2=v2=iuv)2=iuv)v = viuv) =0, vu=—uv, iuv)u

= —uiuv) =v we have 7?£ idempotent.

5. Idempotents in a commutative ring. In a commutative power-associa-

tive ring (12) becomes

(20) 27?! - 37?! + 7?e = (27?e - 7)(7?e - 7)7?e = 0

for every idempotent e of 2Í. Define 2le(X) to be the set of all elements oe(X)

of 21 such that

(21) eae(X) = Xae(X),

where (20) implies that necessarily X = 0, 1, 1/2. Then 2Ie(X) is a submodule

of 2Í and it is actually true that 21 is the supplementary sum
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(22) 21 = 2Ie(l) + 81.(1/2) + 81.(0).

In fact every a of 21 is uniquely expressible in the form a.(l)+a.(l/2)+cie(0)

where

c.(l) = a(27?! - 7?.),

(23) «.(1/2) - 4a(7?. - T?2.),

a.(0) = ail - 37?.+ 27?!).

That a.(X) is in 2Í.(X) follows by forming the product ea.(X) and using (20).

The uniqueness is then a consequence of the fact that if a.(l)+cze(l/2)

+a«(0) =0 then we may multiply by e to obtain a.(l) + 2_1a.(l/2) =0, a.(l)

+4-1a.(l/2)=0, 4-1cz.(l/2)=a.(l/2)=0=a.(l)=a.(0). We now prove

Theorem 2. The modules 21.(1) and 2i.(0) in a commutative power-associa-

tive ring are zero or orthogonal subrings of 21. They are related to 21.(1/2) by the

inclusion relations

81.(1/2)81.(1/2) á 81.(1) + 81.(0),

21.(1)21.(1/2) g 21.(1/2) + 21.(0),

81.(0)21.(1/2) ̂  81.(1/2) + 81.(1).

To prove these relations we put z = w = e in (18) and let xe=Xx, ye=ny.

This yields

2[(xy)e](X + M) + 2[(xy)e]e + (xy)[2X2 + X + 2¿c2 + M]

= 8X/xxy + 4(xy)e.

When X = ju = l we obtain (xy)(7?2 —7) =0 whence (xy)(7?. —7) =0, that is, xy

is in 21.(1), 81.(1) is a subring of 21. Similarly X=m = 0 yields (xy)(7?2-27?.)

= (xy)7?.(7?. —27) =0, 7?, —27 is nonsingular, (xy)7?.= (xy)e = 0 and 21.(0) is a

subring of 21. The values X = l, /x = 0 yield (xy)(27?2-27?.+37) =0 and so

xy(27?^-27?2+37?.)=0. By (20), xy(7?2 + 27?.) =0, xy7?. = 0, 3xy = 0, xy = 0.

There remains the case of products 8I.(X)31.(1/2), that is, u = 1/2. If X = 1 then

2X2+X+2/u2+m-8X/x = 2 + 1-|-1-4 = 0 and (xy) (27?2 - 7?.) =0, xy is in

81.(1/2) +81.(0) by (23). If X = 0 then (xy)(2i?2.-3i?.+7) =0 and xy is in
2l.(l/2) + 21.(l). The remaining value X = 1/2 yields (xy)(7?2-7?.) =0, that is,

xyisin 81.(1)+81.(0).
In the case of Jordan algebras the last two inclusion relations of (24)

may be replaced by the sharper result stating that

(26) 81.(1)21.(1/2) ̂  21.(1/2),        81.(0)21.(1/2) g 21.(1/2).

However (26) does not hold for all commutative power-associative rings. In-

deed, let 21 be an algebra over a field g of characteristic not 2, 3, or 5 and let
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21 have a basis e, f, g, h with a multiplication table given by e2 — e, ef=f,

eg — 2"lg, gh=f, eh=f2 = g2 = h2=fg=fh = 0 and the commutative law. Then

81.(1) =eS+/g, 81.(1/2)=^, 81.(0) =h%, 81.(0)21.(1/2) =/gg81.(1), ffi is not
in 21.(1/2) and (20) does not hold. Moreover 21 is power-associative since

if x=ae-\-ßf+yg+oh for a, ß, y, ô in g then x2 =a2e+2iaß+y5)f-{-ayg,

x2x2 = a4e-r-4a2(aß+-yö)f-\-a3yg, x2x = a3e-r-3a(aß-r-ye)f-\-a2yg, (x2x)x=câe

+3a2(a/3+y5)/+a37g+a3|6y+a27f5/=x2x2.

6. Idempotents in a noncommutative ring. An idempotent of a power-

associative ring 21 is also an idempotent of 21(+). Since the additive group

2í(+) is precisely the same additive group as 81 we may write (22) where the

quantities a.(X) of 8Ie(X) are now defined by

(27) ea.(\) + ae(X)e = 2Xa.(X) (X = 0, 1, 1/2).

We may then prove

Theorem 3. The submodules 81.(1) and 31.(0) are orthogonal and such that

eae(l) = ae(l)e = ae(l),
(zo)

eae(0) = ae(0)e = 0

for all elements ci.(l) of 21.(1), ae(0) of 21.(0).

To prove this result we use the relation (1) with y = z = e and xe-\-ex = vx

to obtain 2xe+-2vex = 2ex+-2vxe, (l—v)xe=(l—v)ex, so that xe = ex when

v^l. Then i» = 2X, 2ex = 2Xx and ex — xe=\x for X = 0, 1. This yields (28). We

next put z = e and write ex+xe = 2Xx, ey+ye = 2uy in (1) to obtain 2Xxy

+ 2/xyx + (xy+yx)e = 2Xyx + 2jUxy+e(xy+yx). If X = l and /¿ = 0 then xy+-yx

= 0 by Theorem 2 and so 2xy = 2yx, xy=yx, 2xy = 0, xy=yx = 0 as desired.

The characteristic roots of Re need not be limited to the values 0, 1/2, 1

of the commutative case if 21 is not a commutative ring. Indeed, consider the

algebra 21 with a basis e, ei, • • • , e¡ such that eej = a¿e¿, e¿e = (1 —a¿)e<, e,ey = 0

for i,j=l, • • • , t. Then the characteristic roots a¿ are arbitrary and we need

only prove that 21 is power-associative. We note that if y = £iei+ • • • +£«««

then y2 = 0 and so yy2 = y2y, y2y2=(y2y)y. For all other quantities x of 21 we

have x=Xe+y where X^O and the homogeneity of our relations implies that

we may take x = e+y. But ey-\-ye = y so that x2 = e+y = x and the properties

xx2 = x2x, x2x2 = (x2x)x are trivial.

It is also not true that the elementary divisors of 7?. are simple. For

consider an algebra with a basis e, f, g such that g = ef, e2 = e, /2 = g2 =fg = gf

= eg = 0, fe=f—g, ge = g. The matrix of 7?. is
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and 7?. —1^0, (7?. —7)2 = 0. To show that 31 is power-associative we note

that if y=)3/+7g then y2 = 0. It then suffices to prove that xx2 = x2x, x2x2

= (x2x)x for x = e+y, y=ßf+yg, ey+ye=ßg+ßif—g)-\-yg — y, x2 = x and our

proof is complete.

Let us next observe the algebra with a basis e, u, v over a field % of char-

acteristic prime to 30 such that e2 = e, eu = ue = u/2, ev = ve = v/2, uv = u,

vu=—u, u2=v2 = 0. In this noncommutative algebra 21.(1/2) is actually a

subalgebra of 21 and so the first relation of (24) does not hold. However if

x—ae-\-ßu-\-yv then x2 = a2e-\-aißu-\-yv) =ax, so that the relations implying

that 21 is power-associative are trivial.

We shall finally give an example showing that the subsets 31.(1) and 21.(0)

need not be subrings of 21. We verify this result only for 21.(0) but an example

for the remaining case would be easy to construct. Let 21 be an algebra with a

basis e, u, v, w where eu = ue = u, e2 = e, ev = ve = ew = we = u2 = v2 = w2 = uv

= vu = uw = wu = 0, vw = u=—wv. Then 21.(0)21.(0) =wg^21.(1). If x=ae

-\-ßu-\-yv-\-hw then x2=a2e-{-2aßu, and so x2x=a3e+3a2/3w=xx2,(x2x)x

= a4e+4a3/3w=x2x2, 21 is power associative.

It should be noted that if 81 is a vector space over a field ¡J and ae=\a,

ea=ßa for X and p in % then either a is in 31.(1), or in 31e(0) or in 31.(1/2). For

de+ea=(X+/u)a = 2a.(l)+a.(l/2). But then the uniqueness of (22) implies

that (X+mK(0)=0, (X+m-1H(1/2)=0, (X+/x-2)ci.(l) =0, and only one
of the quantities ci.(a) can be different from zero. When a is in 31.(1) we have

X=jtt = l, and when a is in 31.(0) we have X=/¿ = 0. However when a is in

21.(1/2) we know only thatX+ju = l.

The examples we have given demonstrate that the relatively simple

properties of a commutative power associative ring do not hold in general

for noncommutative rings and so it is desirable to adjoin additional hypoth-

eses.

7. Flexible rings. A ring 21 will be called a flexible ring if (xy)x = x(yx) for

every x and y of 21. Then [(x+z)y](x+z) = (x+s) [y(x+s)] and multiplication

and the use of the flexible law yields

(29) ixy)z + izy)x = xiyz) + ziyx),

a relation holding for every x, y, and z of 21. Conversely, if 21 satisfies (29) and

the characteristic of 21 is prime to two then 21 is flexible.

The property x2x = xx2 holds for all flexible rings. Indeed, we may prove

Theorem 4. Let Hi be a flexible ring whose characteristic is prime to 30.

Then 21 is power associative if and only if x2x2 = (x2x)x for every x of 21.

For proof we assume that x"xß = xa+ß for all a+-ß <re, where re^4, and put

y = xx_1, z = x"~x in (29) where X = 2, • • • , re—1. Then xxxn~x-r-xn^1x = xxn~1

+xn_xxx. Take X = re—1 and obtain 2xn_1x = 2xx"-1 and so xn-1x = xxn_1,

xn_xxx=xxxn_x. We now apply Lemma 2 and see thatx"x^ = xa+'3,fora:+/3 = re,
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that is, that 21 is power associative.

The flexible law does not seem to yield the first of the relations of (24) for

noncommutative rings. However it does yield the remaining relations in their

noncommutative form and we shall state the results as

Theorem 5. Let e be an idempotent of a flexible power associative ring 21.

Then 31.(1) and 81.(0) are zero or subrings of 81, ex and xe are in 31.(1/2) for

every x of 31.(1/2),

81.(1)81.(1/2) á 31.(1/2) + 31.(0),    21.(1/2)21.(1) Ú 31.(1/2) + 81.(0),

31.(0)31.(1/2) g 81.(1/2) + 21.(1),    21.(1/2)21.(0) g 21.(1/2) + 21.(1).

Put ye = ey = ay and take z = e in (29). Then (xy)e+ayx = a(xy)+e(yx).

Hence a(xy + yx) — e(xy+ yx) = 2axy — [(xy)e + e(xy)]. It follows that

(xy+yx)(a7—7.) =2xy(o7— 7.), where 7,= (7?.+7.)/2 is the multiplication

for e in the algebra 8I(+). We use (23) with 7?. replaced by 7. and first put

a = l, that is, let y be in 31.(1). If x is also in 81.(1), xy-\-yx is in 31.(1) since

81.(1) is a subring of 8I<+). But then (xy+yx)(7-7,.) =0, (xy)(7- 7.) =0, and

xy is in 31.(1) by (23). We next let x and y be in 31e(0), a = 0 so that xy+-yx is

in 3le(0), (xy+yx)7. = 0, (xy)7. = 0, and xy is in 81.(0) by (23). This proves

that 81.(1) and 81.(0) are subrings of 31. They have already been shown to be

orthogonal.

The next result is obtained by putting y = e in (29). Then a = l. Take

x in 3Ie(l/2) so that xe-\-ex=x. Then x(7—7.) =x —ex=xe = 2xe(7—7.),

xe = 2(xe)7«, (xe)7e = xe/2, xe is in 31.(1/2). However x is in 81.(1/2) and so

ex—x — xe is in 81.(1/2).

To obtain the relations (30) we let y = e in (29) and let x be in 81.(1/2).

Then (xe)z + (ze)x=x(ez)+z(ex). However xe = x — ex so that xz+ize)x

= x(ez)+z(ex) + (ex)z. If z is in 31,(1) then ez = ze = z and xz = xz+-zx—ziex)

— (ex)z. But ex has already been shown to be in 31.(1/2) and we may use (24)

to see that both xz+zx and z(ex) + (ex)z are in 8I.(0) + 3I.(l/2). It follows that

both xz and zx are in 31.(0)+ 31.(1/2). We next put ez = ze = 0 and obtain

xz = s(ex) + (ex)z which is in 31.(1)+81.(1/2) by the last relation of (24), zx is

also in this submodule, and we have proved (30).

We shall be particularly interested in those flexible rings having the

property expressed by (26). We define a ring 31 to be a stable ring if 81 is a flex-

ible power associative ring and

(31) 8I.(X)3I.(l/2) g 31.(1/2),    3Í.(1/2)3I.(X) g 31.(1/2) (X = 0, 1),

for every idempotent e of 31. We may then prove

Theorem 6. A flexible power associative ring Hi is a stable ring if and only if

3I(+) is stable.

For if xy and yx are in 31.(1/2) for every y of 81,(1/2) and every x of
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2íe(l)+2Ie(0) their sum xy-\-yx is also in 21.(1/2) and the commutative ring

2I(+) is stable. Conversely let 2l(+) be stable so that (26) holds. Put y=e in

(29) and obtain (xe)z+-(ze)x=x(ez)-\-z(ex) so that, if xe = ex=Xx, then

Xxz+(ze)x = x(ez)+Xzx. Then

Xxz + ize + ez)x — [x(ez) + (ez)x] + Xzx.

If z is in 31.(1/2) then ze-\-ez = z, ez is in 3Ie(l/2) by Theorem 5, w = x(ez)

+ (ez)x is in 31,(1/2) by the assumption that 81c+) is stable. ThenXxz+(l —X)zx

is in 2Ie(l/2). The value X = l yields xz in 21,(1/2) and the value X = 0 yields

zx in 2le(l/2). But xz+zx is in 31.(1/2) and so both xz and zx are in 31.(1/2) in

every case, SI is stable.

It should be observed that when 31 is a stable ring every subring 33 of 31

is stable. For 33 is clearly flexible. If e is an idempotent of 33 we may write

S3 = S3,(l)+33,(l/2)+33,(0) and the definitions of the modules 33,(X) clearly
imply that 33,(X) íS2í,(X). But then the relations (31) imply corresponding

relations for the modules 33e(X) and so 33 is stable.

We note finally that when 33 is an ideal of a stable algebra 21, then 2Io = 21 — 33

is also stable. Indeed, let eo be an idempotent element of 21o- Then eo is a class

x + 33 where x is necessarily a non-nilpotent element of 31, eJ = x':+33 = eo. The

algebra S = 5[x] is an associative commutative non-nilpotent algebra and

contains a principal idempotent e. We may write (S = E,(1)+S,(0) where the

elements of Ê,(0) are nilpotent. If e were in 33 the algebra (5,(1) =e<&e would

be in 33 and we would have x + 33=y+33 where y is in Se(0). But then

6o=y + 33 could not be idempotent. Hence e is not in 33, e+33=e(x)+33

= ax+33 for a^O in g, (e+33)2 = e2+33 = e+33=a2x2 + 33, a2x2 + 33=ax + 33,

a2 = a, a = l, e + 33=eo- We conclude that the homomorphic mapping of 21

on 21 — 33 maps every element z of 21 such that ze+-ez=\z on an element Zo of

21 — 33 such that Zoeo+eoZo=Xz0. Then the relations (31) for 2Ie(X) go into rela-

tions (31) for 2loe0(X) and so 2Io is also stable.

8. Principal idempotents of algebras. An idempotent e of a ring 31 is

called a principal idempotent of 31 if there is no idempotent u of 31 orthogonal

to e. If 31 is power-associative this means that 3Ie(0) contains no idempotent.

When we assume that 81 is also a flexible algebra then 81.(0) is a subalgebra of

31 and so e is principal if and only if 31.(0) is a nilalgebra. We now make an

additional assumption and prove

Theorem 7. Let e be a principal idempotent of a stable algebra 81. Then the

elements of 31,(1/2) are nilpotent.

The result is clearly only required for 31(+) since powers in 81 and in 8l(+>

coincide. Hence it is sufficient to take the case where 31 is commutative. We

then use (14) with x in 31,(1/2) and operate on e to obtain ex3 = 4(ex)x2

— (ex2)x —2[(ex)x]x. But ex = x/2 and so ex3=x3— (ex2)x. By Theorem 2 we

may write
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(32) w = x2 = Wi + Wo

where w0 is in 21.(0) and wx is in 31.(1) and use the property that 21 is stable to

see that x3=(wi+w0)x is in 21.(1/2). Then x3/2=x3 — wix, x2x = 2wix = (wi

+ Wo)x,

(33) Wix = w0x.

We now let e be principal so that 31,(0) is a nilalgebra, w* = 0 f°r some posi-

tive integer k. Put z = x2k+1 and have zi = w2k+1=w2k+1-\-w2f+1 since wi and w0

are orthogonal. But x2k = WQ-\-w\ is in 31,(1) + 31,(0), z = x2k+1 = x2kx is in

31,(1/2), z2 = Vi+v0 where Vi = w2k+1, Vo = w2k+ï = 0. Hence we may apply (33)

in this case, ViZ = voz = 0, z3 = (z>i+i/o)z = 0, x6*+3 = 0, x is nilpotent. This con-

cludes our study of the decomposition of a power-associative ring relative

to an idempotent and we pass on now to the study of certain types of stable

power-associative algebras.

Chapter II. Trace-admissible algebras

1. Admissible trace functions. We shall leave the theory of rings and turn

to the theory of algebras considering only power-associative stable algebras

over a field §. Let 31 be such an algebra and call 21 a trace-admissible algebra

if there exists a function r(x, y) with arguments x and y in Hi and values in g

such that

I. t(x, y) is a bilinear function of x and y.

II. t(x, y) =riy, x).

III. rixy, z)=tíx, yz).

IV. t(x, y) =0 if xy is nilpotent or zero.

V. r(e, e) t^O if e is an idempotent of 21.

It should be noted that II and III imply

(1)      r(xy, z) = r(yz, x) = t(zx, y) = r(x, yz) = r(y, zx) = t(z, xy).

We shall call any function t(x, y) satisfying I—V an admissible trace function

for 21. We now prove

Theorem 1. Let Hi be a trace-admissible algebra and let 9ir be the set of all

elements xofHl such that t(x, y) =0/or every y of 81. Then 3lT is the nilradical Si

0/31.

For by I the set 9iT is a linear subspace of 81. If x is in 9îr and y is in 21,

then r(xy, z) =r(x, yz) by (1), r(x, yz) =0 for every z, xy is in 5Rr. Similarly

r(yx, z) =t(x, zy) by (1) and yx is in yiT, %lT is an ideal of 21. If Sir were not a

nilalgebra it would contain(3) an idempotent e whereas r(e, e)^0. Hence

9Ît is 9Í. Conversely if x is in 9Î then xy is in 9Í for every x of 21, xy is nilpotent,

r(x, y) =0, STCâ^r, 9i = 9îr as desired.

(3) Cf. §S of the paper of footnote 2.
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We have now shown that S5lT is independent of r. Note also that if 33 is

any subalgebra of 21 and r(x, y) is an admissible trace function for 21 then

t(x, y) is also an admissible trace function for 33. For clearly I-V hold for 33

when they hold for 21. Also it has already been remarked that 33 is stable

when 21 is.

2. The radicalof an ideal. The radical of an ideal is completely determined

by

Theorem 2. Let 33 be an ideal of a trace-admissible algebra 21. Then the inter-

section of 33 and the nilradical SSI of Hi is the nilradical SSla of 33.

For 33Pi9c is a nilideal of 33, 33D3ig^0. Conversely let g be in SSlo so that

either g is in SSI and hence in 337^511 or there exists an element x of 21 such that

r(g, x) t^O. Then y = gx is not nilpotent and there exist elements au • • • , at in

% such that e = o?iy • ■ • aty' is idempotent. Now r(e, e) = 22y=ia;>ö;/T(3'i' V')

¿¿0 and it follows that r(y', y'~) 9^0 for some integers i and j. However by (1)

we have riyi, y') =T(yi+i_1, y) =r(yi+)'-1, gx)=r(g, xyi+î_1)=0 since y is in

33, xyi+'~l is in 33, g is in SSlo, g(xyi+í_1) is in SSlo and is nilpotent. This proves

that SSlo^^f^SSl, SSlo = ®r\SSl.
We define a trace-admissible algebra 21 to be semi-simple if its nilradical

SSI = 0 and immediately have

Theorem 3. Every ideal of a semi-simple trace-admissible algebra is semi-

simple.

3. The nilradical in the Pierce decomposition. We now refer to the de-

composition 21 = 21.(1)+21.(1/2)+21.(0) and prove

Theorem 4. The nilradical SSl\ of 21.(X) is the intersection of 2I,(X) and the

nilradical SSI of Hi for X = 0, 1.

For 9?P\21,(X) is evidently a nilideal of 31e(X) and is contained in SSI. Con-

versely if x is in SSI then xa\ is nilpotent for every a\ of 3I.(X) and so t(x, a\) = 0.

Also r(x, ai_x) =0 for every ai-\ of 31.(1 —X) since xai_x = 0. Finally if b is in

31.(1/2) then t(x, b)=rix, eb-\-be) =t(x, eô)+r(x, be)=rixe, &)+r(ex, &)

= 2Xr(x, b), t(x, o) =0 if X = 0, 1. Hence t(x, a) =0 for every a of 81, x is in

9in31.(X),9ix = 3in2I.(X).
In the case of a principal idempotent we may prove

Theorem 5. Let e be a principal idempotent of a stable algebra Hi. Then

31.(1/2)+31,(0) is contained in the nilradical of Hi.

For 21,(0) SSSl by Theorem 4 and the property that the maximal nilideal

of 21,(0) is 21,(0) itself. By Theorem 1.7, if b is in 21,(1/2) then b is nilpotent.

It follows that b2, (o+c)2, and c2 are nilpotent for every b and c of 81,(1/2).

Then r(t» + c, 6+c)=0=t(ô, b)+ric, c) + 2t(&, c), tQ), c)=0. But by the proof

of Theorem 4, r(ô, x) = 0 for every x in 31,(0)+31,(1), b is in SSI, 31,(1/2) ¿SSI.
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An algebra 21 which is not a nilalgebra has an idempotent and hence a

principal idempotent. Applying Theorem 5 we have

Theorem 6. A semi-simple trace-admissible algebra has a unity element.

As a consequence of Theorems 3 and 6 we now have

Theorem 7. Let 33 be an ideal of a trace-admissible semi-simple algebra Hi.

Then 2I = 33©(£, 33 has a unity element e and S = 21,(0).

For 33 has a unity element e by Theorems 3 and 6, and if x is in 21,(1/2)

we havexe+ex = xisin33, xe+ex = x, 2x = x, x = 0, 21,(1/2) =0, 81 = 33881.(0).

Theorem 7 implies that every semi-simple trace-admissible algebra 31 is a

direct sum of simple algebras which are not nilalgebras.

Chapter III. Commutative shrinkable algebras

1. Algebras of level one. Let 31 be any algebra over a field % so that the

multiplications of 31 are linear transformations 7?x and Lx over ^ of 31. Use the

notation 7(x) to represent either multiplication and the notation 7(xi • • • x.)

to represent a multiplication 7(x) defined for a product x=xi • • • x, of the

factors Xi, • • • , x, with an unspecified association. Then we shall call 81 a

shrinkable algebra of shrinkability level s if every 7(xi • • • xs+i) is identically

equal to a finite sum of products X7i • • ■ Tr with fixed coefficients X in 5»

where the transformations 7,- are multiplications 7,(z,) defined for products

z¿ of /,- factors Xk, and ¿i+ ■ • • +ir = s+l. We propose to investigate here the

relations possible for commutative power-associative shrinkable algebras of

levels one and two over 5 of characteristic not two or three.

A commutative algebra 31 of level one has the property that Rxy=\RxRv

+p7?„7?I for every x and y of 31 where X and ¡x are fixed elements of %. Since

xy=yx we also have 7?x„ = 7?vx=X7?y7?x+^7?x7?¡,. Then 27?x„ = (X+/i)(7?x7?„

+7?„7?x) and, since % does not have characteristic two, Rxy = viRxRy+RyRx).

It follows that Rxx = 2vRx is commutative with 7?x and that 31 is a Jordan

algebra.

However we may analyze the algebras of level one more deeply. We have

a(xy)=j/(ax)y+j»(ay)x and so vRax = RxRa — vRaRx = v2iRxRa+RaRx). Then

(1) iv2+v)RaRx= (1 -v2)RxRa.

If v = 0 then 7?x7?0 = 0 for every x and a of 21 and 7?xo = 0 = RxRa, Hi is an

associative nilpotent commutative algebra in which all products of three ele-

ments are zero. If v = 1 then 7?a7?x = 0 and we have the same result as in the

case v = 0. When v^O and i»Vl then RaRx = v-1il-v)RxRa, viRyRx+RxRy)

= il—v+v)RxRy = RxRy = Rxy and 21 is a commutative associative algebra.

There remains the case where v=— 1 and so T?x„= — (7?x7?!/+7?!/7?x),

7?XI= —27?2, x3+2x3 = 3x3 = 0. Then the Jordan algebra is a nilalgebra and is

known to be nilpotent. We have proved
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Theorem 1. A commutative shrinkable algebra of level one is either associa-

tive or is a nilpotent Jordan algebra satisfying the relation xiyz)+-yizx)-\-zixy)
= 0.

2. Algebras of level two. The general relation satisfied by a commutative

shrinkable algebra of level two expresses 7?(X„)Z as a sum of terms of the form

\RxyRz, pRzRxy and vRxRyRz with X, ¡i, v in §• If we use the hypothesis xy=yx

to see that 7?(X„)2+7?(ÏX)2 = 27?(I„), we shall obtain a relation expressing 7?(X¡/),

as a sum of products unaltered by the interchange of x and y. The relation

must then have the form

(2) R(xy)z  =  \lRxyRz + ^iRxzRy +  RyzRx)  + G +  H,

where

(3) G  =  HlRzRxy + fl2ÍRyRxz +  RxRyz)

and

(4)
H = viRziRxRy + 7?„7?x) + v2iRxRy + T?^)!?,

+ V3ÍRxRzRy + RyRzRx),

for coefficients Xi, X2, Mi. M21 Pi, ^2, ?» in g.

If w is in 81 we form w[(xy)z] and use (2) to write

w[(xy)z] = Xi[w(xy)]z + X2[t£j(xz)]y + X2[w(yz)]x + (Ui(wz)(xy)

(5) + ßiiwx)iyz) + Ai2(wy)(xz) + 7»i[(w»z)x]y + j,i[(îcz)y]x

+ v2[iwx)y + iwy)x]z + e3[(wx)z]y + j»s[(wy)z]x.

We may interchange the symbols w and z and write the result as a trans-

formation on w to obtain the relation

RxyRz  =  XlJ?(xy)z + \iiRxRzRy +  RyRzRx)  + G + VlRziRxRy +  RyRx)
W r -,

+  >'2[i?(x.)ï + 7?(yí)xJ   +  ViiRxzRy +  RyzRx)-

The elimination of the common term C7+î'i7?2(7?x7?b+7?ï7?x) between (6) and

(2) then yields

(1  + \l)R(,xy)z + >'27?(X,)¡, + V2R(yz)x

(7) = (1 + Xi)7?x„7?2 + (X2 - v3)(RxzRy + 7?„27?x)

- (X2 - vs)(RxRzRy + RyRzRx) + v1(RxR„ + RyRx)Rz.

We may finally interchange the symbols x and z as well as the symbols y

and w in (5) and write the result as an equation in transformations on w as

R^xRy = \iRzRyRx + X2[7?(X2)¡, + RxRyRz\ + G + vi[i?(X¡/), + 7?X„Z?,J

+ v2ÍRVzRx + RyRzRx) + í'3[7?(y2)X + 7?¡,7?x7?2].
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At this point we shall further restrict our study. It should be clear that

there is nothing to say about algebras of level two which are also of level one

and so we may assume that our algebras do not have level one. Moreover a

study of those classes of commutative algebras containing no algebras with a

unity quantity should be of only secondary interest in this first investigation

of the types of shrinkable algebras. Thus we shall attempt to determine the

values of our parameters only for classes of power-associative algebras con-

taining algebras with a unity quantity e and not of level one. For such alge-

bras 7?. is the identity transformation and a relation of the form

(9) aRxy + ßRJiy + yRyRx = 0

is possible only when a = 0.

Let us now apply this property. Substitute first z = e and then x = e in (2)

to obtain

(10) Xi + mi = X2 + M2 -  I-

Make the same substitution in (6) and (7) and obtain

2^2 = 0,        1 + Xi = X2 — v¡,

(11) X2 + mi + 2ki + >»3 = 0,

X2 +  U2 + Vl + V3  =   0.

Then i»2 = 0,

(12) vi + v3 = — I,        X2 + ah + v\ = 1.

If Xi+1=0 we may use (7) and the fact that j»2 = 0 to see that the cor-

responding class of algebras is defined by a relation of the form (2) with

Mi=At2 = 0. Then the study we have made yields (10) and (11) and thus

Xi=X2 = l, P3=— 1, Vim,H=a0. The resulting identity is 7?(XS,)2 = 7?X„7?2+7?X27?,,

-\-RyzRx—iRxRzRy-r-RyRzRx) and our algebras are known to be Jordan

algebras.

There remains the case Xi= —1. In this case X2 = ï'3 and jui = 2. Then we

have the relation

R(xy)z  =   2RzRXy +  RyRxz +  RxRyz ~   RxyRz —  RziRxRy +  RyRx)

(13) + v3[(RxRzRv + 7?v7?27?x) - 7?2(7?x7?y + 7?„7?x)

+ (7?X2T?„ + RyzRx) - iRyRxz + RxRyz)]-

Compute R(yz)X and R(XZ)V using (13) and add the three formulas so obtained

to give

(14) P = 2v3[iRXyRz + 7?„27?x + 7?.X7?B) - (RzRxy + RxRyz + T?,i?2X)]

where
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P  —  R(xy)z +  R(zx)y +  R(yz)x  ~  4(i?27?XB +  RyRXz + RxRyz)

+   (RxyRz +  RyzRx + RzxRy)

+ [7?x(7?s7?2 + RzRy) + 7?„(7?x7?2 + 7?27?x) + Rz(RxRy + T?,7?x)].

We now apply the assumption that 31 is a power-associative commutative

algebra. By (1.13), this is precisely the condition P = 0 and formula (14) for

»»3 5^0 yields a standard identity for Jordan algebras. The only remaining case

is thus the case i»3 = 0 in (13) and we have proved

Theorem 2. Let Hi be a commutative power-associative algebra over afield of

characteristic not two or three and let Hi have shrinkability level two and belong to

a class of such algebras containing algebras with a unity quantity. Then Hi is

either a Jordan algebra or an algebra satisfying the relation

(15)      R(xy)z  =   2RzRxy +  RyRxz +  RxRyz  —   RxyRz ~  Rz(RxRy +  RyRx)-

We shall refer to algebras defined by (15) as static algebras and shall ob-

tain a structure theory for such algebras in the remaining sections of this

chapter.

3. Static  algebras.  The  identity  (15)  is equivalent to

[(xy)z]w + [(xy)w]z + [(zw)x]y + [(zw)y]x
(16)

= 2(xy)(zw) + (xz)(yw) + (yz)(xw),

a relation invariant under permutations of a transitive group of order eight

on the four letters x, y, z, w. Put y=x and w = z to obtain 2(x2z)z+2(z2x)x

= 2x2z2 + 2(xz)2. Then we have proved one of the implications in the following

Theorem 3. Let HI be a commutative algebra over a field % of characteristic

not two. Then Hi is a static algebra if and only if

(17) x2y2 + (xy)2 = xixy2) + yiyx2)

for every x and y of Hi.

The remaining implication, (17) implies (16), is derived by first replacing

y by z+Xw in (17) and then equating the coefficients of X. This yields 2x2(zze»)

+ 2(xz)(xw) =2x[x(zw)]+z(wx2)+w(zx2). The replacement of x by x+uy and

the equality of the coefficients of /* will then yield (16).

The relation (17) evidently implies that x2x2 = x(xx2) =(x2x)x and so the

commutative algebras which we are calling static algebras are necessarily

power-associative.

4. Solvable static algebras. If 33 is any subalgebra of an algebra 31 we

shall designate by 33* the associative algebra generated by the multiplica-

tions Rb, Lb of 81 which are defined for all quantities b of 33. Every solvable

subalgebra 33 contains a maximal proper subalgebra (S, such that S contains

the product of any two elements of 33, 33 —E is a zero algebra of order one,
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33 = S+w$. Define §=33*S*+6* and let 31 be a static algebra. Then we may

prove

Lemma 1. Let x be in 33 and c be in <§.. Then RZR2X is in §.

For 7?(M)<. = 27?,7?xx+27?x7?cx — RXXRC — 27?,7?2. Then (xx)c, xx, ex, c are all

in Ê, — 27?.7?2 is in §, and we use our basic assumption that g does not have

characteristic two.

We next prove ♦

Lemma 2. Let x be in 33 and c and d be in S. Then RcRdRx is in §.

For R(Xd)c = 2RcRxd-r-RdRxc+RxRcd—RxdRc — RciRxRd+RdRz) and our re-

sult follows from the fact that ixd)c, xd, xc, cd, c, d are all in S.

As in all cases of power-associative commutative algebras we have the

relation

3
(18) R(,xx)x = 4:RxRxx — RxxRx — 2i?x.

Then

2 4

(19) RxR{xx)x — 4i?x7?xx — RxRxxRx — 27?x

and

2 4

(20) R(.xx)xRx = 4i?x7?xxi?x — RXXRX — 2RX.

It follows that
2 2

(21) RxR(,xx)X — R(.XX)xRx = 4:RXRXX + RXXRX — 5RxRXxRx-

Then

2

Rix'^x = 27?xi?(xx)x + 7?xx + RxR(xx)x — R(.xx)xRx

(22) — RxiRxRxx + RxxRx)
2 2 2

= 2RxRXXx + 7?xx + RxxRx + 3RXRXX — 6RXRXXRX.

By Lemma 1, 7?xx7?x is in §. But then 6RxRxxRx is in § and so RXRXXR„

is in §. By (19) we have

Lemma 3. If x is in 33 then T?x is in !q.

Since 7?* is in § for every x of 33 it will be true that (7?x+xv)4 = 7?x+XS

+X27+X3F+X47?4, will be in £ for every x and y of 33. Then XS+X27+X3F

will be in § and, since we are assuming always that the field g has character-

istic prime to six, S is in §. But S = T?2(7?x7?v+7?!/7?I) + (7?K7?x+7?xT?!/)T?x. As-

sume now that y is in S so that R%RxRy is in §. By Lemma 1,RyRl is in § and,

since 33*§^§, we see that RxRyR2x is in §. Also 2Rl = iRxRxx-RxxRx-Rixx)x
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and so

3

(23) 2RyRx = ARyRxRxx — RyRxxRx — i?yi?(XX)X.

This transformation is in § since RyRxxRx is in § by Lemma 2. Then 7?„7?x is

in § and we have proved that S, R3xRy, RyRl, RxRyR2x are all in §. This yields

Lemma 4. Let x be in 33 and c be in S. Then R2XRCRX and RCRX are in §.

We finally compute 7?x(,x) =37?x7?,x+7?c7?xx — RCXRX — 7?I(7?C7?X+7?X7?,) and

form the product
2

RdRx(.cx) = 3RdRxRcx + RdRcRxx — RdRcxRx — RdRxRcRx — RdRxRc-

By Lemma 2 the term 7?á7?,x7?x is in §. All other terms have a right-hand fac-

tor 7?„ with y in S and we have proved

Lemma 5. Let x be in 33 and c and d be in 6. Then 7?<¡7?x7?,7?x is in §.

We may now prove that (33*)4^§. It is evidently sufficient to prove that

P = RxRyRzRu is in § for all x, y, z, u of 33 and since P is linear in x, y, z, re it

is sufficient to take the symbols x, y, z, re to be either in S or equal to w in S3.

If « is in S then § contains P so we may take u = w. If z and y are in E then

P is in § by Lemma 2. If a is in S but y = w then either x is in 6 and P is in

§ by Lemma 5 or x = w, P = R2wRyRw is in § by Lemma 4. There remains the

case z = u = w, P = RxRyR2w. If y is in S then P is in § by Lemma 1. Otherwise

P = 7?x7?^ and either x = w and P = 7?^ is in § by Lemma 3 or x is in S, P is in

§ by Lemma 4. This completes our argument and implies that (33*)5

^33*(33*S*+e*)^S3*e*. An immediate induction implies that (33*)4*+1

^33*(e*)*.
If 33 is a solvable subalgebra of order one of a static algebra 81 then 33

= w%, w2 = 0=w3. By (18) we see that 7?^, = 0. Since 33* = g[7?M] we see that

33* is nilpotent. Let us assume then that 33 has order m and that the prop-

erty that 33 is solvable implies that 33* is nilpotent is valid for solvable sub-

algebras of order m — 1 of static algebras. Then the algebra S of the argu-

ment above is solvable and has order m — 1, S* is nilpotent, ((£*)* = 0 for some

positive integer k, (33*)4*+1 = 0, 33* is nilpotent. We have proved

Theorem 4. Let 33 be a solvable subalgebra of a static algebra 31 over a field

% of characteristic not two or three. Then 33* is nilpotent.

As in the theory of Jordan algebras we have the immediate

Corollary. A solvable static algebra is nilpotent.

5. The radical of a static algebra. We shall define the radical of a static

algebra 31 to be the maximal nilideal SSI of 81, and shall call 31 semi-simple if

Sfl = 0. Then we may prove
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Theorem 5. Let Hi be a static algebra over a nonmodidar field g. Then the

radical of Hi is the set SSlo of all quantities xofHi such that the trace t(7?x¡/) = O for

every y of Hi.

For SSlo is clearly a linear space over $. To prove that SSlo is an ideal, we

need only show that whenever x is in SSlo and y is in 31, then R(.xy)z — RX(yz)

has trace zero for every z in 81. This follows from (15) since

R(yz)x  =   2RxRyz +  RyRXz +  RzRxy  —  RyzRx —   RxiRyRz +  RzRy),

and the trace of the transformation

R(xy)z —   Rx(yz)   =   iRyzRx ~   RxRyz)  +   (7?27?xy —  RxyRz)

+   [iRxRy)Rz -  RziRxRy)]  +   [Rx(RzRy)   -   (RzRy)Rx]

evidently vanishes. If SSlo were not a nilideal it would contain an idempotent

e = e2 and we would have t(7?„) =0 whereas 31.(1) contains e and is not zero,

the characteristic roots of 7?. are 1, 1/2, 0 and are not all zero, r(7?.) >0.

Hence ^lo^^lî. But if x is in SSI then z — xy is in SSI and is a nilpotent quantity,

33 = o:[z] is an associative algebra defined by a nilpotent quantity and so is

solvable, 33* is nilpotent, 7?2 is nilpotent, r(7?2) =0, x is in SSlo- Hence 9i0 = 9il.

6. Decomposition relative to an idempotent. Since a static algebra 31 is a

commutative algebra we see that

(25) 31 = 31.(1) + 81.(1/2) + 21.(0)

where 8le(l) and 81e(0) are orthogonal algebras. Put y = w = e in (16) and obtain

(26) [(xe)z]e + [(xe)e]z + [x(ez)]e + [e(ez)]x = 3(xe)(ze) + (xz)e.

If x and z are in 21.(1/2) then xe = x/2, ze = z/2 and (26) yields (xz)e/2

+xz/4 + (xz)e/2+xz/4 = 3xz/4+(xz)e, xz/4 = 0, xz = 0. Thus 21.(1/2) is a zero

algebra. Put xe = x, ze — z/2 and have (xz)e+xz+(xz)e/2+xz/4 = 3xz/2

+ (xz)e and thus (xz)(27?. —7) =0, xz is in 21.(1/2). Finally put xe = 0, ze = z/2

and obtain (xz)e/2+xz/4= (xs)e, (xz) (27?. — 7) = 0. We have proved

Theorem 6. Let e be an idempotent of a static algebra 21. Then 21.(1/2) is an

ideal of 21 and is a zero algebra.

7. Structure of semi-simple static algebras. It follows from Theorem 6

that if a static algebra 21 contains no solvable ideals and if e is an idempotent

of 21 then 21 is the direct sum of 21.(1) and 21.(0). Let us assume now that SSI = 0.

Then 31 is not a nilalgebra and so must contain an idempotent. It follows that

31 contains a principal idempotent e and that 31 = 81.(1) ©31,(0). But then

2le(0) is a nilideal of 21 and so is zero, e is the unity element of 21. Write

e = u+-v where u and v are pairwise orthogonal idempotents and have 31 = 3L(1)

©8IU(0) where v is in 3IU(0). Then every a of 81 has the form a = b-\-c where b is

in 3I„(1) and c is in 3lu(0), ea = a— (w+z>)(Z»+c) =b-{-vc = b-\-c, vc = c. It is then
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clear that 8I„(0) =3I«(1). We now decompose e as a sum e = ei+ • ■ ■ +et of

pairwise orthogonal primitive idempotents c?¿ and have a corresponding de-

composition of 81 as the direct sum 8I = 21i© • • • ©3I( where e< is the unity

element of 31.. Every nilideal of 8I< is a nilideal of 31 and so 31,- must be semi-

simple. Moreover a decomposition 8I¿ = 33»8E< of 21,- results in a decomposi-

tion d = Ui-\-Vi of e¡ contrary to our hypothesis that e» is primitive. Hence

21» must not have a decomposition as a direct sum. Actually 2Í¡ must have no

ideals other than zero and 21, since it can have no nilideals and any other

nonzero proper ideal of 21 would contain an idempotent u^e. We may now

write 21< as a central simple algebra over its center ,3,-. Extend 3» to be an

algebraically closed field $,- and designate the resulting simple algebra by

33,-. Then 33,- is not a nilalgebra and if x is in 33i, then the only idempotent in

%[x\ can be e¡ since otherwise 33,- would be reducible. It follows that every

element of 33» has the form j = ae,+/ where / is nilpotent; a is in it1,-. As in

the case of Jordan algebras the trace criterion implies that the set of all

nilpotent elements of S3» is a nilideal. Then x=ae,-, 33,- has order one over

®i, 31,-= 3» and we have proved

Theorem 7. Every semi-simple static algebra is a commutative associative

semi-simple algebra.

Chapter IV. Standard algebras

1. Flexible Jordan-admissible algebras. The theory of Jordan algebras

is so much like the theory of associative algebras that it is natural to con-

jecture that both classes of algebras are members of a more general class

with a similar theory. We shall present such a class of algebras here.

The class of algebras desired will satisfy the Jordan postulate (xy)x2

= x(yx2) and the postulate of commutativity will be replaced by the postulate

of flexibility. However, the formulation will be much more delicate since the

structure of Jordan algebras is based upon formulas derived from the assump-

tion x(yx2) = (xy)x2 and using the commutative law.

Let us first derive some consequences of the assumption of flexibility,

that is, of the property that

(1) RxLx = 7X7?X

for every x of the algebra 31. Then Rx+yLx+y—Lx+yRx+y=iRxLx—LxRx)

+ (7?XL¡, — LyRx)-\-iRyLx—LxRy)+■ (7?VL„ — ¿„7?^) = 0, and so

\¿J I\-xJ^y *-'yl*-x  ==  -Li x^*-y J\-yJ-. x

for every x and y of 31. However formula (2) is equivalent to the equation

ixy)z-\-izy)x = xiyz)+ziyx) of (1.29) and this latter equation may be written

as

(3)    * J-j xy ■Ltyl-'x  ~~  -**-y x -K-y-K-z*
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In particular we have

2

(4) Lxx - Lx = 7?xx - 7?x.

An algebra 21 will be called a Jordan-admissible algebra if the algebra 21(+)

is a Jordan algebra. The multiplications Sx of 2I(+) are defined in terms of

the multiplications of 81 by 2SX = 7?X+7X and the product x2 in 21 coincides

with this product in 31<+). It follows that 81 is Jordan-admissible if and only if

(5) (7?x + 7X)(7?XX + 7XX) = (7?xx + 7XX)(7?X + Lx)

for every x of 31. Note that all Jordan algebras are Jordan-admissible since

3I(+) and 21 coincide for commutative algebras. Also every associative alge-

bra is Jordan-admissible since RXLX = LXRX and 7?xx = 7?x, LXX = LX in an asso-

ciative algebra.

If x is any element of an algebra SI over a field % there is a corresponding

polynomial algebra 31x = 5[7?x, Lx, Rxx}- When 31 is flexible (4) implies that

Hix = %[Rx, Lx, Lxx]- We now prove

Theorem 1. Let Hi be an algebra over afield % of characteristic prime to 30.

Then 2IX is a commutative algebra for every x of 21 if and only if Hi is flexible and

one of the relations

xiyx2) = (xy)x2,        (x2y)x = x2(yx),

(6)
(yx)x2 = (yx2)x,        x2(xy) = x(x2y)

holds for every x and y of 21. Moreover if 2lx is commutative the algebra 81 is

Jordan-admissible and is power-associative, the algebra 8IX contains Ru and Lu

for every power u=xk of x.

For the relations (6) are the commutativity relations

,,,. -LX-£VXX = ÎS-xxLx, K-xLxx == LXXI\.X,

0)
■rvx-fvxx        -*vxxJvx, -LX.LXX *ss JLdXXL/x.

If 8IX is commutative all of the relations (7) hold and (5) holds trivially.

Moreover (1) holds and 31 is a flexible Jordan-admissible algebra. Also

x(xx) = (xx)x, x(xx2) =x2x2 = (x2x)x by (6) and the formula xaxß=xa+ß holds

for a+/3 = 3, 4. Assume that this formula holds for a+ß<n where re>4 and

write y = x"-3 in (6) to obtain xxn_1 = xn_2x2, xn_2x2 = x"-1x so that xx"-1 = xn_1x

and we may apply Lemma 1.2 to obtain the formula for a-\-ß = n. Hence 31

is power-associative.

We now replace x by x+Xz in the first relation of (6) and equate the coeffi-

cients of X to obtain

(8) x[y(xz + zx)] + ziyx2) = ixy)ixz + zx) + izy)x2.

This formula may be linearized and results in a relation which may be
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written as

w[xiyz + zy)] + y[xizw + wz)] + ^(p + wy)]

= iwx)iyz + zy) + iyx)izw + wz) + (zx)(yw + wy).

This relation becomes

(10) Rx{yz+zy) = RxRyz+zy + iRz + 72)(7„x — LxLy) + (7?¡, + Z„)(72X — LJL,Z).

The assumption that 31x contains 7?« and 7U for w = x* and fe = l, • • • , / im-

implies that 7?u is in 31x for w=x<+1 when we replace y by xi_1 and put z = xin

(10). Then relation (3) implies that 7«« is in 3IX.

Conversely let 31 be flexible and let one of the relations (6) hold. By (2)

with y=x2 we see that

(11/ JX-xLxx LXXI\.X == l^xK-xx ^-xx-l^x.

Hence the first two relations of (6) are equivalent when 31 is flexible. The

relation 7?x7?xx = 7?XX7?X and (4) imply that Lxx is commutative with 7?x while

LxLxx = LxxLx and (4) imply that RXXLX = LXRXX. Thus we see that the flexible

law implies the equivalence of all of the relations (6) and all imply that 31*

is a commutative algebra.

It should be noted that the relations (6) may be linearized and imply

(12) [Rx, Lyz+zy\   +    [Ry, Lxz+zx]   +    [7?2,   Lxy+yx\   =   0,

(13) [7?X)  i?„2+2j,J  +   [Ry,  J?X2+2XJ  +   [Rz,  Rxy+yx]   =   0,

I 14) [Lx,   LyzJrZy\    +     [Ly,   LXZ+zx\    ""     [L 2,    L xy + y X J     ==    0,

where, as usual, we mean [S, T]=ST—TS. The omitted relation is a trivial

consequence of (12) and (2).

The relation (10) and the flexible law seem inadequate to yield a satis-

factory theory and we shall strengthen both assumptions. It should be noted

that all of the results above actually hold for rings.

2. Lie-admissible rings. Every ring 81 determines an attached ring 8l<~>

which is the same additive group as 81 but has a product (x, y) defined in

terms of the product xy of 81 by (x, y)=xy—yx. The right multiplications

7X of 3I(_) will then be defined in terms of the multiplications of 31

by TX = RX—LX.

We call 81 a Lie-admissible ring if 31(_) is a Lie ring, that is, T(X,y) = 7'17v

— TyTx. Then 31 is Lie-admissible if and only if

(lo) K-xy—yx        Lxy—yx —   \-K-x        Lx)\-K-y        Ly) \-K-y Ly)\J\x — L x).

Let us introduce the assumption that 21 is also a flexible ring. We then

use (3) to write —Ryx+Lxy= —RyRx+-LyLx, RXy—LyX = RxRy—LxLy and we

add to obtain

^lOJ -K-zy—yz ~\    « xy—yx  ==   \-K-z-K-y  ~~  J^-y-^-x)   "—   v.-^-'x-^-'y "*" ■L'y-*-' x) •
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The right member of (15) is iRxRy — RyRx) + iLxLy — LyLx) + iLyRx — RxLy)

+ iRyLx — LxRy) and RyLx — LxRy=LvRx — RxLy by (2). Then we may add

(15) and (16) and remove the factor 2 to obtain

(17) RXy_yX    =     RX(Ry    —    Ly)     -     iRy    -    L y) R X.

We may also subtract (15) from (16) and obtain

(lo) LXy—yx    =     \Ly Ky)LX L X\Ly K-y)-

Conversely both (17) and (18) imply that RXLX = LXRX so that 21 is flexible

and then (17) and (18) are equivalent to (15). We have proved

Theorem 2. A ring 31 is a flexible Lie-admissible ring if and only if either

(17) or (18) holds for every x and y of 21.

A Jordan ring is trivially flexible and Lie-admissible since (18) is satisfied

when xy = yx, Ry = Ly. It is well known that an associative algebra is Lie

admissible and is, of course, flexible. However, we may prove

Theorem 3. ^4« alternative ring whose characteristic is prime to six is Lie-

admissible if and only if it is associative.

For if 21 is alternative then 21 is flexible and x(xy) = (xx)y, x(zy)-{-zixy)

= ixz-\-zx)y,

(19) Rxy = RxRy + (LXRV - RyLx).

But by (2) LxRy — RyLx = RxLy — LyRx and so from Ryx = RyRx+ iLvRx — RxLy)

we obtain Rxy-yx= iRxRy — RyRx)— 2(L„T?X — RXLV). This combined with (17)

yields 3iLyRx — RxLy) =0, LyRx = RxLy since the characteristic of 31 is prime to

six. Thus iyz)x=yizx) for every x, y, z of 21 and 31 is associative.

3. Standard algebras. An algebra 81 over a field g will be called a standard

algebra if (17) holds and if

(20) Rx(yz)   =   RxRyz +  Ry(Rxz ~  RXRz)  +  Rz(Rxy  —   RxRy)

for every x, y, z of 31. (20) is known to be a consequence of the defining as-

sumptions for Jordan algebras and is a trivial consequence of the property

Rxy = RxRy of associative algebras. We note the following simple result

Theorem 4. A Lie algebra Hi is a standard algebra if and only if all products

of four elements of HI are zero.

For when 31 is a Lie algebra RX(yz) = 7?x7?„2 — RyzRx- Then (20) is equivalent

to -RyzRx = (RzRy-RvRz)Rx = RyRzRx+RzRyRx, that is, to 2RyRzRx = 0. Thus

[(wy)z]x = 0 for every x, y, z, w of 31, L(wy->z = 0 = — R(Wy)z, RwyRz = RzRwy,

RwyRx = 0, RzRwy = 0, (xz)(wy) =0, all products of four elements of 21 are zero.

The converse clearly implies that [(wy)z]x = 0, RyRzRx = 0 and so that (20)

holds.
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We shall now derive some identities which are a consequence of the rela-

tion (20) and the flexible law. We first write (20) as

(21) w[x(yz)] + [(wy)x]z + [(w»z)x]y = iwx)iyz) + iwy)ixz) + (wx)(xy)

and    then    have    RyZLw+LwyRz-\-LwzRy=LwRyz+RzLwy-+-RyLv,z.    However

RVzLw—LwRyZ=LyZRw — RwLyZ by (2) and we replace w by x to obtain

(22) RxLyz + RyLxz + RzLxy = LyzRx + LxzRy + LxyRz-

Observe that if the characteristic of 21 is prime to three then (22) implies that

RXLXX = LXXRX and so that every 31x is commutative. We have proved

Theorem 5. Let Hi be a standard algebra over afield % whose characteristic

is prime to six. Then 31 is a power-associative Jordan-admissible algebra and

2IX is commutative for every x of Hi, that is, the transformations 7?„, Lu, 7?„, Lv

commute for all powers u and v of x.

The identity (21) may be rewritten with w and z interchanged and implies

that L(zy)x+-LyLxLz-\-LzRxRy = LyLzx-\-LxLzv+LzRXy. However Rxy — RxRy

= Lyx — LxLy and so we have

(¿OJ L(Zy)X    =    LxLzy    +    Ly{LZX L xL Zj     +    L Z\Ly X LXLy).

We note the consequences

g
(24) Rx(xx) = 3RxRxx — 2J?X

and

3

\¿Jj l-*(xx)x   '—    •J-Í-'x-l-* X X ¿l-i x

of (20) and (23) respectively.

4. Solvable algebras. Our first major result will involve a subalgebra

33 of a standard algebra 21. Define 33o to be the vector space of all mappings on

81 of the form 7?x+7¡, for x and y in 33 and 33* to be the associative algebra

of all finite sums of products of elements of 33o- Then we may prove

Theorem 6. Let 33 be a solvable subalgebra of a standard algebra Hi over $ of

characteristic prime to six. Then 33* is nilpotent.

The result is true for 33 of order one since then 33 = xg, x2 = 0, 7?x = 0 by

(24), L3X = 0 by (25), 33* is the commutative algebra g[T?x, Lx] and is clearly

nilpotent. Assume the result true for algebras of order m — 1 and let 33 have

order m. Every solvable algebra 33 has the form 33 = fë+a>3i where 3333^S

and E has order m — 1 and so S* is nilpotent. We propose to show that

33i^£ = 33*e*+(E*.
Since 33o is a vector space it is sufficient to prove that all products SxSySz

are in § where Sx is the symbol for a multiplication and x, y, z are either in
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E or equal to w. Now (20) and 3333 ̂E imply that

(26) Hiix, y, z) = RxRyRz + 7?27?y7?x

is in § for every x, y, z of 33. Then RxRyRz is in § if z is in E, RxRyRw

= 77i(x, y, z) —RwRyRx is in § if x is in E, 2RwRyRw is in Ê for every y. Thus

RxRyRz is in § for every x, y, z of 33. Similarly (23) implies that every LxLyLz

is in §. But7?x7¡,L2 = 7?x(L2y —7?!/x+7?!/7?2) is then in 81 and so is LxRyRz=LxiRvz

— Lzy — LyLz).   It remains  to  consider  products  RxLyRz,  LxRyLz,  RxRyLz,

LixLlyJXZ.

We note next that the assumption (17) implies that 7?27?xy_¡,x = 7?2(7?x7?v

— RyRx)+RziLyRx—RxLy) and so 77=7?2(i„7?x —7?^) is in £>. If x is in E

then RzLyRx is in §. Hence let x = w. If y is in E then RzLyRx = RzRxLy+H

is in §. It then remains to consider RzLwRw=iLzRw-\-LmRz — RwLz)Rw (by

formula (21)) which is in § if and only if RWLZRW is in §. We have already

seen that RWLZRW is in § if z is in Ê so there remains the case of a product

RWLWRW = LWRWRW which is in §. It follows that all products RzLyRx and all

products RzRxLy are in §. We also have 727?XÏ_„X = 72(7?X7?!/ —7?K7?X)

+72(7„7?x — RxLy) and so LzLyRx—LzRxLy is in §. The remainder of the proof

is exactly as above.

We have now shown that 33¡^33*£*+E* so that 33*4^33*E*, 33*3*+1

g33*S*i: = 0 for some k, 33* is nilpotent.

5. Nilalgebras. The procedure we shall follow in the study of standard

nilalgebras is an extension to noncommutative algebras of that used for

Jordan algebras. We observe first that if 33 is a subalgebra of 81 then x33* is 33

if and only if 33 contains both xi» and bx for every b of 33. There always exists

an idempotent linear transformation E on 31 such that 33 = 3172 and we define

SB to be the set of all linear transformations .7 on 31 such that ET = ETE.

Then SS is an associative algebra and we have

Lemma 1. If x is in HI then x33* ̂33 if and only if Rx and Lx are in SB.

For the generic element of 33 is b = aE where a is the generic element of

81. Then an element y is in 3172 if and only if y = yE and so x¿» = x(a£) =cî(7iLx)

and ¿>x = (a£)x = a(E7?x) are in 33 if and only if ELX = ELXE, ERx = ERxE,

that is, Rx and Lx are in SB.

Note that &33*á33 for every & of 33 and so 7?& and i¡, are in SB. We next

prove

Lemma 2. Let So be a subalgebra of a power-associative algebra Hi and let

Rx, Lx, Rxx be in SB for x in Hi. Then 33 is an ideal of the algebra 33 [x] of all

polynomials in x with coefficients in either 33 or %.

For Lemma 1.5 implies that the algebra 31x of all polynomials in 7?x, Lx, Rxx

contains 7?« and Lu for all powers m = x* of x. Then 31X^3B and every 7?„ is

in 2B, w33* ̂33. It follows that 33 [x] = %[x]+33 and that 33 is an ideal of S3 [x].
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The assumption that 81 is a standard algebra will now be introduced and

we shall prove

Lemma 3. Let Rx and Lx be in W and y = bx2 where b is in 33. Then Ry and

Ly are in SB.

We first apply (20), (13), (23), (14), (4) to obtain the relations

(27) Rx(bx)   —   RxRbx +  Rb(Rxx —   Rx)  +  Rx(Rxb —   RxRb),

(28) RbRxx + RxRbx+xb  =   RxxRb +  Rbx+xbRx,
s

(29) L(xb)x = LxLxb + Lb(LXx *~ Lx) + Lx(LbX — LxLb),

(30) LbLxx + LxLxb^-bx == Lxb+bxLx + LxxLb,
2 2 2 2

(31) LbLxx = Lb(Rxx + 7X — Rx),       LxxLb = (7?xx + 7X — Rx)Lb.

Since ¿»x and xb are in 33 we see from (27) that RbRxx is in SB, from (28) that

7?xx7?6 is in SB, from (29) that LbLxx is in SB, from (30) that LxxLh is in SB, and

from (31) that LbRxx and RxxLbare in SB. Now by (20) and (17) respectively,

(32) Rb(xx) = RbRxx + 2Rx(Rbx — RbRx),

(33) R(xx)b  =   Rb(xx)  +  Rxx(Rb  —  7b)   —   (Rb  —  Lb)Rxx

so that both Ry and 7?(XX)6 are in SB. But by (3),

(34) R(xx)b — RxxRb = Lb(,xx) — LxxLb

and so Ly is also in SB as desired.

We write w=xx2 and use (24) together with Theorem 5 to write 7?¡,7?u

= 37?¡,7?xx7?x-27?t7?x, RuRb = 3RxRxxRb-2RlRh. Since 7?xx7?i, and 7?67?xx are in
SB, we see that RuRb and 7?67?u are in SB for every b of 33. Similarly, 7?u76 and

LA are in SB. But by (20) we have

(35) Rbu = RbRu + Rxx(Rbx — RbRx) + Rx(Ry — RbRxx)

which implies that 7?¡,u is in SB, and by (17),

(36) RUb = Rbu + Ru(Rb — Lb) — (Rb — 7¡,)7?u

and then 7?„¡, is in SB. But

(37) Ru(bx) = RuRbx + Rb(Rv — RuRx) + 7?x(i?u¡, — RuRb)

where v = ux=xi, bx is in 33 and so 7?u(&X) is in SB. This shows that 7?¡,T?„ is in

SB. However 7?„ = 7?xa and the same computation used in the commutative

Jordan case gives

(38) 7?„ = 7?xx + 47?xx7?x - 47?t

and so i?¡,7?xx is in SB. We now use (28) to form
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(39) RxxRbRxx  —   —  Rx(RxxRbx+xb)  + RxxRb +  RxxRbx+xbRx

by multiplication on the left and

2

(40) RxxRbRxx = RbRxx + RxRbx+xbRxx — (7?5X+X¡7?XX)7?X.

Then we subtract to see that 7?xx7?¡, is in SB.

We now write y2=y(bx2) and form

2

(41) Ryy  =  Ry +  Rb(Ry(xx)   —  RyRxx)  +  Rxx(Ryb ~   RyRb).

We then use 7?V(IX)— RyRXx = 2Rx(Ryx — RyRx) as well as

(42) Rxy = RxRy + Rb(Ru — RxRxx) + Rxx(Rxb — RxRb),

(43) 7?^ = 7?xv + 7?v(7?x - 7X) - (7?x - 7^7?,,

to see that Rxy and 7?¡,x are in SB, Rb(Ryi.XX) — 7?„7?xx) is in SB. The term

RxxRvRb = Rxx[RbRxx + 2RxiRbx — i?¡7?x)Ji?i, = (7?xxi?&)2 + 2Rx(RXxRbxRb

— RxxRbRxRb) is in SB and we finally compute

(44) i?6„ = RbRy + RxxiRbb - R\) + 2?¡,(7?,, - 7?67?x2)

and

(45) Ryb = Rby + Ry(Rb - Lb) + (7?6 - Lb)Ry.

The product [7?xx(7?6 — 7¡,)]T?¡, is in SB, the product RxxRy(Rb — Lb)

= RxxRbRXx(Rb-Lb)+2RxRxx(Rbx-RbRx)(Rb-Lb) is in SB, and the product

7?xx7?¡)B=(7?xx7?¡,)7?1,+7?2;!;(7?6¡,-7?^) + (7?xx7?1))(7?l,-7?i)7?xx) is in SB. But then

RxxRyb is in SB and we have proved that Ryy is in SB, which completes the

proof of

Lemma 4. Let Rx and Lx be in SB, y = ¿»x2 where b is in 33. Then Hiv is in SB.

We are now ready to prove

Theorem 7. Let Hi be a standard nilalgebra. Then A is a solvable algebra.

The result is trivial for algebras of order one and so we assume it true

for algebras of lower order than that of 31. Also the result is true if 31 con-

sists of the associative algebra ^[x] generated by an element x of 81. Hence

assume that Sl^gl*] and thus that 21 contains a proper subalgebra. Let S3

be a maximal proper subalgebra of 21. Then by the hypothesis of the induction,

33 is solvable, 33* is nilpotent, 2133** = 0. Let t be the least integer such that

2133*'^33. Then clearly t^l and there exists an element z of 21 such that

z33*'^33, z33*i_1 is not ^33. Thus there is an element x in z33*,_1 but not in 33

and x33*^33. By Lemmas 1 and 4, if b is in S3, then yS3*^33, y233*^33 for
y = &x2. Thus we have either some such y not in 33 or 33x2 ;£ 33. In either case we
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have shown the existence of an element w not in S3 such that w33* is 33, 33w2

^33. This latter condition implies Rwn in SB as the proof of Lemma 1 shows

and so the hypotheses of Lemma 2 are satisfied. Since x is not in 33, 33 [x ] = 31

by the maximality of 31 and by Lemma 2, 33 is a solvable ideal of SI. The nil-

algebra 21 —33 is solvable by the induction hypothesis and so 21 is solvable.

6. Trace admissibility of standard algebras. Let 21 be astandard algebraand

define its trace function t(x, y) to be the trace of the linear transformation 7?x„.

By (17) we have t(x, y) =riy, x). Also Rx(yz) — Rzixy> = 7?x7?„2+7?!/(7?X2 — 7?x7?2)

+ Rz(Rxy   —  RxRy)   —   RzRxy —  Ry(Rzx ~ 7?27?x)   —   Rx(Rzy   —  RzRy)    = RxRyz-zy

+ RyRxz-zx + Ry(RzRx) - (RzRx)Ry + (RxRz)Ry - Ry(RxRz)- However 7?x7?¡/2_2

-+RyRxz-zx = Rx[Ry(Rz — Lz) — (Rz — Lz)Ry] -\-Ry[Rx(Rz — Lz) — (Rz —LZ)RX]

=Rx[Ry(Rz-Lz)]- [Ry(Rz-Lz)]Rx+Ry[Rx(Rz-Lz)]- [RX(RZ-LZ)]7?„.Then

t(x, yz)—r(z, xy)=0, t(x, yz)=7-(xy, z). If xy is nilpotent it generates a

solvable algebra, Rxy is nilpotent, r(x, y) =0. If e is an idempotent r(e, e) is

the trace of 7?, and is not zero. We have proved that r(x, y) is an admissible

trace function for 21.

However, we may now show that r(x, y) is an admissible trace function for

2l(+). For r(x, y)=r(y, x), r(x-y, z)=r(xy+yx, z)/2— [r(xy, z)+r(yx, z)]/2

= (tx, yz)/2+r(y, xz)/2, r(y, xz)=r(xz, y)=r(x, zy), rix-y, z) = [t(x, yz)

+r(x, sy)]/2=T(x, y-z). If x-y is nilpotent so is xy+yx, Rxy+yX has zero trace,

r(x, y)+-r(y, x) =2r(x, y) =0, r(x, y) =0. If e is idempotent r(e, e)¿¿0 as was

shown above.

It follows now that the set of all elements x such that t(x, y) =0 for every

y of 21 is the radical of both 21 and 21c+). We have proved

Theorem 8. Let Hi be a standard algebra over, a nonmodular field. Then 21

is trace-admissible, there is a trace function which is admissible both for 21 and

for 21c+), the radical of A coincides with the radical of 21(+), 21 is semi-simple if

and only if 2I(+) is semi-simple.

Chapter V. Quasiassociative algebras

1. The algebra 21(X). If 21 is any algebra over a field ^ of characteristic

not two and X is in % we define 21 (X) to be that algebra which is the same

vector space over % as 21 but whose product x-y is defined in terms of the

product xy of 81 by x-y=Xxy+(l—X)yx. Then 31(1) = 81, 31(0) is antiiso-

morphic to 81, 81(1/2) = 2lc+).

Theorem 1. If Hi is power-associative so is Hi (X) for every X of % and indeed

powers in 2l(X) coincide with powers in Hi. Also 21(X) is flexible for every X if

and only if Hi is flexible.

For when 21 is power-associative the power x" of every x of 21 is uniquely

defined in 21 for every positive integer re. Suppose that x' is the same in

21(A) as in 21 for every t<n, a result true for t = l. Then xr-x"_r = Xxrxn_r

+ (1—X)xn_rxr=Xx"+(l—X)xn = x" for every  r=l, • ■ • , re —1.   It  follows
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that reth powers of x in 21 (X) all coincide with reth powers in 21 and 21 (X) is

power-associative. If 2I(X) is flexible for every X then in particular 31(1) =31

is flexible. Conversely if 21 is flexible then (x-y)-x=X[Xxy + (l—X)yx]

•x+(l —X)x[Xxy+(l—X)yx] =X2(xy)x+(l—X)2x(yx)+X(l —X) [(yx)x+x(xy)]

andx- (y-x) =Xx[Xyx+(l—X)xy] + (1—X) [Xyx+(1—X)xy]x=X2x(yx) + (l—X)2

■(xy)x+X(l—X) [x(xy) + (yx)x]. The flexibility of 21 implies that X2(xy)x

+ (1—X)2x(yx) =X2x(yx) + (l—X)2(xy)x and so x-(y-x) = (x-y)-x, ^4(X) is

flexible.

Theorem 2. An algebra Hi is Jordan-admissible if and only if HICK) is Jordan-

admissible for every X. Indeed 2I(+) = [8I(X)](+) for every X.

For [3I(X)]t+) is defined relative to the product (x-y+y-x)/2 = [Xxy

+ (1 -X)yx+Xyx+ (1 -X)xy]/2 = (xy+yx)/2.
In a similar fashion we may study [3l(X) ]c_). This algebra is defined rela-

tive to the product (x, y) =x-y —y-x=Xxy + (l —X)yx—Xyx—(1 —X)xy

= (2X —l)(xy-yx). If X = l/2 then 81(X) is the commutative algebra 21(+),

[21(X)](_) is a zero algebra and is always Lie-admissible. Otherwise (x, y)=xTy

where 7„=(2X — 1)S„ and Sy is the generic right multiplication for the alge-

bra 21(-). The algebra 21 is Lie-admissible if and only if S[X,y] =SxSy — SySx

where [x, y]=xy—yx = xSy and if a = 2X —1^0 we see that 7(X,„) =aT[XiV]

= a2S[X,y]=a2iSxSy — SySx) = TxTy—TyTx. Conversely if T{X,y) = TxTy — TyTx

then S[X,y]= SxSy — SySx and we have proved

Theorem 3. .4« algebra 21 is Lie-admissible if and only if 2I(X) is Lie-

admissible for every X of $.

Let us henceforth restrict our attention to the case of algebras 21 (X) de-

fined for X^l/2. Then x-y— y-x= (2X — l)(xy— yx), x-y-[-y-x = xy-\-yx

and so 2xy = (2X-l)-x[x-y-y-x+(2X-l)(x-y+ y-x)] = (2X - l)-x2 [\x-y

+ (X-l)y-x]. Since 1 - (2X - l)~lÇK - 1) = (2X - 1)-J[2X - 1 - (X - 1) ]

= X(2X —1)~\ we have proved

Theorem 4. Let X^l/2 and £ = 2I(X). ThenHl = £(a0 where ¡x = (2X-1)~1X.

Theorem 4 implies that the ideals of 21 and of § = 21(X) coincide for every

X^l/2. Indeed if 33 is a subspace of 21 such that by and yb are in 33 for every

& of 33 and y of 31 it is true that b ■ y and y • b are in 33 and conversely. When

81 is a direct sum 31 = 33©E then bc = cb = 0 for every & of 33 and c of E,

b-c = c-b = 0, 2I(X)=33(X)8S(X). When 33 is solvable so is 33(A) and when 33
is strongly nilpotent so is 33 (X). Evidently the maximal solvable ideal of

81 coincides with the maximal solvable ideal of 8l(X). Similarly the maximal

nilideal of SI coincides with that of 31 (X) for every X ?= 1/2. Finally if every

nilideal of SI(X) is solvable (strongly nilpotent) this is true for every nilideal

of 31.
The results just given imply that if 31(X) has the property that when its
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maximal solvable ideal is zero it is a direct sum of simple algebras this will

also be true of 31. Moreover 3I(X) is simple if and only if 31 is simple. In par-

ticular every simple associative algebra 81 determines a class of flexible,

Jordan-admissible and Lie-admissible simple algebras 3I(X). These are not

commutative when 31 is not commutative since x-y—y-x = (2X —1) ixy—yx).

They are also not associative, in general, even when 31 is associative. This

result follows for total matric algebras by use of the identity we shall derive

in the next section.

2. Quasiassociative algebras. Let 31 be an algebra over a field % of char-

acteristic not two. Then 31 will be called a quasiassociative algebra if there

exists a scalar extension St of ^ and a quantity X in SI such that 31jf = 33(X)

where 33 is an associative algebra over SÎ. If X = 0, 1 then 31$ is either iso-

morphic or antiisomorphic to 33 and Hin is associative, 21 is associative. If

X = l/2 then His is a Jordan algebra, xy—yx and x(yx2) = (xy)x2 for every x

and y of 31«, the same relations hold for every x, y of 31, 31 is a Jordan algebra.

Assume henceforth that X^O, 1, 1/2 whence 33 = 3Ïjî(m) where /¿=X(2X —1)_1

and 31jf(ju) is associative. Evidently

(1) ß * 0, 1, 1/2.

If A is quasiassociative then 33(X) =3Ijs is flexible, x(yx) = (xy)x for every

x, y of SI, 31 is flexible. We now prove

Theorem 5. Let Hi be a quasiassociative algebra over afield $ of characteristic

not two and let Hi be neither associative nor a Jordan algebra. Then there exists

a quantity «o^O, —1/4 in % and a scalar extension St = $iß) of % such that

ju2=jU+«o. 3l#(ju) is an associative algebra.

For the defining operation of Sljffju) is x-y = ¿uxy+(l— p)yx where xy is

the product in 81 and in Hist. We compute

(2) x-iy-z) = ßx[ßiyz) + (1 — ß)zy] + (1 - ß)[ßyz + (1 — ß)zy]x

and

(3) ix-y)-z = ß[ßxy + (1 — ß)yx]z + (1 — ß)z[ßxy + (1 — ß)yx]

to see that 3Iä(m) is associative if and only if /u2[x(yz) — (xy)z] + (l— /¿)2

[(zy)x —z(yx)]+ju(l—ju) [x(zy) + (yz)x—(yx)z—z(xy)]=0 for every x, y, z of

Hi$. However 31a is flexible and so

(4) xiyz) — ixy)z = izy)x — ziyx).

It follows that Histiß) is associative if and only if 81$ is flexible and

[p? + (1 - /¿)2][x(yz) - ixy)z] = (/x2 - ß)[xizy) + iyz)x - iyx)z - z(xy)]

for every x, y, z of Slg. Since this relation is linear in x, y, z it holds for every

x, y, z of SIg if and only if it holds for every x, y, z of 31. Define ao = ß2— p and

see that 3tg (jjl) is associative if and only if 31 is flexible and
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(5)      (2a0 + l) [xiyz) — ixy)z] = a0[xizy) + iyz)x — iyx)z — zixy)]

for every x, y, z of 81. If c¿o were not in $■ then a sum a-{-bao — 0 for a and

è in 21 only if a — b = 0, (5) would imply that xiyz) = (xy)z, that is, 81 would

be associative. It follows that ao=ß2 — u is in % and the hypothesis (^im-

plies that «o^O, —1/4. This proves our theorem.

As an immediate corollary of our proof we have

Theorem 6. Let Hi be an algebra over a field % of characteristic not two and

let Hi be neither associative nor a Jordan algebra. Then 31 is quasiassociative if

and only if Hi is flexible and there exists an element aoj^O, —1/4 in % such that

(5) holds for every x, y, z of Hi.

Let us observe that if 81 is associative and ß^O, 1 we may use (2) and (3)

to see that 2I(ju) is associative if and only if x(zy)+-(yz)x = (yx)z-\-z(xy),

that is, (xz —zx)y=y(xz —zx). Then 2I(ju) is associative if and only if xz—zx

is in the center of 31 for every x and z of 31. But if 31 is a total matric algebra

of degree « > 1 over $ we may use the usual basis e<y of 31 with x = ei2, z = ¿21

to see that xz — zx = en — 622 which is not in the center of 31 since 612(611 — ̂ 22)
= — 012, (611 — 612)612 = 612.

3. Defining identities. A quasiassociative algebra 81 which is neither

associative nor a Jordan algebra is defined by the existence of an element

cto^O, —1/4 such that x(yx) = (xy)x and (5) holds. Conversely if (5) and the

relation x(yx) = (xy)x hold the corresponding algebra is quassiassociative. It

should be noted that associative and Jordan algebras do not, in general,

satisfy (5).

We may write (5) in the form

(6) (2a0 + 1)(7?„2 - RyRz) = aoiRzy + Lyz - LVRZ - RyLz).

By the flexible law Lyz = Rzy—RzRy-\-LzLy and so (6) becomes

(7) 2^(7?^ - Rzy) + 7?„2 = (2a0 + l)RyRz + «„(7*7,, - RzRy - LyRz - RyLz).

Interchange y and z to obtain

(8) 2ao(Rzy - Ryz) + Rzy = (2ao + 1)7?27?„ + a0(LyLz - RyRz - LzRy - RZLV).

Add and use RyLz+RzLy = LyRz+LzRy (by (4.2)) to obtain

(9) RyZ+zy = («o + l)(RuR. + R,R„) + a'oiLyL, + LzLy) - 2aaiRyLz + RzLy).

We may also subtract (8) from (7) to obtain

(4ao + l)Ryz-zy = i3a0 + l)(RyRz - 7?27?K) + «„(7.7,, - 7a72)

+ ao(LzRy + RzLy — LyRz — RyLz),

and from (5) with x and y interchanged we have

(11)       (2aa + l)(RzLy - LVRZ)  = a0(LzLy + 7?27?y - RyRz - LyLz).
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Finally, by (4.2) we may write

(12) 7?„72 — LzRy = LyRz — RzLy.

If a0=—1/2, then LzLy—LyLz = RyRz — RzRy, and so (7) reduces to

(13) Rzy = — (LzLy — RzRy — LyRz — RyLz)/2.

Otherwise we have ao(727?¡/+7?2L„ — LyRz — RyLz) =2aQ(RzLy — LyRz). Thus

(4a0 + l)RVz-zy = (3a0 + l)(R„R, - RzRy) +-aoiLzLy-LyLz)+2aoiRzLy-LyRz)

= (4ao +1) iRyRz - RzRy) + 2aoiRzLy - LyRz), a0(727B - LyLz+RzRy - RyRz)
and so

(14) (4c*o + 1)7?K2_2„ = (4a0 + 1)(7?H7?2 - RzRy) + (4a0 + l)(R¿y - LyRz)

which implies

(15) Ryz-zy  =   (RyRz ~  RzRy)  +   (72J?¡, —  RyLz).

Thus we have

27?,, = (a0 + 2)(RVRZ - RzRy) + a0(LyLz + LJLy)
(16)

- 2ao(RvLz + 7?27„) + 727?„ - RvLt.

This proves the following theorem.

Theorem 7. Let Hi be a quasiassociative algebra. Then Hi is shrinkable of

level one.

4. J-semi-simple algebras. An algebra 31 will be called J -semi-simple if

Sl(+) is a semi-simple Jordan algebra and will be called J-simple if 8I(+) is a

simple Jordan algebra.

Theorem 8. Every J-semi-simple algebra is a direct sum 31 = 2ti © • • • 8 3L

where the components 3Í¡ are J-simple. Every J-simple algebra 31 is simple and

the center of SI is the center of 31c+).

For, if 33 is an ideal of the semi-simple Jordan algebra 31(+) then 33 has a

unity element e and 21<+) = 338S, 33 = 2Ü+)(1), E = 3ti+)(0). It follows that
21 = 31,(1) ©81.(0) and that 33 = SI,(l)<+\ E = 2I,(0)<+>. If we decompose SI<+>
as a direct sum SI(+) =33iffi • • • ©33¡ of simple Jordan algebras 33¿ then each

33¡ = Sli+)(l)=2íií~M where 2I = 2Iiffi • • • 82U the algebras SI¿ are J-simple.
Assume now that 31 is J-simple. Then every ideal SSR of 31 is also an ideal of

3I(+) and if SSR^O we have 9)c = 8I. Hence 31 is simple. If S is the center of 31

we may express 31 as an algebra over ¿. But then 31<+) will be an algebra over

S and so S is contained in the center of 8I(+) .However it is true for arbitrary

simple algebras that 31 is central simple over S if and only if every scalar ex-

tension over 3 of 31 is a simple algebra. Thus if 3 is not the center of 31(+)

there will be a scalar extension St of S sucri that 3iss")=33ffiE. By the proof

above 3Ig is a direct sum of the corresponding components contrary to the
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hypothesis that S ls the center of 31 and so 31« is simple for every St over £.

5. The structure of quasiassociative algebras. The general theorems on

the structure of quasiassociative algebras may be stated as follows:

Theorem 9. 76/ Hi be a quasiassociative algebra over an infinite field % of

characteristic not two. Then if Hi is solvable it is strongly nilpotent and if 31 is a

nilalgebra it is solvable.

Theorem 10. Every quasiassociative algebra Hi over a field % contains a

maximal solvable ideal SSI called the radical of 31, such that every nilideal of 31 is

contained in SSI. If % is nonmodular and SB is any scalar extension of % the

radical of Slss is SSlaa. Also Hi — SSI is semi-simple, that is, 31 — 511 has no nonzero

nilideal.

Theorem 11. A semi-simple quasiassociative algebra is J-simi-simple and

so is a direct sum 3I = 8Ii8 • • • 83Ir of J-simple algebras 31,-. Each 21» is quasi-

associative and so is flexible. A quasiassociative simple algebra with center 3

is quasiassociative over ,3.

The results just stated clearly hold for Jordan algebras and for associa-

tive algebras. Theorems 9 and 10 have been seen to hold for those algebras 31

for which there exists an element X in % such thatXj^O, 1, 1/2 and 3I(X) is

associative. Evidently Theorem 11 also holds for such algebras. There re-

mains the case 21« = 33 (/x) for a quadratic field St = %(ß) over % and an associa-

tive algebra 33 over St. Note that the properties above already hold for 21«.

Let jU2 = ju+«o for a0 in % and write 0 = 2/U—1 so that 02 = 4(¿u2—m) + 1

= 4«o+l is in g and must not be the square of any element of %. Then every

vector subspace SSSl over St of 21« has elements of the form x = xo+xi0 where

xo and Xi are in 21. If y=yo+yi# is in SSJl and £ and -n are in g the element

£x+77y = (£x0+J7yo) + (£*i+'?yi)0 is in SSSl. Hence if Mo is the set of all x0

then SSSlo is a vector subspace over g of 21. But ö_1x=xi+(4ao+l)_1Xo0 is in

SSSl and so xx is in SSSlo, SDl Ú (SKo)«-
Suppose now that SSJl is an ideal of Hist- Then if y is in 31 and x = xo+Xi0 is

in SSSl the products xy = x0y + (xiy)ö and yx = yxo+(yxi)0 are in SSJl, x0y and yx0

are in SSSlo, SSSlo is an ideal of 31. Thus every ideal SSSl of Hist determines an ideal

SSSlo of 31 such that SSSl ^ (93î0)a. Conversely every ideal Sfflo of 31 determines an

ideal iSUlo)s of 31«.
Assume now that 31 is solvable. Then 31« is solvable. Indeed if we define

gc*+u«g<*)gc» then [31sœ](*+1)=[2iœ]<*>[2l8B]«> for every scalar extension SB

of g and Hiw=0 implies that [2Isdj](W=0. But then 21« is strongly nilpotent,

that is, every product of / elements of 21« is zero for some positive integer /.

Clearly then 31 is strongly nilpotent. If 31 is a nilalgebra and Ui, • • • , un form

a basis of 31 then (£iWi+ • • • +§nre»0B = 0 for £i, • • • , £„ indeterminates over

g. Otherwise we could find values in g of £i, • • -, £„ such that the correspond-

ing element of SI is not nilpotent. But then we may replace the £»• by any ele-

ments of St, Hist must be a nilalgebra, 31« is strongly nilpotent, so is 31.
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The first statement in Theorem 10 holds by virtue of Theorem 9. To

prove the second part we first prove that if g is nonmodular with SSI and SSJl

the respective radicals of 31 and 31« then S3lsi:=SSJl. Evidently SSlstSSSSl. Con-
versely let x be in SIJl, T be any transformation of the algebra of polynomials

in the multiplications of the elements of 31 and y = xT. Then y is in SSJl and so

aRy+1 = iay)Ry is a product of k+-l elements of 9W and is zero for every a

of 31« and a suitable k, 7?£+1 = 0. Similarly aLhy+1 = iya)L"y = 0, Ry and Ly are

nilpotent and have zero trace. Write the general element x of SSSl as x = Xo

+xi6 and see that y = x7?x1o = x¡5+1+(xi7?*u)0=M+z;0, tíRs) =r(7?„)+0T(7?1)) =0

so that t(7?u)=0. Similarly t(7„)=0 and so the linear transformation

S„ = (7?„+7!l)/2 has zero trace for re = x*+1 and every positive integer k. But

xo is in the Jordan algebra 3Ifi+), S„ is the right multiplication for Xo+1 and has

zero trace. If g [x2,] were to contain an idempotent e, we would have r(S,) 5¿ 0

whereas e is a polynomial in x2 and Sx is a linear function of x. Thus there is

no such idempotent, x2, is nilpotent, x0 is nilpotent, the ideal SSSlo defined above

is a nilideal of 81, SSSlo ^ 3Í, 5DÎ Ú (SKo)* ̂ SSI«, SSJl = 31«.
To prove Theorem 11 we note that if 31 is a semi-simple quasiassociative

algebra, then 31« is semi-simple and so the related associative algebra 33 is

semi-simple. But then 33(+) is semi-simple, 33c+) =3I«+) = (31(+,)ä is a semi-

simple Jordan algebra. It follows that x(yx2) = (xy)x2 for every x and y of the

commutative algebra 3I(+) and so 31<+' is a semi-simple Jordan algebra. Write

21 = Sli 8 • • • 8Slr and see that Si« = (SIi)«8 • • • 0(g,)*. However if
xy = yx = 0 then x-y=Xxy+(l—X)yx=y-x = 0 and so 31«(X) = (2Ii)«(X) 8 • • •

8(Sir)«(X) where (3I,)«(X) must be associative. Assume, finally, that 21 is a

simple quasiassociative algebra with center 3 and that 21«(X) is associative

where St — %(\), X2—X = a0 in g. If X is in g then 31 is clearly quasiassociative

over £. Hence let St have degree two over $. Then either the composite of S

and St is a field 3(X) of degree two over S and 31 is quasiassociative over 3

or 3 has a quadratic subfield SB isomorphic over % to St. Then 3B« = 6i$+62$

where ei and 62 are pairwise orthogonal idempotents, 31« = 33i8332 where

33i = 8l«ei and 332 = 31«e2. Let ux, • • • , un be a basis of 31 over SB and

let UiUj= 227<j'*ma where the yijh are in SB. Then (re.ei) (wyei) = (re,wy)6i

= 22(7»/¿0i)w*«i where the elements re,6i are a basis of 33i. Moreover SB = g(x)

where x2=ßo in g, St = $i6) where 02 = /3o, x=0ei —0e2, xei=0ei, yi,kix)ei

= 7.74 (0)ei. It follows that 33i is an algebra of order 2re over g isomorphic to

SI over g under a mapping which maps x on 0ei. Evidently 81«(X) =33i(X)

8332(X) and so 33i(X) is associative, 31((x+l)/2) is associative. 31 is quasi-

associative over 3-

We have now reduced the study of quasiassociative algebras to the case

of central simple quasiassociative algebras 31 such that 31c+) is a central

simple Jordan algebra over g. Then 31« = 33(X) where S = g(X) has degree one

or two over g and 33 is a central simple associative algebra over St. It is not

true, in general, that there always exists an element X in g such that 31 = 33(X).

For we shall later show exactly when this is true for algebras of degree two and



588 A. A. ALBERT [November

order four. However it might be true that there always exists an associative

central simple algebra 33 over g such that 3l« = 33«(X) and we leave this as

an unsolved problem.

6. Algebras of degree two. Let 31 be a flexible J-simple algebra of degree

two over a field % of characteristic not two. Then 31 has a unity element e

and a basis Ui = e, ««,■••,«„ where re§:3, re?=a,-e for a.-^O in g, UíUj-\-UjUí

= 0 for ir^j and i, j = 2, ■ ■ ■ , re. It follows that the general element

x = £i«i+ • • • +£n«n of 31 satisfies the equation (x — £ie)2=/(x)e, f(x)=at^

+ • • • +anfn-

Assume the multiplication table UiU¡= 22*-1 7«*a* f°r 7<i» in 55• It is evi-

dently necessary only to study the elements 7,74 for i^j and i, j = 2, • • • , re.

The condition «,-m,- = — u,Ui is expressed by

(17) yak = — Jak (i ¿¿ j; i,j = 2, ■ ■ ■ , re).

The assumption that 31 is flexible is now equivalent to the relation x(yz)

+z(yx) = (xy)z+- izy)x for x, y, z taken to be basal elements re,- for i> 1. In case

two of the variables are equal we have as one case »»-(»,-tty) -\-UjÍUíUÍ) = («,-tt,-)tt,-

■+iujUi)ui, that is, «,-(ttjW,-) + (w,-ttj)w»- = 0. Then 2y,yiW,+27,-j,o:,e = 0. Similarly

UjiujUi) + (iijUi)Uj = 0, that is, 2Y,-,-iî*J-+2Y,7,-a!J-e = 0. This yields

(18) Tiji = 7.»< = 7.JÍ = 0 (i 5= 7; î, 7 = 2, - - • , re),

a result stating that every product of two distinct basal elements «,-, u¡ is a

linear combination of the basal elements Uk distinct from e, re,- and u,.

The flexibility relation used above may now be employed with x = z = w,-

and y = M,- to yield Uj(uîUÏ) =»>(«/«<)«/. This is equivalent to Uj(uíUí)-\-(uíUj)uj

= 0, a relation already satisfied by (18). Thus there remains only the case

where x = uit y = u¡, g = «j with i, j, k all distinct. The relation becomes

Ui(ujUk)-T-Uk(ujUi) = (uiUj)uk-r-(ukUj)ui which is equivalent to Ui(UjUk)

-\-(ujUk)ui = (uiUj)Uk-\-Uk(uiUj) by using skew-commutivity. Hence we have

(19) «fT,M = atrtuk (i 5¿ j; i, j, k = 2, ■ ■ • , n)

where (19) is satisfied by (18) in case k=i or k=j.

We have now determined a set of conditions which are necessary and suffi-

cient conditions that an algebra 31 of degree two shall be both flexible and

J-simple. A complete normalization of the multiplication table of the general

algebra of order re of our type is manifestly impossible and is not even par-

ticularly significant for algebras of order re>4. We shall therefore content

ourselves with a discussion of algebras of order three and four.

When re = 3 the product u^u3 = 0 by (18) and so «3^2 = 0, 31 is commutative

and is a Jordan algebra.

Assume that re = 4 and use the notations u = «2, v = u3, w = Ui, u2=ae,

v2=ße, w2 = ye where «=«2^0, ß = a39^0 and 7=0:4^0 are in %. Then

uv = pw where p=7234 by (18). Apply (19) to see that «47231 = «27342 and so
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7342 = or1YP> vw=a~1ypu. Also «37243= —«37423= —«47234, 7243= — ß~lyp, uw

— —ß-iypv. When p = 0 the algebra so defined is the general simple Jordan

algebra of degree two and order four over g. When p^O we may select a

new basis with w = uv and so take p=l. Then we have the multiplication

table

(20)      u2  = «e, v2 = ße, w2 = 7e, uv = w, uw =  — ß_1yv, vw — a~lyu.

When 31 is associative uw = u(uv) =u2v=av, that is, 7= — aß. It follows that

the algebra defined by (20) is associative if and only if 7= —a/3.

It remains to study the quasiassociativity of 31. Define an algebra 33 with

a basis 60, ua, Vo, wo and the associative multiplication table given by the

assumption that ea is the unity quantity of 33 and the relations Mo = «eo,

vl=ße0, wl——aßeo, wo = u0-v0. Form 33(X) by defining a new product

xy=Xx-y + (l—X)y-x and see that Woi>o = Xw0+(l— X)( — w0) = (2X — l)w0,

(re0i>o)2 = 76o if and only if 7= — (2X — l)2aß. Since 33 is associative the algebra

S3(X) is flexible and the relation (w0z>o)2=76o is sufficient to imply that 33(X) is

isomorphic to the given algebra 31 of (20). It follows that 31 is isomorphic to

some 33(X) if and only if —aßy is the square of an element of g. When

— aßy is not such a square we have 21« isomorphic to 33«(X) where $ = 5(X)

and (2X—1)2= — (a/3)_17, so that $ is a quadratic field over g. We have

proved that all flexible J-simple algebras of degree two and order four over

their centers are quasiassociative. Since the order of a simple associative

algebra of degree two over its center is necessarily four the flexible J-simple

algebras of degree two and order w>4 are necessarily not quasiassociative.

One of the major problems in the study of nonassociative algebras is the

question as to the existence of real nonassociative division algebras of order

2' with t>3. A special case of this problem is the same question for flexible

algebras of degree two. These algebras are necessarily J-simple and their

study may be expedited by use of the following result:

Theorem 12. Let Hi be a flexible J-simple algebra of degree two over % of

characteristic not two. Then HI is a division algebra if and only if 21 (X) is a divi-

sion algebra for every X 9^ 1/2 in %.

To demonstrate this result we first note that when 21 is a division algebra

its associative subalgebras g[x] must all be fields. This occurs if and only if

the norm form A'(x) =l-\ — («2^2+ ' ' ' +«*£«) is not a null form. We next

prove the

Lemma. Let 7V(x) be a non-null form. Then Hi is a division algebra if and only

if there exist no elements x and y in Hi such that x2 = 7Y(x)e?í0, y2 = Niy)e¿¿0,

xy= —yx = 0.

For when 21 is not a division algebra there exist nonzero quantities a and b

in 21 such that ab = 0. Since a and b are necessarily not in the same subfield of
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21 we may always write cz = £e+x, £> = 7/e+Xx+y where £, 77, X are in % and

x2 = A(x)e5¿0, <y2 = Niy)e^0, yx=—xy. Then we may select a basis of 21

with M2 = x, w3=y and so see that xy is linearly independent of e, x, y. But

ao = (¿T7 + A(x))e+(X^+í?)x+fiy+xy = 0 so that xy = 0 as desired.

To complete our proof we observe that if 2I(X) is not a division algebra

then there exist elements x and y in 21 such that x-y = — y-x = 0. But xy = ux-y

+ (1— p)y-x where ¿u = X(2X — l)-1, xy = (2/u —l)x-y = 0, 21 cannot be a division

algebra.

7. Algebras of degree t>2. Let E be a central simple alternative algebra

of degree two over a nonmodular field $. Then E has order 1, 2, 4, or 8 over ^

and has an involutorial antiautomorphism x—>x which is the identity auto-

morphism only when j = l. Define Sí to be the set of all ¿-rowed square

matrices A = (cz,-3) with By in S and define 3 ¡(E) to be the subspace of E«

consisting of all matrices A = (a,-3) such that a»-y = ây<. Then 3¡(E) is a sub-

algebra of E» and is a Jordan algebra except when t > 3 and 5 = 8. Conversely

every central simple reduced Jordan algebra is an algebra 3¡(E).

We now let SI be a flexible algebra over % and assume that 3I<+) is a cen-

tral simple Jordan algebra of degree t>2 over §. Let us assume that $ has

been extended, if necessary, so that 3Ic+) is a split algebra. We propose to

determine the resulting multiplication table of 31. We first write the unity

quantity e of Sl(+) as a sum e = 6i+ • • • +e( of pairwise orthogonal idem-

potents e,- which may be taken to be absolutely primitive. Then ge<(l)=g,-i

= e,¡5. Decompose 3I(+) and so write 31 as the supplementary sum 81= 22,<3 21,-j

of subspaces g,-,- where Hin has already been defined and g,-,- is the intersec-

tion of g«i(l/2) and 2I,J-(l/2) for i<j. The general element x,-3- of Hin may

then be regarded as a ¿-rowed square matrix with the element x of an algebra

E in the ¿th row and jth column, with x in the jth row and ith column and

with zeros elsewhere. Use the notation x-y to designate products in E and

translate the product in gc+) in terms of the product in Hi to write

(21) xayjk + yjkXij = (x-y)« (* <j < k),

(22) xayik + y^x,-,- = (x-y)« (i < j < k),

(23) x«y« + yjkxik = (x-y)« (i < j < k).

We also have the results

y£Li J (/{Xi j    J     X% jC\   —   G jXi j ~~y~   0C{ jo j   ~—   jC\ j \b   ^^ J J •

Then (e,- —e3-)x,3 = x,-3(e3 —e.) and (e,+e3)x,-3=x,-3-(e,+e3-) = x,-3- whence

^¿O^ G%%% j  —   X% j'C j j ß jOC-i j  ~~~   "'i j&% \ *■   ^» J J *

The subset @,7 = g,,+SI37+g,í = g,¡+,J.(l) by the known properties of g<+>

and so ©<3 is a subalgebra of 31. Then ®{/) is a central simple Jordan algebra

of degree 2 over g, ©,-3 is stable,
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HluHlu =g 31,-y,       g</g« ̂  Hin,       HljjHiij ^ Hin,       HlijHÍH g g„

and

g«g„ = g,,g« = 0,       Si?, g g« + Hin + Ka-

lt is evident from an examination of algebras of degree two that the property

2£y^3I,-.-+g33 is not true in general.

It remains to compute products x.-yy^p where at least three of i, j, k, p are

distinct. We note first that g,-ygtP = 0 if neither i nor j is equal to k or p. In-

deed g,já8I.,-+.3(l) while Hikp^Hiet+ejiO). It then remains to compute the

products appearing in (27), (28), (29), (30). We observe first that

(26) SI.íSI« á 31«,       8t,*g<¿ ̂ Hlik (i <j< k).

Indeed g,y^31,,.+,.(l), Sly* g31,^.(1/2) and so g.ygy* and g3*g,y are both sub-

spaces of 3l.,+,3(l/2). However they are subsets of the algebra ge,.+.)+,t(l)

= g«+gy/+g**+g<3 + grt + gyfc and it follows that the products are con-

tained in g« + gyi. Similarly g,ygg,1+.i(l/2), 3I3^g,y+.* (1) so that their

products are subspaces of g«+3I,-y. The intersection of these subspaces is

g« and we have (26).

We now use the flexibility property z(xy)+y(xz) = (zx)y-\-(yx)z. We take

z-ek and compute ek(xi,-yjk) +yy*(*ye*) =»(e**y)yyj+(y/i*y)e*. But Xijek = ekxn

= 0 and so ^(x.-yyy*) + fa«?,-*)«* = (ac<yyy»+yy»«<y)Cit. Since XyVy* is in Hiik we have

ekixijyjk) + ixijyjk)ek = Xijyjk. We may then use (23) and have

(27) xnyjk = e,(x-y)« = (x-y)«e* (* < j < k).

Since (e,-+ei)(x-y),-4 = (x-y)« we evidently have

(28) yyfcX.-y = e*(x-y)« = (x-y)«e,- (t < j < k).

In exactly the same fashion we compute Cjt(xI-yy«)+y,-Ai(x,-yCt) = (Cifc3c<y)yft

+ (y»tx,-y)e* to obtain xaya "= («</y«+?«*«)«*, that is,

x,-yy« = e<(x-y)« = (x-y)«e4, ,
(29) ,      . ,      . ii <j <k).

yikXij = ek(x-y)ik = (x-y)«e,-.

Finally we compute ei(xikyjk)-3ryjk(xike]) = (ejXik)yjk + (yjkxik)ej whence x,*y3*

= (xikyik+yikXik)ej and so

,„.. *<*yy* = e,(x-y)iy = (*• y),-,-e,-, .
(30) (»<;<*)•

yy**<* = ey(x-y),-y = (*-y),-,-e,-.

We have now computed all products required, but have not exhausted

the possible implications of the flexible law. Use z = e¡ and have e3(x,yy3vb)

+yjkixijej) = iejXij)yjk + iyjkXij)ej. Then e/(*yyy*) — (yy»*»y)*y-«Q since both

*,-yyyt and yy**y are in 21,^^21^(0). Then yy*(x,-3e3) = (eyx,-y)y3Í;, xyyyjt = (e.x.-y

+xjye3-)y34= (xi3ey)yy4+y3vt(x,-3ey). Define
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(oiy eiXij      \Xuijjij

where S,-3 is then a uniquely determined linear transformation of the vector

space E. Then we have proved that

(32) x.-yy« = (xSij-y)ik (i < j < k).

To obtain a similar formula with y, the transformed vector, we compute

e,(yy*x<y) +XiJiyjkej) = (eyyy*)ac<y+(af<yyy*)e/. As before ßy(yy**«y) = (x,-yyy*)ey = 0

and so »«(yyftCy+eyyy*) = xi3y3vi = (eyyyi)x<3+Xi3(e3y3v.), that is,

(33) XijVjk = (x-ySy*)« (i < j < k).

However our first value of x.^yy* maybe written as [(x-y)Sik]ik and so we have

proved that

(34) xSij-y = x-ySjk = (x-y)S« (i < j < k).

We now take y=f to be the unity quantity of Ë and so have xS,-3=xS«

for every x, that is, S,y = Sa for i<j<k. Then Si2 = Si3= • • • = Su- Similarly

take x=/and have ySjk — ySik, Sik = S¡k, Sik = Sjk for k>j>l and so Si2 = Sl3

= S23, Sjk = Si2 for allj<k and we have proved that every S,-3 = S = Si2. More-

over we now have xS-y = x-yS=(x-y)S, that is,

(35) SRy = RyS = Rys

for every y in the algebra E. This implies that S = R/s is commutative with

every element of E and this is possible for algebras S of order four and eight,

cases where E is central simple, only when S is a scalar transformation.

Let us now consider the algebra ® = 2ín+2Ii2+2Í22, a flexible J-simple sub-

algebra of 21. The order of ® is g = 3, 4, 6 or 8 according as the order of E is

1, 2, 4 or 8. We may assume that we are working over an extension of the base

field so that ® is a split algebra, that is, @ has a basis e = Ui, u2, • • • , us with

u\=e. Moreover we may define ef = (e — re,)/2, e24) = (e+re,)/2 and then see

that the subspace 2Ii2 of ® is spanned by the g — 2 elements My for j 9e 1, i.

When g = 6, 8 the mapping S = SH) is a scalar mapping for every selection

of e^ and so eíí)re3=X,yMy. But then M,M3 = (e — 2ef-,)re3 = (l — 2X»y)«3 which is

possible, by (18), only if 1 — 2Xyy = 0, that is, © is a Jordan algebra. We have

also proved that ® is a Jordan algebra when g = 3 in §5.5.

The multiplication table of Hi has been shown to depend upon relations

which can vary only as the algebra @ varies. If 31 is taken to be a central sim-

ple (split) Jordan algebra we know that g = g(4_) and that @ is a Jordan

algebra. But then our study shows that when ® is a Jordan algebra so is Hi.

If 33 is a total matric algebra the algebra 33(+) is a split Jordan algebra, 33 has

the subalgebra ®o = 33n+33i2+3322, g = 33(X) has the subalgebra ® = ®0(X)

= 8iii+8ti2+3l22. Then when ® is prescribed to be quasiassociative of degree

two and order four the structure of 81 is completely known and 3l = 33(X) is

quasiassociative. The extension of the base field which splits ® may now be
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eliminated since clearly a central J-simple algebra 31 is quasiassociative if and

only if any scalar extension of Hi is quasiassociative. We have proved

Theorem 13. Let Hi be a flexible J-simple algebra. Then Hi is either a Jordan

algebra or is quasiassociative.

We shall now apply our results to a determination of all simple standard

algebras. Every simple standard algebra Hi is flexible and J-simple and so is a

quasiassociative algebra. Moreover, after a suitable extension of the center

of 81, if necessary, we may assume that 3l = S3(X) where 33 is a total matric

algebra. Then 81 has a subalgebra @ = gu + gu + gH = 2R*(X) where ÜR» is the

total matric algebra of degree two over g. It follows that ® has a basis

e, u, v, w over % where e is the unity quantity of ® and u2=v2 = w2 = e, uv=pw,

uw= —pv, vw=pu. Since ® is a standard algebra it satisfies the identity

w[x(yz)] + [(wy)x]z+ [(wz)x]y = (wx)(yz) + (wy)(xz) + (wz)(xy). Take y=z

= u and x = v to obtain w[z>(mm)j + 2[(wm)z»jm = (îot)(wm)+2(wm)(îim). But

w[viuu) ] =wv = iwv)iuu) and so [iwu)v]u = (»)(s«), [p(zw)]w = (pz»)(— pw),

ip+p3)u = 0, p(l+p2)=0. If p = 0 then ® is a Jordan algebra, X = 1/2, g is a

Jordan algebra. If l+p2 = 0 then (rez»)2= — e and ® is associative, X = l and Hi

is associative. We have proved

Theorem 14. A standard simple algebra is either an associative algebra or a

Jordan algebra.

8. Problems. We shall close our discussion with a list of some unsolved

problems of our theory. A major question is that of the existence of simple

nilalgebras in the class of algebras we have called static algebras. An investi-

gation of shrinkable non-commutative algebras of low level seems desirable

and might lead to some interesting new types of algebras. A further study of

commutative simple algebras also seems desirable. Indeed examples of simple

power-associative algebras are needed and some may be furnished by a study

which the author will make of the power-associativity of crossed products and

some types of crossed extensions. It is desirable to investigate the structure

of algebras like Lie algebras and, in particular, of all algebras 31 which are

flexible, power-associative, and such that 8I(-) is a semi-simple Lie algebra.

The type of study which led to our definition of standard algebras may evi-

dently be extended and other forms of Jordan-like identities may yield new

classes of simple algebras. Finally, it would be desirable to extend the theory

of standard algebras to rings with chain conditions, an extension not yet made

even for Jordan algebras.
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