POWER-ASSOCIATIVE RINGS

BY
A. A. ALBERT

INTRODUCTION

We use the term ring for any additive abelian group closed with respect
to a product operation such that the two-sided distributive law holds. When
the associative law for products also holds we call the ring an associative
ring. Every element x of any ring U generates a subring A(x) of A consisting
of all finite sums of terms each of which is a finite product whose factors are
all equal to x. We call A a power-associative ring when every A (x) is an associa-
tive subring of .

We have shown elsewhere(?) that a ring % whose characteristic is zero is
power-associative if and only if xx?=x% and x2x?= (x%)x for every x of 2.
This result is also true for all commutative rings having characteristic prime
to 30, and the stated restrictions on the characteristic are actually necessary.

Our present investigation begins with a derivation of results on the de-
compositions of a power-associative ring relative to its idempotents. When e
is an idempotent of a commutative power-associative ring %, the correspond-
ing (right) multiplication R, is an endomorphism of 4 having simple ele-
mentary divisors and roots 0, 1/2, 1. There is a resulting decomposition of ¥ as
the supplementary sum N.(1) +2A.(1/2)+2.(0) of submodules A,(\) such that
xe=MAx. Moreover the multiplication relations for these submodules are
nearly those holding for the case(?) where U is a Jordan ring. However, the
situation becomes much more complicated when 9 is not commutative since
then the elementary divisors of R, need not be simple and the characteristic
roots are quite arbitrary.

It is true, nevertheless, that a decomposition theory may be obtained for
all power-associative rings ¥ in which the equation 2x =a has a unique solu-
tion x in U for every a of . In this case we may always attach to ¥ a com-
mutative ring A which is the same additive group as 2 and which has a
product x-y defined in terms of the product xy of A by 2(x-y) =xy+yx. The
ring AP is power-associative when ¥ is, and every idempotent of U is also
an idempotent of A, This yields a decomposition of A=A (1)+A.(1/2)
+%.(0) where %A.(\) is the set of all x such that xe+ex=2Ax, and the sub-
modules always have some of the multiplicative properties of the Jordan
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case. The list of properties grows when we assume that % is a flexible ring,
that is, x(yx) = (xy)x for every x and y of U. It becomes essentially complete
when Y™ is assumed to have one further property of Jordan rings.

While the theory of the decomposition relative to an idempotent is a
basic part of a general structure theory for power-associative rings and alge-
bras, one can hardly hope to derive a complete structure theory even for
commutative power-associative algebras. It then becomes desirable to re-
strict the study by a proper selection of additional hypotheses. One possible
line of investigation lies in the study of what are known as skrinkable alge-
bras. We shall discuss all commutative shrinkable algebras of shrinkability
level two here, and shall show that those algebras belonging to the classes of
algebras containing algebras with a unity element are either Jordan algebras
or are defined by the identity x%y2+ (xy)2 = (x%y)y+ (»2x)x. We shall also give
a structure theory for algebras of the latter type.

A second line of investigation consists of an attempt at generalizing the
Jordan algebra so as to delete the commutative law. We shall give a two
postulate definition of a class of algebras including both Jordan and associa-
tive algebras and shall give a complete structure theory for these “standard”
algebras. The simple standard algebras turn out to be merely associative or
Jordan algebras and so this investigation does not yield any new types of
simple algebras.

The final line of investigation we shall present here is a complete deter-
mination of those algebras U such that A is a simple Jordan algebra. We
are first led to attach to any algebra 8B over a field § an algebra B(\) defined
for every N of §. This algebra is the same vector space over § as B but the
product x-y in B(A) is defined in terms of the product xy of B by x-y=Axy
+(1—X\)yx. We then call an algebra 9 over § a quasiassociative algebra if
there exists a scalar extension { of § (necessarily of degree n=1, 2 over §), a
quantity X in &, and an associative algebra 8 over R, such that Ae =B().
The structure of quasiassociative algebras is readily determined and we shall
conclude our work by showing that if A is a simple Jordan algebra then
is either A or is a simple quasiassociative algebra.

CHAPTER I. NILRINGS AND IDEMPOTENTS

1. Power-associativity. While our results on power-associativity have been
published elsewhere(?) they may not be accessible readily and so will be sum-
marized here.

If % is any ring we shall say that the characteristic of U is prime to n if the
sum nx=0 only if x=0. We shall also say that U has characteristic zero
providing that the characteristic is prime to = for all integers > 1.

The right powers of the elements x of a ring A are defined by the formula
x¥+t=xkx, k=1, Then U is power-associative if and only if x*xf=x**+8 for all
positive integers «, 8. Assume first that the characteristic of % is prime to



554 A. A. ALBERT [November

two and define
[#, y] = xy — ya.

Then the hypothesis x3=xx? may be written as [x, x?] =0 and a linearization
process implies that

(1) [y + y=, 2] + [y2 + 29, 5] + [s2 + @z, y] = 0.

Conversely (1) implies that xx?=x2x if the characteristic of U is prime to six.
Formula (1) may then be used to obtain

LemMA 1. Let the characteristic of U be prime to two, n =4, and x*x#=x s
for all positive integers N, u such that N\+-u <n. Then

2) n[zmt, x] =0, [ame, x2] = a2, ] (a=1,---,n—1).

The hypothesis x%?=x3% yields, as the consequence of a linearization
process, the relation

3) > (xy + yx)(zw + wa) = Z[ ; (zw + wz)y] x

4

for any ring % whose characteristic is prime to two. Here the sums are taken
over all possible selections of the symbols involved and Y 4 is a sum of %
terms. Conversely (3) implies that x%?=x3% providing that the characteristic
of U is prime to six.

If the characteristic of ¥ is prime to two, the symbol 2-1[x"!, x] has
meaning, since either [x*1, x]=0 or [x"!, x]#0, m[x"!, x]=0, and
2-1[x"1, x]=n[x""1, x] where mf+2n=1 and m is an odd divisor of n. We
use this concept in the statement of

LeMMA 2. Let U be a ring whose characteristic is prime to 30, n=35, x*x*
=xM+ for N\du<n. Then

a—1

4) xrexe = gnly 4+ [, x] (a=1,+-+,n—1),

from which we may derive [x"—=, x*]=a[x"!, x], n[x", x]=0 and thus
x"exe=x" if n 15 prime to the characteristic of U.

The proof of the lemma above is made by replacing x by x¢, y by x5, 3 by x7,
w by %% in (3) where a+B+v+06=n. It has the following consequences.

LeEMMA 3. Let U be a ring of characteristic zero and x% =xx?, x*x?=(x%¢)x
for every x of . Then U is power-associative.

LeMMA 4. Let A be a commutative ring whose characteristic is prime to 30
and let x%?= (x%)x. Then N is power-associative.
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The conditions on the characteristic given in these results are actually
necessary as has been shown(!) by counterexamples.

2. The ring AP, We shall restrict our attention to power-associative
rings whose characteristic is prime to six. We shall also assume that the
equation 2x =g has a unique solution x in ¥ for every a of . Then we may
define an attached ring A which is the same additive group as 2 but which
has a product operation x-y defined in terms of the product operation xy of
A by 2(x-y) =xy+yx. The ring A is a commutative ring and powers in
AD coincide with powers in A. Thus AP is power-associative. Note that
the construction of A could yield a power-associative ring even when U
itself is not power-associative. Indeed consider the algebra 2 over the field
& with a basis @, a? aa? a?e defined so that all productsa - - - ¢ with n=4
factors are zero. In A the identity x-x2=x2-x is a trivial consequence of
the commutative law, and x*-x#=0 if a+B=4, x*-x#=x=t8 for all positive
integers a, . Then A is power-associative but aa’#a%a in .

In any ring ¥ the mapping a—ax is an endomorphism R, of the additive
group A and is called a right multiplication of . Similarly the endomorphism
L. defined by a—xa=aL, is called a left multiplication of . Under the as-
sumption we have made, every endomorphism S of % determines a unique
endomorphism S/2 and the mapping

(5> Tz = 2—1(R, + Lz)

is the unique endomorphism of ¥ defining the generic multiplication a-x
=aT. of Y. We shall use this property when we apply the theory of the
decomposition of a commutative ring relative to an idempotent to non-
commutative rings.

3. Multiplication identities. If ¥ is a power-associative ring whose char-
acteristic is prime to six we have in (1) a result which may be written as

(6) Raovtye = Loyrye = (Re + Lo)(Ry — Ly) + (Ry + Ly)(R: — La).
Also (3) holds and may be written as
Loytyns + Lysrany= + Lzotzay
= (Rz + L)(Rystsy + Lyztsy — RyR: — R.R,)

) + (Ry + Ly)(Reores + Lazyoz — RoR, — R.Ry)

+ (Rz + Lz)(R:w+yz + L:cy+yz - RzRu - Rlez)

— (LaysyoRe + LoerseRy+ LyszyR2).
Take x=y in (6) and obtain
(8) Ree — Liz = (R:+ L)(R, — LJ).

Also take y=2=x in (7) and obtain
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(9) L(zz)z = (Rz + Lz)(Rzz + La:z e Ri) - szRzo
We may now prove

LeMMA 5. Let A, be the set of all finite sums of products of finite numbers of
factors equal to Rz, L, or R.. so that U, is either zero or an associative ring for
every x of N. Then U, contasns R, and L. for all positive integral powers w=x*

of x.

The result has already been shown true for k=1, 2 by (8). Assume it true
for k<t+1 and write w=x*2 Put y=x*'in (6) and have, since xy+yx =2w,
(10) 2(Rw — Lv) = (R:+ L)(Ry — Lu) + (Rv + Lu)(Rz - L,).

Next replace 2 by x* and y by x in (7) so that (xy+yx)z=(yz+32zy)x=(2x
+x2)y =6w. The right member of (7) is then in A, by the hypothesis of our
induction, L, is in A, Ry is in U, by (10).

In the particular case where x =e=¢? formulas (8) and (9) take the form

(11) (-Re +L.— I)(-Re - Le) =0,

(12) (Re+ L) — (Ra+ LY)Rs — L(R.+ I) = 0,

where I is the identity endomorphism of 2. It is not possible to eliminate R,
or L, between these two equations so as to obtain a fixed characteristic equa-
tion of finite degree for either R, or L,. For the characteristic roots of R,, in
the case of a noncommutative power-associative algebra, may be completely
arbitrary. We shall give an example illustrating this property later.

When U is commutative (7) becomes

Rz(vz) + Ry(n) + Rz(aw)
(13) = 4(R2Ruz + Rszz + Rszy) - (RyaRz ’I‘ R'zRy + R;WR,)
— [Ro(RyR. + R.R,)) + Ry(R.R.+ R.R,) + R(R.R, + R,RJ)],

and (6) is vacuous. Also (8) is vacuous while (9) becomes
(14) R(zx)z = 4R2Rzz - Rzsz - ZR:;.

We may then use (13) with y=x, 2=x2 to obtain a relation which may be
combined with (14) to yield

(15) R(zz)(zz) = RZI + IORi-RZZ - 6RszzRa; - 4R;.

We shall use these formulas later.

4. Nilrings and nilideals. In a power-associative ring % all positive
integral powers a* of any element a of 9 are uniquely determined and so the
meaning of the nilpotency of the elements of U should be clear. We shall say
that U is a nilring if all elements of ¥ are nilpotent and shall say that % has
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bounded index ¢>1 if at=0 for every a of A, b*~15£0 for some element b of .
An ideal B of A will be called a nilideal if B0 is a nilring. The sum of
two nilideals is a nilideal. For if 8 and € are nilideals their sum (38, €) con-
sists of all sums b+c¢ of elements b of B and ¢ of €. Then b*=0, (b+c)*
=btci=c1isin €, ¢t = (b+c)** =0 for some ¢. Thus (B, €) is a nilideal.

It follows trivially that the sum (B, - - -, B,) of any finite number of
nilideals is a nilideal. We define the union 9 of all nilideals of U to be the set
of all finite sums b=0b;+ - - - +b, where b; is in a nilideal B; of . Then b
isin (By, - - -, By) and is nilpotent. Evidently N is a nilideal of A. We shall
call N the nilradical of A and see that A —N must have no nilideals.

In the case of a Jordan algebra % the maximal nilideal of U actually coin-
cides with the maximal solvable ideal of A and is, indeed, the maximal nil-
potent ideal of 9 in the sense that there exists an integer %k such that all
products of k elements of ! are zero. In the general power-associative ring
case no such result is to be expected and indeed every simple Lie algebra is a
nilring. One can then hardly expect to be able to prove that a nilring is nil-
potent but a limited result of this type is provable.

THEOREM 1. Let N be a commutative power-associative ring of nilindex
t=4. Then U, s zero or a nilpotent associative ring for every x of .

We first observe that if % has nilindex two then (a+4b)2=a%+2ab-+5b?
=2ab=0 and so ab=0, ¥ is a zero ring, I, consists of the zero endomorphism
only. We next let £=3 so that there exists an element z in 2 such that 22740,
R,0. The relation x2x =0 implies that

(16) (x3)z + (x2)y + (y2)x = 0.

Indeed the left member of (16) arises in the derivation of (1) from the term
x% in % =xx2. But then

(17) Rzy + Rny + Rsz = 0.

Then R,.= —2R?, R,, is commutative with R, and ¥ is actually a Jordan
ring. Also R(zzs= —2R,R.:=4R3=0 by (17) and so ¥, is actually generated
by the nilpotent endomeérphism R,, U, is nilpotent of nilindex at most three.
In the case where U is a Jordan algebra it is actually known that the union of

all of the algebras ¥, is a nilpotent algebra.
There remains the case {=4. The hypothesis x%x?= (x2¢)x implies that

4[(xy)(zw) + (22)(yw) + (xw)(y2)]
(18) = x[y(zw) + 2(wy) + w(yz)] + y[x(zw) + 2(wx) + w(xz)]
+ z[x(yw) + y(wa) + wlxy)] + w[x(yz) + y(z2) + 2(xy)]

when ¥ is commutative, and the left member of (18) arises from the lineariza-
tion of x2x% Then x%?=0 implies that the left member of (18) is zero, that is,
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(19) RzRyz + Rszz + Rszy = 0.

It follows that R,R.,=0 and we may use (15) to obtain R%,=4R:. But then
R.R%,=4R3=0, R, is nilpotent. To prove that %, is nilpotent we observe that
the quantities of ¥, are finite sums S of products S; + - + S, where a =1 and
Si=R, or S;=R,,. Then every product of six elements of ¥, is a finite sum of
products P=.S, - - - S where 3=6. If S;=R, then P=0 regardless of the
values of the S;. If S;=R..=3S, then S1.5;=4R? and 5:5,S;=4R} or 4R;R..
and in either case P=0. Finally let S;=R,.;and S;=R,. Then S; - - - Sg=01in
every case and P=0, ¥, is nilpotent.

We shall leave open the question as to whether or not commutative nil-
rings of index £ =5 possess the property of the theorem and pass on now to the
case of a noncommutative ring not possessing this property. Indeed, let %
be an algebra over a field § with a basis u, v, 4v over § such that

u? = v? = (uv)? = 0, vu + uv = 0,
(w)u = — w(uv) = v, (wv)r = — v(uv) = u.

Then if x=Au+4uv+rvuv the quantity x?=N2u?-+u%?2+v?(uv)2+Au(uv+tvu)
v [u(uv) + (uv)u | +pv [v(uv) + (uv)v] =0. It follows that ¥ is a power-
associative nilring of nilindex two. But evidently both of the transformations
R, and R, are not nilpotent. Indeed, their matrices are

0 0 O 0 0 1
<O 0 —1), (0 0 0),
0 1 0 1 0 0

and R} and R? are idempotent.

It is easily verified that the algebra defined above is a simple Lie algebra.
Indeed, if ¥ is any simple Lie algebra then A has nilindex two. However En-
gel’s theorem states that the multiplications R, are all nilpotent only when
9 is nilpotent. Note that even in the case of the solvable Lie algebra with a
basis #, v, uv such that u?=v?=(uv)?=(uv)v=9(uv) =0, vu=—uv, (uv)u
= —u(uv) =v we have R; idempotent.

5. Idempotents in a commutative ring. In a commutative power-associa-
tive ring (12) becomes

(20) 2R, — 3Ry + Ry = (2R, — I)(R, — DR, = 0

for every idempoteht e of A. Define A,(\) to be the set of all elements a,(\)
of A such that
(21) ea.(\) = Aa.(\),

where (20) implies that necessarily A=0, 1, 1/2. Then %,(\) is a submodule
of % and it is actually true that ¥ is the supplementary sum
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(22) A = A.(1) + A(1/2) + AL(0).

In fact every a of U is uniquely expressible in the form a.(1)4a.(1/2)+a.(0)
where

a,(1) = a(2R, — RJ),
(23) 0.(1/2) = 4a(R, — R,
2.(0) = a(I — 3R, + 2R).

That a.(\) is in A,(\) follows by forming the product ea,(\) and using (20).
The uniqueness is then a consequence of the fact that if a.(1)+a.(1/2)
~+a.(0) =0 then we may multiply by e to obtain a,(1)+2~a.(1/2) =0, a.(1)
+471a,(1/2) =0, 4~ %.(1/2) =a.(1/2) =0=a.(1) =a.(0). We now prove

THEOREM 2. The modules N.(1) and N.(0) in a commutative power-associa-
tive ring are zero or orthogonal subrings of A. They are related to N,(1/2) by the
inclusion relations

Ao(1/2)Ao(1/2) = A1) + AL(0),
A(DAL(1/2) £ A(1/2) + AL(0),
A(0)A(1/2) = A(1/2) + AL(D).

To prove these relations we put z=w=c¢ in (18) and let xe=\x, ye=py.
This yields

2[(z9)e](N + ») + 2[(xy)ele + (zy) [202 + N + 2u2 + 4]
= 8\uxy + 4(xy)e.

When A=u=1 we obtain (xy)(R2—I)=0 whence (xy)(R,—I)=0, that is, xy
is in (1), A.(1) is a subring of A. Similarly A=u=0 yields (xy)(R2—2R,)
= (xy)R,(Rs—2I)=0, R,—2I is nonsingular, (xy)R,= (xy)e=0 and %,(0) is a
subring of . The values A=1, p=0 yield (xy)(2R2—2R,+3I)=0 and so
xy(2R3—2R?4+-3R,) =0. By (20), xy(R?+2R,) =0, xyR,=0, 3xy=0, xy=0.
There remains the case of products A,(\)%.(1/2), thatis, u=1/2. If A=1 then
IN AN+ 2u - u—8\u=2+14+1—4=0 and (xy)(2R?2—R,)=0, xy is in
Ae(1/2)+%.(0) by (23). If A\=0 then (xy)(2R2—3R.+I)=0 and xy is in
Ae(1/2)+A(1). The remaining value A =1/2 yields (xy) (R2—R,) =0, that is,
xy is in %,(1)+2,(0).

In the case of Jordan algebras the last two inclusion relations of (24)
may be replaced by the sharper result stating that

(26) A(DAL(1/2) = U(1/2), AL0)AL(1/2) = AL1/2).

(24)

(25)

However (26) does not hold for all commutative power-associative rings. In-
deed, let A be an algebra over a field § of characteristic not 2, 3, or 5 and let
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A have a basis ¢, f, g, b with a multiplication table given by e?=e, ef =f,
eg=2"1g, gh=f, eh=f*=g?=h%=fg=fh=0 and the commutative law. Then
Ae(1) =eF+18, Ae(1/2) =gF, Ae(0) =hTF, A(0)U(1/2) =fF =U(1), f is not
in Y.(1/2) and (20) does not hold. Moreover ¥ is power-associative since
if x=ce+pf+vg+06k for o, B, v, 6 in F then x2=ae+2(aB+v8)f+avg,
2%t =ole+4a?(af+v0)ft+advg, xx=ole+3a(aB+v0)f+alyg, (xx)x=cle
+3a?(aB+vd)f +atyg+aBf +atydf =xxn

6. Idempotents in a noncommutative ring. An idempotent of a power-
associative ring ¥ is also an idempotent of AP, Since the additive group
A is precisely the same additive group as A we may write (22) where the
quantities a.(A) of A,(\) are now defined by

(27) ea.(\) + a.(Ne = 20a.(\) (\=0,1,1/2).

We may then prove
THEOREM 3. The submodules U,(1) and A.(0) are orthogonal and such that
ea (1) = a.(1)e = a.(1),
ea.(0) = a,(0)e =0

Jor all elements a.(1) of (1), a.(0) of Ae(0).

To prove this result we use the relation (1) with y=2=¢ and xe+ex=vx
to obtain 2xe-2vex=2ex+2vxe, (1—»)xe=(1—»)ex, so that xe=ex when
v#1. Then v =2\, 2ex=2\x and ex =xe=Nx for A\=0, 1. This yields (28). We
next put z=e and write ex+xe=2\x, ey+ye=2uy in (1) to obtain 2Axy
+2uyx+ (xy+yx)e=2Ayx+2uxy+e(xy+yx). If A\=1 and p=0 then xy+4yx
=0 by Theorem 2 and so 2xy =2yx, xy =yx, 2xy=0, xy =yx =0 as desired.

The characteristic roots of R, need not be limited to the values 0, 1/2, 1
of the commutative case if ¥ is not a commutative ring. Indeed, consider the

(28)

algebra % with a basis e, e1, - - -, e; such that ee;=ae;, eie = (1 —a;)e;, eie;=0
for¢,j=1, - - -, t. Then the characteristic roots a; are arbitrary and we need
only prove that ¥ is power-associative. We note that if y=£§e+ - - - + £

then y2=0 and so yy?=1y%y, y?y2=(y2y)y. For all other quantities x of % we
have x =Ae+y where A>20 and the homogeneity of our relations implies that
we may take x=e-+7y. But ey+ye=y so that x*=e-+y=x and the properties
xx?=x%x, x%%=(x%)x are trivial.

It is also not true that the elementary divisors of R, are simple. For
consider an algebra with a basis e, f, g such that g=ef, e?=e¢, fP=g*=fg=¢gf
=eg=0, fe=f—g, ge=g. The matrix of R, is

1 0 0
<0 1 —1>
0 0 1
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and R,—I#0, (R.—I)?*=0. To show that ¥ is power-associative we note
that if y=pf++vg then y?=0. It then suffices to prove that xx?=x2x, x%x?
= (x%)x for x=e+y, y=Bf+vg, ey+ye=PBg+B(f—g)+vg=y, x*=x and our
proof is complete.

Let us next observe the algebra with a basis e, %, v over a field § of char-
acteristic prime to 30 such that e?=e, eu=ue=u/2, ev=ve=v/2, wv=u,
vu=—u, u?=92=0. In this noncommutative algebra %.(1/2) is actually a
subalgebra of U and so the first relation of (24) does not hold. However if
x=cae+Pu-+vv then x?=a?e+a(fu+vyv) =ax, so that the relations implying
that U is power-associative are trivial.

We shall finally give an example showing that the subsets 2.(1) and 2.(0)
need not be subrings of A. We verify this result only for %,(0) but an example
for the remaining case would be easy to construct. Let 2 be an algebra with a
basis e, #, v, w where eu=ue=u, e?=e, ev=ve=ew=we=ul=v?=w?=yy
=vu=uw=wy=0, vw=u=—wv. Then W (0)U.(0)=uF=A(1). If x=ce
+Bu-+vyv+éw then x2=a%-+20Bu, and so x%x=ode+3a?Bu=xx2?(x2x)x
=alte+4a3Bu =x2%x2, Y is power associative.

It should be noted that if ¥ is a vector space over a field § and ae=A»ag,
ea=pa for X\ and u in § then either a is in A,(1), or in A.(0) or in A.(1/2). For
aetea=(N+p)a=2a,(1)+a.(1/2). But then the uniqueness of (22) implies
that A\ +u)a.(0)=0, A +u—1)a.(1/2)=0, A\ +u—2)a.(1) =0, and only one
of the quantities a.(a) can be different from zero. When a is in %,(1) we have
A=p=1, and when a is in A, (0) we have A=u=0. However when a is in
N.(1/2) we know only that N\fu=1.

The examples we have given demonstrate that the relatively simple
properties of a commutative power associative ring do not hold in general
for noncommutative rings and so it is desirable to adjoin additional hypoth-
eses.

7. Flexible rings. A ring U will be called a flexible ring if (xy)x =x(yx) for
every x and yof %. Then [(x+32)y](x+3) = (x+32) [y(x+2) ] and multiplication
and the use of the flexible law yields

(29) (23)z + (zy)x = 2(y2) + 2(y%),

a relation holding for every x, v, and z of A. Conversely, if A satisfies (29) and
the characteristic of ¥ is prime to two then ¥ is flexible. .
The property x%x =xx? holds for all flexible rings. Indeed, we may prove

THEOREM 4. Let U be a flexible ring whose characteristic is prime to 30.
Then N is power associative if and only if x2x?= (x%)x for every x of U.

For proof we assume that x*xf =x=+f for all «+8 <, where n=4, and put
y=x*1 z=x">in (29) where A=2, - - -, n—1. Then x¥*x"*4-x"x =xx""!
+xm2x*, Take N=n—1 and obtain 2x"!x=2xx""! and so x"'x=xx""1,
1M =x x>, We now apply Lemma 2 and see that x*xf =x**f fora4-B=mn,



562 A. A. ALBERT [November

that is, that % is power associative.

The flexible law does not seem to yield the first of the relations of (24) for
noncommutative rings. However it does yield the remaining relations in their
noncommutative form and we shall state the results as

THEOREM 5. Let e be an idempotent of a flexible power associative ring .
Then A.(1) and A.(0) are zero or subrings of U, ex and xe are in A, (1/2) for
every x of A.(1/2),

A(DA1/2) = As(1/2) + A(0), A(1/2)A(1) = A(1/2) + AL0),
A(0)U(1/2) = A(1/2) + A(1), A(1/2)A.0) = A(1/2) + AL(D).

Put ye=ey=ay and take z=e in (29). Then (xy)etayx=a(xy)+e(yx).
Hence a(xy+yx) —e(xy +yx) = 2axy — [(xy)e+e(xy)]. It follows that
(xy+yx)(al —L,) =2xy(al—T,), where T,=(R,+L.)/2 is the multiplication
for e in the algebra A, We use (23) with R, replaced by T, and first put
a=1, that is, let ¥ be in A (1). If x is also in W,(1), xy+yx is in A,(1) since
A.(1) is a subring of A, But then (xy+yx)(I—L.) =0, (xy)(I—T.) =0, and
xy is in (1) by (23). We next let x and y be in %,(0), a=0 so that xy+yx is
in A.(0), (xy+yx)L.=0, (xy)T.=0, and xy is in A(0) by (23). This proves
that %,(1) and %,(0) are subrings of 9. They have already been shown to be
orthogonal.

The next result is obtained by putting y=e in (29). Then a=1. Take
x in %, (1/2) so that xe+ex=x. Then x(/—L,) =x—ex=xe=2xe(I—T,),
xe=2(xe)T,, (xe)T.=xe/2, xe is in A,(1/2). However x is in A,(1/2) and so
ex=x—xe is in A.(1/2).

To obtain the relations (30) we let y=¢ in (29) and let x be in A, (1/2).
Then (xe)z+ (ze)x =x(e3)+2(ex). However xe=x—ex so that xz-4(ze)x
=ux(ez)+2(ex)+ (ex)z. If z is in A,(1) then ez=2e=32 and xz=x3-+432x —2z(ex)
— (ex)z. But ex has already been shown to be in 2,(1/2) and we may use (24)
to see that both xz+2x and z(ex) 4 (ex)z are in A,(0)+A.(1/2). It follows that
both xz and zx are in %.(0)+%.(1/2). We next put ez=2¢=0 and obtain
xz=2(ex)+ (ex)z which is in A,(1)+A.(1/2) by the last relation of (24), zx is
also in this submodule, and we have proved (30).

We shall be particularly interested in those flexible rings having the
property expressed by (26). We define a ring ¥ to be a stable ring if U is a flex-
ible power associative ring and

(31) AMA(1/2) = A(1/2), A(1/DAN) = AL(1/2) (A =0,1),

(30)

for every idempotent ¢ of 2. We may then prove

THEOREM 6. 4 flexible power associative ring N is a stable ring if and only if
AD g5 stable.

For if xy and yx are in %,(1/2) for every y of A.(1/2) and every x of
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A (1) +A.(0) their sum xy-+yx is also in A.(1/2) and the commutative ring
AP is stable. Conversely let AP be stable so that (26) holds. Put y=e¢ in
(29) and obtain (xe)z+ (ze)x =x(ez)+3z(ex) so that, if xe=ex=DMx, then
Axz+(ze)x =x(ez) +Azx. Then

N2z + (ze + e2)x = [x(ez) + (ez)x] + Azx.

If zis in A.(1/2) then ze+ez=z, ez is in A.(1/2) by Theorem 5, w=x(ez)
+(e2)x is in A.(1/2) by the assumption that A is stable. Then Axz+ (1 —N\)zx
is in A.(1/2). The value A =1 yields xz in A.(1/2) and the value A =0 yields
zx in .(1/2). But xz+2x is in A.(1/2) and so both xz and zx are in A,(1/2) in
every case, U is stable.

It should be observed that when ¥ is a stable ring every subring B of %A
is stable. For B is clearly flexible. If e is an idempotent of § we may write
B=B.(1)+B.(1/2)+B.(0) and the definitions of the modules B,(\) clearly
imply that B.(\) =A.(\). But then the relations (31) imply corresponding
relations for the modules B,(\) and so B is stable.

We note finally that when B is an ideal of a stable algebra ¥, then Ao=A—B
s also stable. Indeed, let e; be an idempotent element of o. Then ¢ is a class
x+9PB where x is necessarily a non-nilpotent element of ¥, ef =x*+®B =eo. The
algebra €=§[x] is an associative commutative non-nilpotent algebra and
contains a principal idempotent e. We may write €=€,(1) +€,.(0) where the
elements of €.(0) are nilpotent. If e were in B the algebra €.(1) =eCe would
be in 8 and we would have x+B=y+4+B where y is in €,(0). But then
eo=y+B could not be idempotent. Hence ¢ is not in B, e+B=e(x)+B
=ax+B for a0 in §, (e+B)?=e?+B=¢+B=a%*+B, a**+B=ax+J,
o?=a, a=1, e+B=¢e. We conclude that the homomorphic mapping of A
on A —B maps every element z of A such that ze+ez=2Az on an element 3, of
A —B such that zeeo+e920 =Azo. Then the relations (31) for A.(\) go into rela-
tions (31) for Ao, (A\) and so A, is also stable.

8. Principal idempotents of algebras. An idempotent ¢ of a ring ¥ is
called a principal idempotent of A if there is no idempotent u of A orthogonal
to e. If 9 is power-associative this means that 9.(0) contains no idempotent.
When we assume that ¥ is also a flexible algebra then %,(0) is a subalgebra of
A and so e is principal if and only if %,(0) is a nilalgebra. We now make an
additional assumption and prove

THEOREM 7. Let ¢ be a principal idempotent of a stable algebra N. Then the
elements of U.(1/2) are nilpotent.

The result is clearly only required for A since powers in ¥ and in YD
coincide. Hence it is sufficient to take the case where U is commutative. We
then use (14) with x in A.(1/2) and operate on e to obtain ex?®=4(ex)x?
— (ex®)x—2[(ex)x ]x. But ex=x/2 and so ex?=x%— (ex?)x. By Theorem 2 we
may write
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(32) w=x2= w + w

where w, is in %,(0) and w, is in A,(1) and use the property that ¥ is stable to
see that x*= (wi+wo)x is in W,(1/2). Then x3/2=x%_—wix, x®x=2wx= (w1
+'ZUO)x,

(33) WX = WoX.

We now let e be principal so that %,(0) is a nilalgebra, w}=0 for some posi-
tive integer k. Put z=x%*! and have z?=w%*+1 =224 2! since w; and w,
are orthogonal. But x%*=wf+w} is in A, (1)+U.(0), z=x2%+1=x%x is in
A.(1/2), z2=v14v, where v, =w?*!, 9o=w"'=0. Hence we may apply (33)
in this case, 112=v02=0, 23= (v1+v0)3=0, x%%+3=0, x is nilpotent. This con-
cludes our study of the decomposition of a power-associative ring relative
to an idempotent and we pass on now to the study of certain types of stable
power-associative algebras.

CHAPTER II. TRACE-ADMISSIBLE ALGEBRAS

1. Admissible trace functions. We shall leave the theory of rings and turn
to the theory of algebras considering only power-associative stable algebras
over a field §§. Let A be such an algebra and call A a trace-admissible algebra
if there exists a function 7(x, y) with arguments x and y in ¥ and values in §
such that

I. 7(x, v) is a bilinear function of x and ».
II. 7(x, ¥)=1(y, x).
IIL. 7(xy, 2) =71(x, y2).
IV. 7(x, y) =0 if xy is nilpotent or zero.
V. 7(e, €) #0 if ¢ is an idempotent of .
It should be noted that II and III imply

(1) 7(xy, 2) = 7(yz, x) = 7(z%, y) = (%, y2) = 7(y, 2%) = 7(3, xY).

We shall call any function 7(x, ) satisfying I-V an admissible trace function
for . We now prove

THEOREM 1. Let A be a trace-admissible algebra and let N, be the set of all
elements x of A such that v(x, y) =0 for every y of A. Then N, is the nilradical N
of U.

For by I the set N, is a linear subspace of . If x is in N, and y is in U,
then 7(xy, 3) =7(x, y2) by (1), 7(x, y2) =0 for every 2, xy is in N,. Similarly
7(yx, 2) =7(x, 2y) by (1) and yx is in N,, N, is an ideal of A. If N, were not a
nilalgebra it would contain(®) an idempotent e whereas 7(e, €)#0. Hence
N, =N. Conversely if x is in N then xy is in N for every x of A, xy is nilpotent,
7(x, ) =0, RN, k=N, as desired.

(3 Cf. §S of the paper of footnote 2.
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We have now shown that 9N, is independent of 7. Note also that if B is
any subalgebra of A and 7(x, y) is an admissible trace function for % then
7(x, ¥) is also an admissible trace function for 8. For clearly I-V hold for 8
when they hold for . Also it has already been remarked that 9B is stable
when ¥ is.

2. The radical'of an ideal. The radical of an ideal is completely determined
by

THEOREM 2. Let B be an ideal of a trace-admissible algebra . Then the inter-
section of B and the nilradical N of A s the nilradical No of B.

For 8NN is a nilideal of B, BN < No. Conversely let g be in No so that
either g is in M and hence in BN or there exists an element x of A such that
7(g, x) #0. Then y =gx is not nilpotent and there exist elements oy, * + + , ¢ in
& such that e=qyy - - - a:y* is idempotent. Now 7(e, €)= Ei,,_la;a,'r(y‘, )
#0 and it follows that 7(y?, ¥7) 0 for some integers ¢ and j. However by (1)
we have 7(y%, y7) =7(y#i-1, y)=7(y#ti1, gx) =7(g, xy*+i~1)=0 since ¥ is in
B, xy*+i-lisin B, g is in No, g(xy**i-1) is in RNy and is nilpotent. This proves
that Re=BNR, No=BNN.

We define a trace-admissible algebra U to be semi-simple if its nilradical
N =0 and immediately have

THEOREM 3. Every ideal of a semi-simple trace-admissible algebra is semi-
simple.

3. The nilradical in the Pierce decomposition. We now refer to the de-
composition A =A,(1)+A.(1/2)+%A.(0) and prove

THEOREM 4. The nilradical Ny of N(\) is the intersection of A,(N\) and the
nilradical N of A for \=0, 1.

For MNAM) is evidently a nilideal of A,(\) and is contained in RN. Con-
versely if x is in N then xa, is nilpotent for every ay of A,(\) and so 7(x, @) =0.
Also 7(x, a1-a) =0 for every a;— of A.(1—N\) since xa;,=0. Finally if b is in
A.(1/2) then 7(x, b)=7(x, eb+be)=7(x, eb)+7(x, be)=7(xe, b)+7(ex, b)
=2\7(x, b), 7(x, b) =0 if A=0, 1. Hence 7(x, a) =0 for every a of U, x is in
MNOUAUM), Tr=RNNAN).

In the case of a principal idempotent we may prove

THEOREM 5. Let ¢ be a principal idempotent of a stable algebra N. Then
A.(1/2)+A(0) 45 contained in the nilradical of U.

For %.(0) =N by Theorem 4 and the property that the maximal nilideal
of %.(0) is A.(0) itself. By Theorem 1.7, if b is in A.(1/2) then b is nilpotent.
It follows that 2%, (b+c)?, and ¢? are nilpotent for every b and ¢ of U.(1/2).
Then 7(b+¢, b+c) =0=1(d, b)+7(c, c)+27(d, ¢), 7(d, ¢) =0. But by the proof
of Theorem 4, 7(b, x) =0 for every x in (0)+A.(1), bisin N, A.(1/2) =N.
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An algebra % which is not a nilalgebra has an idempotent and hence a
principal idempotent. Applying Theorem 5 we have

THEOREM 6. A semi-simple trace-admissible algebra has a unity element.
As a consequence of Theorems 3 and 6 we now have

THEOREM 7. Let B be an ideal of a trace-admissible semi-simple algebra U.
Then A=BDE, B has a unity element e and € =%,(0).

For B has a unity element e by Theorems 3 and 6, and if x is in %,(1/2)
we have xe-tex=xis in B, xe+ex=x, 2x=x, x=0, As(1/2) =0, A=B D Y,(0).

Theorem 7 implies that every semi-simple trace-admissible algebra ¥ is a
direct sum of simple algebras which are not nilalgebras.

CHAPTER I1I. COMMUTATIVE SHRINKABLE ALGEBRAS

1. Algebras of level one. Let 9 be any algebra over a field § so that the
multiplications of U are linear transformations R; and L, over § of A. Use the
notation T(x) to represent either multiplication and the notation T'(x; - - - x,)
to represent a multiplication T'(x) defined for a product x=x; - - - x, of the
factors xi, - - -, %, with an unspecified association. Then we shall call ¥ a
shrinkable algebra of shrinkability level s if every T(x1 « « + %,41) is identically
equal to a finite sum of products AT - - - T, with fixed coefficients N\ in §,
where the transformations T; are multiplications T';(z;) defined for products
z; of ¢; factors xy, and 4+ - - - 4t =s5+41. We propose to investigate here the
relations possible for commutative power-associative shrinkable algebras of
levels one and two over § of characteristic not two or three.

A commutative algebra A of level one has the property that R.,=AR:R,
+uR,R, for every x and y of A where A and p are fixed elements of §. Since
xy=yx we also have R, =R,,=AR,R,+puR.R,. Then 2R.,=A+p)(R:R,
+R,R.) and, since § does not have characteristic two, R,y =v(R:R,+R,R.).
It follows that R,,=2vR? is commutative with R, and that % is a Jordan
algebra.

However we may analyze the algebras of level one more deeply. We have
a(xy) =v(ax)y+v(ay)x and so vRaz=R;R:—VRoR:=v*(R:Rs+RuR;). Then

(1) (»*+ V)RR = (1 — v)R.R..

If v=0 then R.R,=0 for every x and a of ¥ and R,,=0=R,R,, A is an
associative nilpotent commutative algebra in which all products of three ele-
ments are zero. If v=1 then R,R,=0 and we have the same result as in the
case v=0. When »>0 and »271 then R,R,=v"'(1—»)R.Rs, v(R,R;:+R:R,)
=({1—v+v)R.Ry,=R.R,=R,, and U is a commutative associative algebra.

There remains the case where »=—1 and so R,,=—(R.R,+R,R.),
R..=—2R?, x3+4+2x3=3x*=0. Then the Jordan algebra is a nilalgebra and is
known to be nilpotent. We have proved
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THEOREM 1. 4 commutative shrinkable algebra of level one is either associa-
tive or is a nilpotent Jordan algebra satisfying the relation x(yz)+y(zx)+2(xy)
=0.

2. Algebras of level two. The general relation satisfied by a commutative
shrinkable algebra of level two expresses R(s). as a sum of terms of the form
ARy R., uR.R,y and vR.R R, with \, u, v in §. If we use the hypothesis xy =yx
to see that Rsy).+ Ryz:=2R (. we shall obtain a relation expressing Rzy)s
as a sum of products unaltered by the interchange of x and y. The relation
must then have the form

(2) R(z3e = MRoyR, + M\o(R..Ry + Ry.R.) + G + H,
where

(3 G = pR.R.y + p2(RyR.: + R.Ry.)

and

H = R, (R.R, + R,R.) + vo(R.R, + R,R)R,

4)
+ Vs(RszRy + RVR:Rz),,

for coefficients i, Ne, p1, M2, ¥1, V2, ¥3 in §.
If wis in % we form w[(xy)z] and use (2) to write

w[(x3)z] = M[w(xy) ]z + Ne[w(x2) ]y + Ne[w(y2) |2 + w1(wz)(xy)
(5) + pa(wx)(yz) + pa(wy)(2z) + ni[(w2)x]y + v1[(w2)y]x
+ vo[(wx)y + (wy)x]z + vs[(wa)z]y + vs[(wy)z]x.

We may interchange the symbols w and z and write the result as a trans-
formation on w to obtain the relation

R:yRs = MR(zy)e + No(R:R.Ry + RyR.R.) + G + »iR(R:Ry + RyR)
+ ”2[R(zs)u + R(w)z] + v3(R..R, + R,.R.).
The elimination of the common term G+»R.(R.R,+ R,R.) between (6) and
(2) then yields
(1 4+ M) R(apye + vaR(ze)y + v2R o) =
(7 = (1 + M)RyR, + (A2 — v3)(R2:Ry + Ry.R.)
— (A2 — v3)(R:R.Ry + RyR.R,) + v2(R.Ry + RyR:)R..

(6)

We may finally interchange the symbols x and z as well as the symbols y
and w in (5) and write the result as an equation in transformations on w as

R.R.Ry = MR,R,R; + Ma[R(zeyy + RRyR.] + G + v1[R(zpys + RoyRi)

8
( ) + ”2(Ry:Rz + RyR:-Rz) + 1£] [R(w)z ’+' RszRt]o
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At this point we shall further restrict our study. It should be clear that
there is nothing to say about algebras of level two which are also of level one
and so we may assume that our algebras do not have level one. Moreover a
study of those classes of commutative algebras containing no algebras with a
unity quantity should be of only secondary interest in this first investigation
of the types of shrinkable algebras. Thus we shall attempt to determine the
values of our parameters only for classes of power-associative algebras con-
taining algebras with a unity quantity e and not of level one. For such alge-
bras R, is the identity transformation and a relation of the form

(9) @R,y + BR.R, + YRR, = 0

is possible only when a=0.
Let us now apply this property. Substitute first 2=e and then x=e in (2)
to obtain

(10) M4t pm=A4pp=1
Make the same substitution in (6) and (7) and obtain
2v, = 0, 14 AL =X — w3,
(11) A+ p1+ 2n4vs =0,
A + p2 4+ vi+vs = 0.
Then »,=0,
(12) nitvs=—1, e+ um+ri=1
If M+1=0 we may use (7) and the fact that ».=0 to see that the cor-
responding class of algebras is defined by a relation of the form (2) with
pmi=pu2=0. Then the study we have made yields (10) and (11) and thus
M=NA=1, y3=—1, =0, =0. The resulting identity is Ry).=RR;+ R..R,
+Ry.R,— (R,R.R,+R,R.R,;) and our algebras are known to be Jordan
algebras.

There remains the case \;= —1. In this case A;=»; and u;=2. Then we
have the relation

R(z): = 2R.Rzy + RyR.. + R.Ry, — RyR, — R, (R.Ry, + R,R,)
(13) + »3[(R.R.R, + RyR.R,) — R.(R.R, + R,R,)
+ (Rz:Ry + Ry:R.) — (RyRz: + R.R,.)].
Compute Rz and Rz, using (13) and add the three formulas so obtained
to give

(14) P = 21’3 [(R;WR; + Rysz + th-Rﬂ) - (R:sz + RzRﬂl + RIIR”?)]

where
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P = R(ﬂl)z + R(zz)y + R(yz)z - 4(R2Rzy '+' RyRu + -Rnyz)
+ (-nyRz + Rysz + RzzRy)
+ [R(RyR, + R.R,) + R,(R,R. + R.R.) + R.(R.R, + R,R.)].

We now apply the assumption that ¥ is a power-associative commutative
algebra. By (1.13), this is precisely the condition P=0 and formula (14) for
v3#0 yields a standard identity for Jordan algebras. The only remaining case
is thus the case »;=0 in (13) and we have proved

THEOREM 2. Let U be a commutative power-associative algebra over a field of
characteristic not two or three and let N have shrinkability level two and belong to
a class of such algebras containing algebras with a unity quantity. Then U is
either a Jordan algebra or an algebra satisfying the relation

(15) R(zv)z = 2Rszy + Rszz + RzRyz - Rzsz - Rz(RzRy + R,,Rz).

We shall refer to algebras defined by (15) as static algebras and shall ob-
tain a structure theory for such algebras in the remaining sections of this
chapter.

3. Static algebras. The identity (15) is equivalent to

[@)z]w + (=) wls + [Gw)x]y + [(w)y]s
= 2(xy)(zw) + (22)(yw) + (y2)(xw),

a relation invariant under permutations of a transitive group of order eight
on the four letters x, v, 3, w. Put y=x and w=2 to obtain 2(x%2)z+2(z%)x
=2x23%+2(x2)2. Then we have proved one of the implications in the following

(16)

THEOREM 3. Let U te a commutative algebra over a field § of characteristic
not two. Then U is a static algebra if and only if

(17) 2?y? + (23)* = x(xy°) + y(ya?)
for every x and y of U.

The remaining implication, (17) implies (16), is derived by first replacing
y by z+Aw in (17) and then equating the coefficients of N. This yields 2x2(zw)
~+2(x3) (xw) = 2x [x(zw) | +2(wx?) +w(zx?). The replacement of x by x+uy and °
the equality of the coefficients of u will then yield (16).

The relation (17) evidently implies that x%x?=x(xx?) = (x%¢)x and so the
commutative algebras which we are calling static algebras are necessarily
power-associative.

4. Solvable static algebras. If B is any subalgebra of an algebra A we
shall designate by B* the associative algebra generated by the multiplica-
tions Ry, Ly of A which are defined for all quantities b of 8. Every solvable
subalgebra ¥ contains a maximal proper subalgebra €, such that € contains
the product of any two elements of B, $—C is a zero algebra of order one,
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B=C+wF. Define  =B*C*+E* and let A be a static algebra. Then we may
prove

LEMMA 1. Let x be in B and c be in €. Then R.RZ is in .

For Rizye=2R:R:;+2R.Rez— R.:R.—2R.R2. Then (xx)c, xx, cx, ¢ are all
in €, —2R.R%is in ©, and we use our basic assumption that § does not have
characteristic two.

We next prove ¢

LEMMA 2. Let x be in B and ¢ and d be in €. Then R.RiR, is in D.

For Raye=2R.R,a+ RaRsc+ R:Rca— RzaR:.— Re(R.Ra+R4R;) and our re-
sult follows from the fact that (xd)c, xd, xc, cd, ¢, & are all in €.

As in all cases of power-associative commutative algebras we have the
relation '

(18) R(zz)z = 4Rszz - Rz;Rz - ZR:

Then

(19) RzR(zz)z = 4R1sz - RszzR:p b ZR:

and

(20) R(zz)sz = 4Rszsz - Rzszz -_ ZR:.

It follows that

(21) R.R(ssyz — RiznysRs = 4R2R.z + Ru:Rz — SR.R..R..
Then

2 .
R(z’z)z = ZRZR(ZZ):L' + Rz -+ RzR(zz)z - R(zz)sz
(22) - Rz(Rszz + RzzRa;)
= 2R.R... + Riz+ RooRs+ 3R:Rez — 6R.R..R..

By Lemma 1, R,.R2 is in §. But then 6R,R..R. is in § and so R.R..R,
is in . By (19) we have

LeEMMA 3. If x is in B then R; is in D.

Since R% is in § for every x of B it will be true that (R.ya)*=R;+\S
+NTHNV4MR: will be in § for every x and y of B. Then ASHN TNV
will be in $ and, since we are assuming always that the field § has character-
istic prime to six, S is in . But S=R%(R,R,+R,R.)+(R,R.+R.R,)R%. As-
sume now that y is in € so that RZR.R, is in §. By Lemma 1, R,R2is in § and,
since B*H < H, we see that R,R,RZis in §. Also 2R =4R,R,.— R;:R:— R(zz)s
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and so

(23) 2R,R% = AR,R.R.. — R,R..R. — RyR(zs)=.

This transformation is in § since R R..R, is in § by Lemma 2. Then R R} is
in § and we have proved that S, R3R,, R,R%, R.R,R? are all in §. This yields

LEMMA 4. Let x be in B and ¢ be in €. Then RZR.R, and R.R3 are in D.

We finally compute R;(czy =3R;Rez+RcRzz— RexR:— R:(R.R,+R.R.) and
form the product

RdRz(cx) = 3RdeRcz ‘+' RdRchz - Rd-Rcz.Rz - RdR;Rch - RdR:Rc.

By Lemma 2 the term R4R..R; is in . All other terms have a right-hand fac-
tor R, with y in € and we have proved

LEMMA 5. Let x be in B and ¢ and d be in €. Then RiR.R.R, is in .

We may now prove that (B*)4< 9. It is evidently sufficient to prove that
P=R,R,R,R,is in O for all x, y, z, u of B and since P is linear in x, y, 2, % it
is sufficient to take the symbols x, ¥, 2, # to be either in € or equal to » in 8.
If  is in € then § contains P so we may take u=w. If z and y are in € then
Pisin § by Lemma 2. If zis in € but y=w then either x is in € and P is in
» by Lemma 5 or x=w, P=R%R,R, is in § by Lemma 4. There remains the
case z=u=w, P=R,R,R2. If yis in € then P is in § by Lemma 1. Otherwise
P=R,R? and either x=w and P=R} is in § by Lemma 3 or x is in €, P is in
9 by Lemma 4. This completes our argument and implies that (B*)%
S B*(B*E*+C*) <B*C*. An immediate induction implies that (B*)%+1
S B*(C*)*.

If B is a solvable subalgebra of order one of a static algebra 2 then 8
=wf, w=0=u% By (18) we see that R%=0. Since B*=F[R,]| we see that
B* is nilpotent. Let us assume then that 8 has order m and that the prop-
erty that B is solvable implies that 8* is nilpotent is valid for solvable sub-
algebras of order m —1 of static algebras. Then the algebra € of the argu-
ment above is solvable and has order m —1, €* is nilpotent, (€*)*=0 for some
positive integer k, (B*)%+1=0, B* is nilpotent. We have proved

THEOREM 4. Let B be a solvable subalgebra of a static algebra N over a field
$ of characteristic not two or three. Then B* is nilpotent.

As in the theory of Jordan algebras we have the immediate
CoROLLARY. A solvable static algebra is nilpotent.

5. The radical of a static algebra. We shall define the radical of a static
algebra U to be the maximal nilideal % of ¥, and shall call A semi-simple if
N =0. Then we may prove
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THEOREM 5. Let U be a static algebra over a nonmodular field §. Then the
radical of A is the set Wo of all quantities x of N such that the trace T(R.y) =0 for
every y of U.

For N, is clearly a linear space over §. To prove that N, is an ideal, we
need only show that whenever x is in My and y is in U, then R(zp.— Rz
has trace zero for every z in 9. This follows from (15) since

R(?/‘)a: = 2R;Ryt + RyR:cz + Rszy - Rysz - R;(Rsz + RzRy),
and the trace of the transformation
Rizv3e — Ratwsy = (Ry:R: — RuRy:) + (R.Rzy — R.,R),)

(24) + [(RzRy)Rs - Rz(RzRﬂ)] + [Rz(RzRu) - (RzRu)Rc]

evidently vanishes. If R, were not a nilideal it would contain an idempotent
e=e¢? and we would have 7(R..) =0 whereas A.(1) contains ¢ and is not zero,
the characteristic roots of R, are 1, 1/2, 0 and are not all zero, 7(R,) >0.
Hence Mo =N. But if x is in N then z=xy is in N and is a nilpotent quantity,
B=5[z] is an associative algebra defined by a nilpotent quantity and so is
solvable, 8* is nilpotent, R, is nilpotent, 7(R,) =0, x is in M. Hence No=N.

6. Decomposition relative to an idempotent. Since a static algebra A is a
commutative algebra we see that

(25) A = A(1) + Ac(1/2) + AL(0)
where %,(1) and %.(0) are orthogonal algebras. Put y=w=ein (16) and obtain
(26) [(xe)z]e + [(xe)elz + [x(ez)]e + [e(ez)]x = 3(we)(ze) + (x3)e.

If x and 2z are in %A.(1/2) then xe=x/2, ze=2/2 and (26) yields (xz)e/2
+xz/4+ (x2)e/2+x3/4=3xz/4+ (x2)e, x2/4=0, xz2=0. Thus A.(1/2) is a zero
algebra. Put xe=x, ze=3/2 and have (x2)e+xz+(x3)e/2+4x2/4=23x2/2
+ (x2)e and thus (x2)(2R,—I) =0, xz is in A.(1/2). Finally put xe=0, ze=23/2
and obtain (xz)e/2-+x3/4=(x3)e, (x3)(2R,—I)=0. We have proved

THEOREM 6. Let e be an idempotent of a static algebra N. Then A,(1/2) is an
ideal of A and is a zero algebra.

7. Structure of semi-simple static algebras. It follows from Theorem 6
that if a static algebra ¥ contains no solvable ideals and if e is an idempotent
of % then U is the direct sum of (1) and A.(0). Let us assume now that N =0.
Then U is not a nilalgebra and so must contain an idempotent. It follows that
A contains a principal idempotent ¢ and that A=, (1) PA.(0). But then
A.(0) is a nilideal of A and so is zero, e is the unity element of . Write
e=u+v where % and v are pairwise orthogonal idempotents and have % =,(1)
@A, (0) where v is in U, (0). Then every a of U has the form a =b-+c¢ where b is
in A,(1) and cis in A,(0), ea=a= (u+v)(b+c) =b+vc=b+4c, vc=c. It is then
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clear that 2,(0) =%,(1). We now decompose ¢ as a sum e=e;+ - - + +e; of
pairwise orthogonal primitive idempotents e; and have a corresponding de-
composition of A as the direct sum A=A P - - - ®Y; where e; is the unity
element of U;. Every nilideal of ¥; is a nilideal of ¥ and so 2; must be semi-
simple. Moreover a decomposition ¥;=B;DE; of A; results in a decomposi-
tion e;=wu;+v; of e; contrary to our hypothesis that e; is primitive. Hence
; must not have a decomposition as a direct sum. Actually U; must have no
ideals other than zero and ¥; since it can have no nilideals and any other
nonzero proper ideal of % would contain an idempotent u#e. We may now
write ¥; as a central simple algebra over its center 3;. Extend 3: to be an
algebraically closed field &; and designate the resulting simple algebra by
B;. Then B; is not a nilalgebra and if x is in B;, then the only idempotent in
& [x] can be e; since otherwise B; would be reducible. It follows that every
element of B; has the form r=ae;+f where f is nilpotent; & is in ;. As in
the case of Jordan algebras the trace criterion implies that the set of all
nilpotent elements of 8B; is a nilideal. Then x =ae;, B; has order one over
f;, A;=21; and we have proved

THEOREM 7. Every semi-simple static algebra is a commutative associative
semi-simple algebra.

CHAPTER IV. STANDARD ALGEBRAS

1. Flexible Jordan-admissible algebras. The theory of Jordan algebras
is so much like the theory of associative algebras that it is natural to con-
jecture that both classes of algebras are members of a more general class
with a similar theory. We shall present such a class of algebras here.

The class of algebras desired will satisfy the Jordan postulate (xy)x?
=x(yx?) and the postulate of commutativity will be replaced by the postulate
of flexibility. However, the formulation will be much more delicate since the
structure of Jordan algebras is based upon formulas derived from the assump-
tion x(yx?) = (xy)x? and using the commutative law.

Let us first derive some consequences of the assumption of flexibility,
that is, of the property that

(1) R,L,= L,R,

for every x of the algebra . Then R,yyLsiy—LotyRoty=(RsLo—LR;)
+(R.L,—L,R,)+ (R,L.,—L.R,)+(R,L,—L,R,)=0, and so

(2) R.L, — L,R, = L.R, — R,L,

for every x and y of %. However formula (2) is equivalent to the equation
(xy)3+ (2y)x =x(vz) +2(yx) of (1.29) and this latter equation may be written
as

3) - L, — L,L, = R,, — RyR..
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In particular we have
(4) Lzz - Li = Rgz — R:

An algebra % will be called a Jordan-admissible algebra if the algebra A
is a Jordan algebra. The multiplications S, of A" are defined in terms of
the multiplications of % by 2S,=R,+L. and the product x* in ¥ coincides
with this product in A, It follows that ¥ is Jordan-admissible if and only if

(5) (Rz + Lz)(Rzz + Lzz) = (Rzz + Lzz)(Rz + Lx)

for every x of U. Note that all Jordan algebras are Jordan-admissible since
AD and U coincide for commutative algebras. Also every associative alge-
bra is Jordan-admissible since R,L,=L.R, and R.,=R2, L,,=L2 in an asso-
ciative algebra.

If x is any element of an algebra U over a field § there is a corresponding
polynomial algebra .= [Rs, Lz, Rez]. When U is flexible (4) implies that
A, =F[Rs, Lz, Laz). We now prove

THEOREM 1. Let N be an algebra over a field § of characteristic prime to 30.
Then . is a commutative algebra for every x of U if and only if N is flexible and
one of the relations

w(ya?) = (xy)a?,  (2’y)x = 2*(y2),

(6)
(yx)x? = (yx¥x, 2% (xy) = x(x%y)

holds for every x and y of A. Moreover if N, is commutative the algebra A is
Jordan-admissible and is power-associative, the algebra U, contains R, and L,
Jor every power u=xF of x.

"For the relations (6) are the commutativity relations
L.:R;: = Rz:oLzy R.L..= L..R;,
R:R:z = Rz:ch, L,L,.= L;.L..

If %, is commutative all of the relations (7) hold and (5) holds trivially.
Moreover (1) holds and ¥ is a flexible Jordan-admissible algebra. Also
x(xx) = (xx)x, x(xx?) =x2x%= (x%)x by (6) and the formula x2xf =x>+f holds
for a+B=3, 4. Assume that this formula holds for a+3 <% where >4 and
write y=x""%in (6) to obtain xx"~! =x""2x? x"2x?=x""lx so that xx" " 1=x""1x
and we may apply Lemma 1.2 to obtain the formula for a+48=n. Hence %
is power-associative.

We now replace x by x4z in the first relation of (6) and equate the coeffi-
cients of N\ to obtain

©) o[y(xz + 22) ] + 2(y2?) = (wy)(2z + 22) + (ay)a>

This formula may be linearized and results in a relation which may be

)
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written as
) 'w[x(yz + zy)] + y[x(zw + wz)] + z[x(yw + wy)]
= (wx)(yz + 29) + (y2)(zw + wz) + (22)(yw + wy).
This relation becomes
(10) Rogosery = RaRysrsy + (Re + L)(Lyz — LaLy) + (Ry + Ly)(Lez — L.Ly).

The assumption that ¥, contains R, and L, for #=«* and k=1, : -+, { im-
implies that R, is in ¥, for # =x*t! when we replace y by x*~! and put z=xin
(10). Then relation (3) implies that L, is in ..

Conversely let A be flexible and let one of the relatlons (6) hold. By (2)
with y=x? we see that

(11) R:DLzz - Lza:Rz = L;';Rzz - R;ZL;.

Hence the first two relations of (6) are equivalent when U is flexible. The
relation R.R,.=R..R, and (4) imply that L., is commutative with R, while
L.L.,=L,.L,and (4) imply that R,,L.=L,R... Thus we see that the flexible
law implies the equivalence of all of the relations (6) and all imply that %,
is a commutative algebra.

It should be noted that the relations (6) may be linearized and imply

(12) [Rz’ Lw+zu] + [Ryy Lzz+n] + [Rz, Lzy+yz] = Oy
(13) [Rey Ryctey] + [Ryy Recpe] + [Rey Rayiys] =0,
(14) [Lsy Lysyey] + [Lyy Lasrsz] + [Ley Loyrys) =0,

where, as usual, we mean [S, T]=ST—TS. The omitted relation is a trivial
consequence of (12) and (2).

The relation (10) and the flexible law seem inadequate to yield a satis-
factory theory and we shall strengthen both assumptions. It should be noted
that all of the results above actually hold for rings.

2. Lie-admissible rings. Every ring % determines an attached ring %
which is the same additive group as A but has a product (x, ¥) defined in
terms of the product xy of A by (x, y) =xy—yx. The right multiplications
T, of A will then be defined in terms of the multiplications of ¥«
by To=R,—L,.

We call U a Lie-admissible ring if A is a Lie ring, that is, Tz =TTy
—T,T,. Then ¥ is Lie-admissible if and only if

(15) R:w—-vz - sz-—vz = (Rz - Lz)(Ru - Lv) - (Rv - Lu)(Rz - Lz)-
Let us introduce the assumption that ¥ is also a flexible ring. We then

use (3) to write —Ry;+Ls=—R,R,+LyLs Ry—Ly;=R,Ry—L,L, and we
add to obtain

(16) Ray—ys + Lay—y= = (RzRv - Rsz) - (LzLu - Lsz)-
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The right member of (15) is (R.R,—R,R.;)+(L,L,—L,L,)+(L,R,—R.L,)
+R,L.,—L.R,) and R,L,—L,R,=L,R.—R,L, by (2). Then we may add
(15) and (16) and remove the factor 2 to obtain

(17) Ray—ys = R.(Ry — Lu) — (Ry — Ly)R..
We may also subtract (15) from (16) and obtain
(18) Loyye= (Ly — Rv)Lz — L.(Ly — Ry)-

Conversely both (17) and (18) imply that R.L.=L.,R, so that ¥ is flexible
and then (17) and (18) are equivalent to (15). We have proved

THEOREM 2. A ring U is a flexible Lie-admissible ring if and only if either
(17) or (18) holds for every x and y of U.

A Jordan ring is trivially flexible and Lie-admissible since (18) is satisfied
when xy=yx, R,=L,. It is well known that an associative algebra is Lie
admissible and is, of course, flexible. However, we may prove

THEOREM 3. An alternative ring whose characterisiic is prime to six s Lie-
admissible if and only if it is associative.

For if % is alternative then ¥ is flexible and x(xy) = (xx)y, x(2y) +3(xy)
= (xz+2x)y,

(19) R., = R.R, + (L.R, — R,L,).

But by (2) L.R,—RyL.=R.L,—L,R; and so from R,.=R,R,+(L,R.—R.L,)
we obtain R.y_y.= (R.Ry—R,R,;) —2(L,R,—R,L,). This combined with (17)
yields 3(LyR,— R.L,) =0, L,R.=R.L, since the characteristic of ¥ is prime to
six. Thus (yz)x =y(zx) for every «x, , z of % and ¥ is associative.

3. Standard algebras. An algebra ¥ over a field § will be called a standard
algebra if (17) holds and if

(20) Rz(uz) = RzRuz + Rv(Rzz - Rsz) + Rz(Rzu - Rz-Ry)

for every x, ¥, 2z of U. (20) is known to be a consequence of the defining as-
sumptions for Jordan algebras and is a trivial consequence of the property
R.,=R.R, of associative algebras. We note the following simple result

THEOREM 4. A Lie algebra N is a standard algebra if and only if all products
of four elements of U are zero.

For when ¥ is a Lie algebra R, = R;Ry.— Ry.R.. Then (20) is equivalent
to —R,.R,= (R.R,—R,R.)R,=R,R.R,+ R.R,R., that is, to 2R,R.R,=0. Thus
[(wy)z]x=0 for every x, y, 3, w of A, Luwy:=0=—Rwys RuyR:=R:Ruy,
RuyR.=0, R,Ruy =0, (x2)(wy) =0, all products of four elements of U are zero.
The converse clearly implies that [(wy)s]x=0, R,R.R,=0 and so that (20)
holds.
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We shall now derive some identities which are a consequence of the rela-
tion (20) and the flexible law. We first write (20) as

(21) wla(ys)] + [(wy)z]s + [(wa)x]y = (w2)(y2) + (wy)(az) + (wa)(xy)
and then have R,L,+Ly,R,+Ly.Ry=Ly,Ry,+R,Lyy+RyLy.. However
Ry.L,—LyRy,=Ly,R,—R,L,, by (2) and we replace w by x to obtain

(22) .R;Lyz + RyLzz + Rszy = Lysz + Lzz-Ry + LzyRs-

Observe that if the characteristic of ¥ is prime to three then (22) implies that
R,L,,=L,.R, and so that every ¥, is commutative. We have proved

THEOREM 5. Let U be a standard algebra over a field § whose characteristic
is prime to six. Then A is a power-associative Jordan-admissible algebra and
N, is commutative for every x of U, that is, the transformations Ry, Lu, R., L,
commaute for all powers u and v of x.

The identity (21) may be rewritten with w and z interchanged and implies
that L¢y,.+L,L.L.+L.R.,R,=L,L.,+L.L.,,+L.R,,, However R, —R.R,
=L,,—L,L, and so we have

(23) L(zy)a: = La:Lzy + Ly(Lzz - LxLz) + Lz(Lzlz - L:oLy)-

We note the consequences

(24) Rx(zx) = 3R2sz - 2R3z
and
(25) L(zz)z = 3L;L¢z b ZLi

of (20) and (23) respectively.

4. Solvable algebras. Our first major result will involve a subalgebra
$B of a standard algebra U. Define B, to be the vector space of all mappings on
A of the form R,+L, for x and y in B and B* to be the associative algebra
of all finite sums of products of elements of By. Then we may prove

THEOREM 6. Let B be a solvable subalgebra of a standard algebra U over F of
characteristic prime to six. Then B* is nilpotent.

The result is true for B of order one since then $=xF, x2=0, R2=0 by
(24), L3=0 by (25), B* is the commutative algebra &[R., L.] and is clearly
nilpotent. Assume the result true for algebras of order m —1 and let B have
order m. Every solvable algebra 8 has the form $=C+w»§ where BB =C
and € has order m—1 and so §* is nilpotent. We propose to show that
BI<H=B*C*+C*.

Since By is a vector space it is sufficient to prove that all products S.S,S,
are in  where .S, is the symbol for a multiplication and x, y, 2z are either in
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€ or equal to w. Now (20) and BB =€ imply that
(26) Hi(x, y,3) = R.R,R, + R.R,R,

is in © for every x, ¥, 2 of 8. Then R,R,R, is in $ if z is in €, R,R,R,»
=Hi(x, v, 3) —RoRyR, is in § if x is in €, 2R,R R, is in € for every y. Thus
R.R,R.is in D for every x, ¥, 2 of B. Similarly (23) implies that every L,L,L,
isin . But R,L,L,=R,(L.;— Ry.-+R,R.) is thenin A and so is LR R, =L,(Rys
—L,,—L,L,). It remains to consider products R,L,R.,, L.R,L., R.R,L.,
L.L,R,.

We note next that the assumption (17) implies that R,R,; y.=R,(R.R,
—R,R,)+R.,(LyR.—R,L,) and so H=R,(L,R;—R,L,) is in . If x isin €
then R.L,R. is in . Hence let x=w. If y is in € then R,L,R,=R.R,L,+H
is in . It then remains to consider R,L,R,=(L.Ry+LwR,—R.,L.)R. (by
formula (21)) which is in § if and only if R,L.R, is in $. We have already
seen that R,L.R, is in $ if 2z is in € so there remains the case of a product
RyLyRy=LyRuR, which is in 9. It follows that all products R,L,R, and all
products R.,R,L, are in . We also have L.R.; ,.=L.,(R.R,—R,R.)
+L.(L,R.—R.L,) and so L,L,R,—L.R,L,is in . The remainder of the proof
is exactly as above.

We have now shown that B <B*C*+C* so that B*<B*C*, Prsk+t
< B*C* =0 for some k, B* is nilpotent.

5. Nilalgebras. The procedure we shall follow in the study of standard
nilalgebras is an extension to noncommutative algebras of that used for
Jordan algebras. We observe first that if % is a subalgebra of ¥ then x8*=®
if and only if B contains both xb and bx for every b of B. There always exists
an idempotent linear transformation E on ¥ such that =AE and we define
B to be the set of all linear transformations T on % such that ET=ETE.
Then B is an associative algebra and we have

LemMA 1. If x s in U then xB* =B if and only if R, and L, are in B.

For the generic element of B is b=aE where a is the generic element of
9. Then an element y is in YE if and only if y=yE and so xb=x(aE) =a(EL,)
and bx=(aE)x=a(ER,) are in B if and only if EL.,=EL.E, ER.=ER.E,
that is, R, and L, are in B.

Note that 58* = P for every b of B and so R, and L, are in L. We next
prove

LEMMA 2. Let B be a subalgebra of a power-assoctative algebra A and let
Ra, La, Ra: be in B for x in A. Then B is an ideal of the algebra B[x] of all
polynomials in x with coefficients in either B or F.

For Lemma 1.5 implies that the algebra ¥ of all polynomials in R,, L., R.,
contains R, and L, for all powers u=x* of x. Then %, =W and every R, is
in B, uB* <B. It follows that B[x]=F[x]+B and that B is an ideal of B[x].
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The assumption that ¥ is a standard algebra will now be introduced and
we shall prove

LeEmMMA 3. Let R, and L, be in W and y=>bx? where b is in B. Then R, and
Ly, are in B.

We first apply (20), (13), (23), (14), (4) to obtain the relations

(27)  Ruosy = RuRss+ Ro(Ros — R3) + Ru(Rus — R.Ry),

(28) RiR:z + R:Rbziz6 = RzoRp + RyzyanRo,

(29)  Leawye = LaLos 4 Lo(Law — L2) + Lo(Los — L.Ly),

(30) LyL:z+ LioLoyivz = Laprvsls + LasLy,

(31)  LoLss=Ly(Res+ Lo = RY,  LuLy = (Res+ Lo — RLs.

Since bx and xb are in B we see from (27) that R,R., is in B, from (28) that
R.:Ryis in B, from (29) that LyL,. is in B, from (30) that L..Ls is in B, and
from (31) that LyR,, and R,,L; are in B. Now by (20) and (17) respectively,

(32) Ry(z2y = RoRzz + 2R(Riz: — RuR.),

(33) Rzo)p = Ro(zy + Rez(Ro — Ly) — (Ry — Ly)R.z
so that both R, and Ry are in . But by (3),

(34) R(zzyp — Rz2Rp = Ly(22) — LazsLs

and so L, is also in T as desired.

We write u=xx? and use (24) together with Theorem 5 to write RyR,
=3RyR.;:R:—2RR:, R.Ry=3R.R..Ry—2R3R,. Since R..R; and R4R., are in
B, we see that R, R, and RyR, are in B for every b of B. Similarly, R,L, and
LR, are in B. But by (20) we have

(35) Ryu = RyRy + R.:(Ry: — ReR.) + RAR, — ReR:2)
which implies that Rs, is in B, and by (17),

(36) Ruy = Ryu + Ru(Ro — Ly) — (Ry — Ly)R4

and then R,; is in 8. But

@37 Rupz) = RuRpz + Ry(Ry — RuR:) + Ro(Rus — RuRy)

where v=ux=x4, bx is in B and so R,ez is in W. This shows that RyR, is in
B. However R,=R., and the same computation used in the commutative
Jordan case gives

(38) R, = Raz+ 4R..R: — 4R’

and so RyRZ, is in . We now use (28) to form
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(39) R;xRbsz = - Rz(Rzszx+zb) "I‘ szsz + Rzszz+sz:
by multiplication on the left and
(40) Rzszsz = RbRix + Rszz+sz:x - (be+szzz)Rz~

Then we subtract to see that R%,R, is in .
We now write y?=9(bx?) and form

(41) Ryy = Ry + Ro(Ryssy — RyRss) + Ruu(Rys — RyRy).
We then use Ry(zzy — RyRzz=2R.(Ry.— RyR,) as well as

(42) Ry = R.R, + Ry(Ru — R.R..) + R.o(Ray — RaRy),
(43) Ry: = Rzy+ Ry(R. — L) — (R, — L,)R,

to see that R,, and R,, are in B, Ry(Ry@s—R,Rzz) is in BW. The term
RzzRbe = Rzz [Rszz + 2Rz(sz - Rsz) ]Rb = (Rzsz)2 + ZRz(Rzszsz
—R.:RyR.Rs) is in W and we finally compute

(44) Ruy = RoRy + R..(Ros — Ry) + Ry(R, — RyR )
and
(45) Rys = Roy + Ry(Ry — L) + (Ro — Ly)R,.

The product [R..(Rs — Ls)]R, is in 2, the product R.R,(Ry — L)
= RzRyR22(Ry— L) + 2R R o (R — RyR;) (Ry— L) is in B, and the product
Rz:Rby=(szRb)Rv_l_R;(Rbb_R%)_i'(Rzsz) (Rv_RbRu) is in '553' But then
R..Ryp is in W and we have proved that Ry, is in B, which completes the
proof of

LeMMA 4. Let R, and L, be in B, y=>bx? where b is in B. Then N, is in B.
We are now ready to prove
THEOREM 7. Let U be a standard nilalgebra. Then A is a solvable algebra.

The result is trivial for algebras of order one and so we assume it true
for algebras of lower order than that of . Also the result is true if 9 con-
sists of the associative algebra §[x] generated by an element x of 2. Hence
assume that A~ [x] and thus that U contains a proper subalgebra. Let 8
be a maximal proper subalgebra of 9. Then by the hypothesis of the induction,
B is solvable, B* is nilpotent, AB**=0. Let ¢ be the least integer such that
AB**<PB. Then clearly t=1 and there exists an element z of A such that
2B* <P, zB* is not <B. Thus there is an element x in 2B*~! but not in B
and xB*<9B. By Lemmas 1 and 4, if 5 is in B, then yB*<P, y2B*<PB for
vy =>bx? Thus we have either some such y not in B or Bx2 <B. In either case we
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have shown the existence of an element w not in 8 such that w$* <98, Bw?
<@. This latter condition implies R,z in W as the proof of Lemma 1 shows
and so the hypotheses of Lemma 2 are satisfied. Since x is not in B, B[x]=%
by the maximality of ¥ and by Lemma 2, B is a solvable ideal of U. The nil-
algebra A —B is solvable by the induction hypothesis and so U is solvable.

6. Trace admissibility of standardalgebras. Let A be astandard algebraand
define its trace function 7(x, ¥) to be the trace of the linear transformation R,,.
By (17) we have 7(x, y) =7(y, x). Also Ruwyz — R.(zyy = R:Ry:+ Ry(R.. — R.R,)
+ R.(R,y — R.R,) — R.Rsy — Ry(R.; — R.R;) — Rs(R,y — R.R;) = ReRys—zy
4+ RyRzz—zz+ Ry(R.R;) — (R.R.)R, + (R.R.)R, — R,(R.R.). However R,Ry._.
+ RyRusso = Ro[Ry(R. — L) — (R. — L)R,] + Ry[Ro(R. — L.) — (R. — L.)R.]
=R.[R,(R.—L.)]— [Ry(R.—L.) IR, +Ry[R.(R.—L.)] — [R.(R.—L.) |R,. Then
7(x, ¥3) —7(3, xy) =0, 7(x, ¥3)=7(xy, 3). If xy is nilpotent it generates a
solvable algebra, R,, is nilpotent, 7(x, ¥) =0. If ¢ is an idempotent 7(e, ) is
the trace of R, and is not zero. We have proved that 7(x, y) is an admissible
trace function for 9.

However, we may now show that 7(x, ¥) is an admissible trace function for
AN, For 7(x, 3) =7(3, %), 7(x-y, 8) =7(xy+yx, 2)/2=[r(xy, 5)+7(yx, 2)]/2
= (rx, yz)/2+r(y, x.)/2, 7(y, x2) =7(x3, ¥)=71(x, 2y), T(x"y, 3)= [T(x! yz)
+7(x, 2y)|/2=7(x, y-3). If x-v is nilpotent so is xy+yx, R.,4,. has zero trace,
7(x, ¥) +7(y, x) =27(x, ¥) =0, 7(x, y) =0. If e is idempotent 7(e, ) #0 as was
shown above.

It follows now that the set of all elements x such that 7(x, ¥) =0 for every
y of U is the radical of both % and Y. We have proved

THEOREM 8. Let U be a standard algebra over,a nonmodular field. Then A
s trace-admissible, there is a trace function which is admissible both for A and
for AP, the radical of A coincides with the radical of AP, A is semi-simple if
and only if AP is semi-simple.

CHAPTER V. QUASIASSOCIATIVE ALGEBRAS

1. The algebra A(N\). If A is any algebra over a field § of characteristic
not two and X is in § we define Y(\) to be that algebra which is the same
vector space over § as U but whose product x-y is defined in terms of the
product xy of A by x-y=Axy+(1—N)yx. Then A(1)=9, A(0) is antiiso-
morphic to A, A(1/2) =YD,

THEOREM 1. If U is power-associative so is A(N) for every \ of § and indeed
powers in A(N\) coincide with powers in N. Also A(N) is flexible for every N\ if
and only if U is flexible.

For when ¥ is power-associative the power x* of every x of U is uniquely
defined in ¥ for every positive integer #. Suppose that x* is the same in
AN) as in U for every {<m, a result true for ¢=1. Then x7 x* " =Axrx""
+ (1 =N)xrxr=Ax"+ (1 —N)x*=x" for every r=1, ..., n—1. It follows
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that nth powers of x in A(\) all coincide with nth powers in % and A(N) is
power-associative. If A(\) is flexible for every A then in particular A(1) =%
is flexible. Conversely if ¥ is flexible then (x-9)-x=\[Axy+(1—=N)yx]
2+ (1=N)x ey + (1=N)yx ] =N2(xy)x+ (1 =N) 2 (yx) +A (1 =N) [(yx)x+x(xy) ]
and x- (y-x) =Ax[Ayx+ (1=N)xy ]+ (1=N) Ayx+(1=N)xy Jx =A2(yx) + (1 —N)?2
“(xy)x+N1—=N) [x(xy)+ (yx)x]. The flexibility of % implies that A*(xy)x
+ (1 =N (yx) =Nx(yx)+(1—N)*(xy)x and so x-(y-x)=(xy)-x, AQ) is
flexible.

THEOREM 2. An algebra N is Jordan-admissible if and only if A(\) is Jordan-
admissible for every \. Indeed AD = [AN) P for every \.

For [A(\)]™ is defined relative to the product (x-y+y-x)/2=[\xy
+ {1 =N)yx+Nyxe+ 1 =Nxy]/2 = (xy+yx)/2.

In a similar fashion we may study [A(\)]<. This algebra is defined rela-
tive to the product (x, y)=x-y—y-x=Aey+(1—N)yx—Ayx—(1—N)xy
=(2N—1)(xy—yx). If A=1/2 then A(N) is the commutative algebra A,
[2(\) ] is a zero algebra and is always Lie-admissible. Otherwise (x, y) =xT
where T,=(2\—1)S, and .S, is the generic right multiplication for the alge-
bra Y. The algebra ¥ is Lie-admissible if and only if i, =.S.5,—S,S:
where [x, y]=xy—yx=xS, and if a=2XA—15%0 we see that T =al(.y
=S, =2(S2Sy—S,S:) =T, Ty— T, T, Conversely if Tipy=T,Ty— T T,
then Siz.y =S5:5,— 5,5, and we have proved

THEOREM 3. An algebra N is Lie-admissible if and only if A\) is Lie-
admissible for every N\ of §.

Let us henceforth restrict our attention to the case of algebras A(\) de-
fined for A#1/2. Then x-y—y-x=(N—1)(xy—yx), x-y+y-x=xy+yx
and so 2xy=(A—1)"x-y—y-x+CA=1)(x-y+y-x)] = (N —1)"12[Ax-y
+A—1)y-x]. Since 1—A—1DA-1)=CA=1"1[2A—1—-A—-1)]
=N(2\—1)"1, we have proved

TuEOREM 4. Let A\5#1/2 and D =UAN). Then A =D (u) where u=(2A—1)"\.

Theorem 4 implies that the ideals of ¥ and of §=A(\) coincide for every
A#1/2. Indeed if ¥B is a subspace of A such that by and yb are in B for every
b of B and y of A it is true that b-y and y-b are in B and conversely. When
A is a direct sum A=VBBE then bc=cb=0 for every b of B and ¢ of €,
boc=c-b=0,UAN) =BN) BE\). When B is solvable so is B(\) and when B
is strongly nilpotent so is B(\). Evidently the maximal solvable ideal of
9 coincides with the maximal solvable ideal of A(N). Similarly the maximal
nilideal of U coincides with that of A(\) for every A£1/2. Finally if every
nilideal of Y(N) is solvable (strongly nilpotent) this is true for every nilideal
of 9.

The results just given imply that if A(\) has the property that when its
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maximal solvable ideal is zero it is a direct sum of simple algebras this will
also be true of %(. Moreover A(\) is simple if and only if A is simple. In par-
ticular every simple associative algebra ¥ determines a class of flexible,
Jordan-admissible and Lie-admissible simple algebras A(N\). These are not
commutative when ¥ is not commutative since x-y—vy-x=(2N—1) (xy—yx).
They are also not associative, in general, even when 9 is associative. This
result follows for total matric algebras by use of the identity we shall derive
in the next section.

2. Quasiassociative algebras. Let ¥ be an algebra over a field § of char-
acteristic not two. Then U will be called a guasiassociative algebra if there
exists a scalar extension ® of § and a quantity A in & such that Ae=BN)
where B is an associative algebra over . If A=0, 1 then Ag is either iso-
morphic or antiisomorphic to B and e is associative, ¥ is associative. If
A=1/2 then g is a Jordan algebra, xy =yx and x(yx?) = (xy)x? for every x
and y of Ag, the same relations hold for every %, y of %, A is a Jordan algebra.
Assume henceforth that A#0, 1, 1/2 whence 8 =Ug(u) where u=N(2\—1)"1
and Ue(u) is associative. Evidently

1 p0,1,1/2.
If 4 is quasiassociative then B(\) =g is flexible, x(yx) = (xy)x for every
x, v of U, A is flexible. We now prove

THEOREM 5. Let U be a quasiassociative algebra over a field § of characteristic
not two and let U be neither associative nor a Jordan algebra. Then there exists
a quantity o#0, —1/4 in § and a scalar extension R =F) of F such that
wi=u+tao, Ae(uw) is an associative algebra.

For the defining operation of Ug(u) is x-y=pxy-+ (1 —p)yx where xy is
the product in % and in Ae. We compute

() x(y-2) = pelu(yz) + (1 — Way] + (1 — ) [wyz + (1 — Wzylx

and

(3)  (xy)s=plury + 1 = pyxls + (1 — wzlpey + (1 — w)ya]

to see that Ae(u) is associative if and only if u?[x(yz)—(xy)z]+(1—p)?

()2 —2(yx) | +-p(1 —p) [x(2y) + (y2)x — (¥)2 —2(xy) ] =0 for every x, ¥, z of
Ae. However Ag is flexible and so

4 x(yz) — (xy)z = (z3)x — 2(yx).
It follows that g (u) is associative if and only if Ag is flexible and
2+ (1 = w][x(z) — @)z] = W2 — ) [x(z) + (2)x — (3x)z — 5(xy)]

for every %, ¥, z of Ag. Since this relation is linear in x, y, z it holds for every
x, ¥, 2 of Ug if and only if it holds for every %, ¥, z of . Define agy=u2—py and
see that g (u) is associative if and only if ¥ is flexible and
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(5)  Qaot1)[x(z) — (x3)z] = aolx(zy) + (y2)x — (yx)3 — z(xy)]
for every x, ¥, 2 of A. If ap were not in § then a sum a-+bapy=0 for ¢ and
bin ¥ only if a=b=0, (5) would imply that x(yz) = (x¥)z, that is, 9 would
be associative. It follows that ap=p%?—pu is in § and the hypothesis (1)im-
plies that ay#0, —1/4. This proves our theorem.

As an immediate corollary of our proof we have

THEOREM 6. Let U be an algebra over a field § of characteristic not two and
let A be neither associative nor a Jordan algebra. Then U is quasiassociative if
and only if W is flexible and there exists an element ag#0, —1/4 in § such that
(5) holds for every x, v, 2 of U.

Let us observe that if ¥ is associative and u0, 1 we may use (2) and (3)
to see that A(p) is associative if and only if x(zy)+ (y3)x = (yx)z+2(xy),
that is, (xz2—2x)y=vy(x3—2x). Then A(u) is associative if and only if xz—zx
is in the center of U for every x and z of %. But if % is a total matric algebra
of degree n>1 over § we may use the usual basis ¢;; of I with x =eq, 2=en
to see that x3—2x =e11—ex which is not in the center of ¥ since eja(e11 —e22)
= —ey, (enn—€12)€12 =e€12.

3. Defining identities. A quasiassociative algebra ¥ which is neither
associative nor a Jordan algebra is defined by the existence of an element
ap#0, —1/4 such that x(yx) = (xy)x and (5) holds. Conversely if (5) and the
relation x(yx) = (xy)x hold the corresponding algebra is quassiassociative. It
should be noted that associative and Jordan algebras do not, in general,
satisfy (S).

We may write (5) in the form

(6) (200 + 1)(Ry: — RyR.) = ao(Rzy + Ly. — LyR, — RyL,).
By the flexible law L,,=R,,—R,R,+L.L, and so (6) becomes
(7) 2a0(Ry: — Ray) + Rye = (200 + 1)RyR, + ao(L.Ly — R.Ry — LyR, — R,L.).
Interchange ¥ and 2 to obtain
(8) 2a0(R.:y — Ryz) + Roy = (2a0+ 1)R.R, + ao(LyL. — RyR, — L.R, — R,L,).
Add and use R,L,+R.Ly,=L,R.+L.R, (by (4.2)) to obtain
(9) Rysrey = (a0 + D(RyR. + R.R,) + ao(L,L. + L.L,) — 2ao(RyL, + R.L,).
We may also subtract (8) from (7) to obtain
(40 + 1)Rys—sy = (3o + 1)(RyR. — R.Ry) + ao(L.L, — L,L,)
+ ao(L:Ry + R.L, — L,R. — R,L.),
and from (5) with x and y interchanged we have

(11) (oo + 1)(R.L, — L,R,) = ao(L.L, + R.R, — R,R, — L,L.).

(10)
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Finally, by (4.2) we may write

(12) R,L, — L,R, = L,R, — R,L,.
If g=—1/2, then L,L,—L,L,=R,R,—R,R,, and so (7) reduces to
(13) R.,, = — (L,.L, — R,R, — L,R, — R,L.)/2.

Otherwise we have ao(L.R,+R,L,—L,R,—R,L.)=2a¢(R.L,—L,R.). Thus
(4ao+ DRy.—oy = (Bao+ 1) (RyR. — R.R,) +o(L.Ly,—L,L,)+2ao(R.L,— L,R,)
= (4ap+1)(R,R, — R.R,) + 2ato(R.L, — L,R,), ao(L.L,—L,L,+R.,R,— R,R,)
and so

(14)  (4ao + DR,y = (4ao + 1)(R,R. — R.R,) + (4o + 1)(R.L, — L R,)
which implies
(15) Ry 2y = (RyR. — R.Ry) + (L.R, — R,L,).

Thus we have
2Ry, = (a0 + 2)(RyR, — R.R,) + ao(L,L; + L.L,)

(16)
— 2ao(RyL; + R.L,)) + L.R, — R,L..

This proves the following theorem.

THEOREM 7. Let A be a quasiassociative algebra. Then U is shrinkable of
level one.

4. J-semi-simple algebras. An algebra 2 will be called J-semi-simple if
A is a semi-simple Jordan algebra and will be called J-simple if AP is a
simple Jordan algebra.

THEOREM 8. Every J-semsi-simple algebra is a direct sum A=A ® - - - DU,
where the components W; are J-simple. Every J-simple algebra A is simple and
the center of U is the center of A,

For, if 8 is an ideal of the semi-simple Jordan algebra A" then B has a
unity element e and AP =BBEC, B=AP 1), €=A(0). It follows that
A=Y (1) DA(0) and that B=A (1), E=A(0)P. If we decompose A
as a direct sum AP =B, P - - - &B; of simple Jordan algebras B; then each
Bi=AP (1) =% where A=A, ® - - - Y, the algebras ¥A; are J-simple.
Assume now that ¥ is J-simple. Then every ideal I of A is also an ideal of
AD and if M0 we have M =U. Hence A is simple. If 3 is the center of A
we may express A as an algebra over 3. But then A will be an algebra over
8 and so B8 is contained in the center of AP .However it is true for arbitrary
simple algebras that U is central simple over 3 if and only if every scalar ex-
tension over B of ¥ is a simple algebra. Thus if 3 is not the center of AP
there will be a scalar extension £ of 3 such that %5’ =B@E. By the proof
above g is a direct sum of the corresponding components contrary to the
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hypothesis that 3 is the center of ¥ and so g is simple for every & over 8.
5. The structure of quasiassociative algebras. The general theorems on
the structure of quasiassociative algebras may be stated as follows:

THEOREM 9. Let U be a quasiassociative algebra over an infinite field § of
characteristic not two. Then if A is solvable it is strongly nilpotent and if A is o
nilalgebra it is solvable.

TueoreM 10. Every quasiassociative algebra U over a field § contains a
maximal solvable ideal N called the radical of U, such that every nilideal of N is
contained in N. If § is nonmodular and W is any scalar extension of §F the
radical of s 75 Nw. Also U—N is semi-simple, that is, A—N has no nonzero
nilideal.

THEOREM 11. 4 semi-simple quasiassociative algebra is J-simi-simple and
so is a divect sum A=W ® - - - U, of J-simple algebras ;. Each U; is quasi-
associative and so is flexible. A quasiassociative simple algebra with center 3
s quastassociative over 3.

The results just stated clearly hold for Jordan algebras and for associa-
tive algebras. Theorems 9 and 10 have been seen to hold for those algebras A
for which there exists an element N in § such that A0, 1, 1/2 and A(N) is
associative. Evidently Theorem 11 also holds for such algebras. There re-
mains the case Ap =B (u) for a quadratic field R = F(u) over §F and an associa-
tive algebra B over &. Note that the properties above already hold for Ag.

Let u2=u—4ao for ap in § and write 0=2u—1 so that 62=4(u2—u)+1
=4a0+1 is in § and must not be the square of any element of . Then every
vector subspace MM over & of g has elements of the form x =x¢+x10 where
x9 and x; are in UA. If y=y,+0 is in I and £ and 7 are in § the element
Ex+ny=(Exo+ny0) + (Ex1+ny1)0 is in M. Hence if M, is the set of all x,
then 9, is a vector subspace over § of A. But §—x =x;+ (4oo+1)"1xf is in
M and so x; is in My, I = (Do) 2.

Suppose now that I is an ideal of Ap. Then if y is in A and x =x¢+x,0 is
in M the products xy =xy+ (x1¥)8 and yx =yxo+ (yx1)0 are in I, xey and yx,
are in Mo, Mo is an ideal of A. Thus every ideal M of Agp determines an ideal
Mo of A such that M < (Mo)e. Conversely every ideal M, of A determines an
ideal (Mo)e of Ae.

Assume now that % is solvable. Then g is solvable. Indeed if we define
YD = Y@YW then [Ags] *+D = [Agp]® [Ags ]® for every scalar extension L
of § and Y™ =0 implies that [Aw]® =0. But then Ag is strongly nilpotent,
that is, every product of ¢ elements of g is zero for some positive integer 2.
Clearly then ¥ is strongly nilpotent. If ¥ is a nilalgebra and %, - - -, %, form
a basis of A then (§iz1+ - -+ +Eu,)»=0for &, + - -, £, indeterminates over
&. Otherwise we could find valuesin Fof &, « « -, £a such that the correspond-
ing element of ¥ is not nilpotent. But then we may replace the &; by any ele-
ments of §, A must be a nilalgebra, Ag is strongly nilpotent, so is A.



1948] POWER-ASSOCIATIVE RINGS 587

The first statement in Theorem 10 holds by virtue of Theorem 9. To
prove the second part we first prove that if § is nonmodular with % and MM
the respective radicals of % and UAgp then Ne=IM. Evidently Ng =M. Con-
versely let x be in I, T be any transformation of the algebra of polynomials
in the multiplications of the elements of A and y=xT. Then y is in I and so
aRj*'=(ay)R} is a product of £+1 elements of I and is zero for every a
of g and a suitable &, Ri*'=0. Similarly aL{"'=(ya)Ll=0, R, and L, are
nilpotent and have zero trace. Write the general element x of I as x=x,
+x:0 and see that y=xRf =abt'+ (x1RE )0 =u+10, 7(R,) =7(R.)+07(R,) =0
so that 7(R,)=0. Similarly 7(L,)=0 and so the linear transformation
S.=(Ru,+L.)/2 has zero trace for u=xtt' and every positive integer k. But
%o is in the Jordan algebra %F", S, is the right multiplication for x5*! and has
zero trace. If §[x3] were to contain an idempotent e, we would have 7(S,) #0
whereas e is a polynomial in xJ and .S, is a linear function of x. Thus there is
no such idempotent, x} is nilpotent, x, is nilpotent, the ideal I, defined above
is a nilideal of A, MWy =N, M = (Mo)e =Ne, M =Ne.

To prove Theorem 11 we note that if ¥ is a semi-simple quasiassociative
algebra, then g is semi-simple and so the related associative algebra B is
semi-simple. But then B® is semi-simple, B® =AE) = (AD)q is a semi-
simple Jordan algebra. It follows that x(yx?) = (xy)x? for every x and y of the
commutative algebra % and so AP is a semi-simple Jordan algebra. Write
A=A ® - - - @A, and see that Ae=(W)e® - - - ®U)2. However if
xy=yx=0 then x-y=Axy+ (1 —N)yx=9-2=0 and so Ae\)=U)aN) D - - -
@ (Ar)e(\) where (A)e(\) must be associative. Assume, finally, that ¥ is a
simple quasiassociative algebra with center 8 and that g(\) is associative
where  =F), A2—A=qpin §. If N is in § then ¥ is clearly quasiassociative
over 8. Hence let ® have degree two over §. Then either the composite of 3
and R is a field 3(\) of degree two over 3 and ¥ is quasiassociative over 3
or 8 has a quadratic subfield 8 isomorphic over § to 8. Then Be=e,R+ &
where e, and e, are pairwise orthogonal idempotents, Ap=B1PB; where
Br1=Uge; and By=Ugeo. Let %y, - -+, 4, be a basis of A over W and
let wiuj= Y vipur where the iy are in . Then (uier)(wjer) = (uins)er
= > (ysime1)ure; where the elements u.e; are a basis of 8;. Moreover T = F(x)
where x2=8, in §, R=F@O) where 62=8y, x=0e;—0e, xe;=0e1, viir(x)e
=v:i(0)es. It follows that B, is an algebra of order 2z over § isomorphic to
¥ over § under a mapping which maps x on fe;.. Evidently Ae(\) =B:1(\)
©B2(\) and so Bi(\) is associative, A((x+1)/2) is associative. ¥ is quasi-
associative over 3.

We have now reduced the study of quasiassociative algebras to the case
of central simple quasiassociative algebras % such that A is a central
simple Jordan algebra over §. Then g =B(\) where & =F(\) has degree one
or two over {§ and B is a central simple associative algebra over f. It is not
true, in general, that there always exists an element X in § such that A=8\).
For we shall later show exactly when this is true for algebras of degree two and
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order four. However it might be true that there always exists an associative
central simple algebra B over § such that Ae=Be(\) and we leave this as
an unsolved problem.

6. Algebras of degree two. Let U be a flexible J-simple algebra of degree
two over a field § of characteristic not two. Then ¥ has a unity element e
and a basis uy=e, #s, - - -, th, where n=3, uZ =oue for a; %0 in §, wiu;+uju;
=0 for 45j and ¢, j=2, -, n. It follows that the general element
x=bu+ - - - +Eu, of U satisfies the equation (x—&ie)2=f(x)e, f(x) =3
bt

Assume the multiplication table uu;= D g1 Yint for vz in §. It is evi-
dently necessary only to study the elements v for ¢5%j and 4, j=2, - - -, n.
The condition wu;= —u;u; is expressed by

) Yiik = — Yiik (G#44,7=2,---,n).

The assumption that % is flexible is now equivalent to the relation x(yz)
+2(yx) = (xy)z+ (zy)x for x, ¥, 2 taken to be basal elements u; for 2> 1. In case
two of the variables are equal we have as one case u;(#:%;) +u;(uu:) = (wms)u;
+ (u;u;)u;, that is, u;(ugu,-) -+ (u;uj)u,- =0. Then 2‘y.~,—1u,~+2'y.~,~;a,~e =0. Similarly
wi(uus) + (uus)u; =0, that is, 2v:m;+2v:;;0;6=0. This yields

(18) Yiit = Yiii = Yiji = 0 (G#ji4,5=2,-+-,n),

a result stating that every product of two distinct basal elements u;, %; is a
linear combination of the basal elements u; distinct from e, #; and u;.

The flexibility relation used above may now be employed with x=z=u;
and y=u; to yield u;(usu;) = (u;ju;)u;. This is equivalent to u;(uu:) + (wiu;)u;
=0, a relation already satisfied by (18). Thus there remains only the case
where x=u;, y=u;, z=u; with ¢, j, k all distinct. The relation becomes
wi(wmue) +ur(ujns) = (wam;)ue+ (wenj)u; which is equivalent to  wq(wjux)
+ (wsur)us = (win;)ur+ui(usu;) by using skew-commutivity. Hence we have

(19) QY iki = QkYijk (i£j;4,5, k=2,-+,m)

where (19) is satisfied by (18) in case k=1 or k=j.

We have now determined a set of conditions which are necessary and suffi-
cient conditions that an algebra % of degree two shall be both flexible and
J-simple. A complete normalization of the multiplication table of the general
algebra of order 7 of our type is manifestly impossible and is not even par-
ticularly significant for algebras of order #»>4. We shall therefore content
ourselves with a discussion of algebras of order three and four.

When 7 =3 the product #u.u; =0 by (18) and so usu, =0, ¥ is commutative
and is a Jordan algebra.

Assume that =4 and use the notations #=1us, v=1us, w=us u’=ae,
v2=Le¢, wl=ve where a=0;7%0, B=a3#0 and y=a40 are in §. Then
uv = pw where p=+vs34 by (18). Apply (19) to see that ayysi=oyyse and so
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Yse=0o"Yyp, vw=0o"ypu. Also asyss= —asyes= —asYwi, Yes=—B"lyp, uw
= —fB"ypy. When p=0 the algebra so defined is the general simple Jordan
algebra of degree two and order four over . When p>0 we may select a
new basis with w=wuv and so take p=1. Then we have the multiplication
table

(20) 4 = we, v2 = Be, w2 = ye, uv = w, uw = — By, vw = a"yu.

When ¥ is associative uw=u(uv) =u?=av, that is, vy = —ap. It follows that
the algebra defined by (20) is associative if and only if y= —af.

It remains to study the quasiassociativity of U. Define an algebra 8 with
a basis eg, %o, vo, wo and the associative multiplication table given by the
assumption that e, is the unity quantity of ¥ and the relations u3=ceo,
v =Pes, wWy=—afer, wo=1uo-vp. Form B(\) by defining a new product
xy=Mc-y+(1—=N)y-x and see that uewo=Awo+(1—N)(—wo)=(2N—1)w,,
(#ov0)2=1eo if and only if vy = —(2A—1)%af. Since B is associative the algebra
B(N) is flexible and the relation (#vo)%="ye, is sufficient to imply that B(\) is
isomorphic to the given algebra 2 of (20). It follows that ¥ is isomorphic to
some B(\) if and only if —afy is the square of an element of §. When
—oafy is not such a square we have g isomorphic to Be(\) where & =F\)
and (2A—1)2=—(af)"Y, so that & is a quadratic field over §. We have
proved that all flexible J-simple algebras of degree two and order four over
their centers are quasiassociative. Since the order of a simple associative
algebra of degree two over its center is necessarily four the flexible J-simple
algebras of degree two and order #>4 are necessarily not quasiassociative.

One of the major problems in the study of nonassociative algebras is the
question as to the existence of real nonassociative division algebras of order
2¢ with £>3. A special case of this problem is the same question for flexible
algebras of degree two. These algebras are necessarily J-simple and their
study may be expedited by use of the following result:

THEOREM 12. Let U be a flexible J-simple algebra of degree two over § of
characteristic not two. Then U is a division algebra if and only if A(N) is a divi-
ston algebra for every N#1/2 in §.

To demonstrate this result we first note that when ¥ is a division algebra
its associative subalgebras {[x] must all be fields. This occurs if and only if
the norm form N(x) =& — (cfa+ - - - +an2) is not a null form. We next
prove the

LEMMA. Let N(x) be a non-null form. Then N is a division algebra if and only
if there exist no elements x and y in U such that x*=N(x)e==0, y>=N(y)e#0,
xy=—yx=0.

For when ¥ is not a division algebra there exist nonzero quantities ¢ and b
in ¥ such that ab=0. Since a and b are necessarily not in the same subfield of
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% we may always write a =fe-+x, b=ne+Nx+y where & 7, X\ are in § and
x2=N(x)e#0, y2=N(y)e##0, yx= —xy. Then we may select a basis of %
with #;=x, u3=7v and so see that xy is linearly independent of e, x, y. But
ab=(&n+N(x))e+ Ae+n)x+Ey+xy=0 so that xy=0 as desired.

To complete our proof we observe that if A(\) is not a division algebra
then there exist elements x and vy in A such that x-y=—y-x=0. Butxy=pux-y
+(1—p)y-x where u=N2N—1)"1, xy=(2u—1)x-y=0, A cannot be a division
algebra.

7. Algebras of degree t>2. Let € be a central simple alternative algebra
of degree two over a nonmodular field §. Then € has order 1, 2, 4, or 8 over §
and has an involutorial antiautomorphism x—# which is the identity auto-
morphism only when s=1. Define €; to be the set of all {-rowed square
matrices 4 =(a;;) with a;; in € and define J:(€) to be the subspace of G
consisting of all matrices 4 =(as;) such that a;;=a;. Then ,(€) is a sub-
algebra of € and is a Jordan algebra except when ¢>3 and s =8. Conversely
every central simple reduced Jordan algebra is an algebra &,(€).

We now let U be a flexible algebra over § and assume that A is a cen-
tral simple Jordan algebra of degree :>2 over . Let us assume that §§ has
been extended, if necessary, so that A is a split algebra. We propose to
determine the resulting multiplication table of %. We first write the unity
quantity e of AP as a sum e=e;+ - - - +e; of pairwise orthogonal idem-
potents e; which may be taken to be absolutely primitive. Then %, (1) =%
=¢;§F. Decompose A and so write A as the supplementary sum ¥ = ZK,- Wss
of subspaces U;; where U;; has already been defined and U;; is the intersec-
tion of A,,(1/2) and ¥A,;(1/2) for 1<j. The general element x;; of Ai; may
then be regarded as a {-rowed square matrix with the element x of an algebra
€ in the 7th row and jth column, with £ in the jth row and ¢th column and
with zeros elsewhere. Use the notation x-y to designate products in € and
translate the product in A" in terms of the product in U to write

(21) %iiyir + Yirxi; = (X ¥)ix (1<j<k),
(22) ZiiyVik + Yaxii = (Z-9) ik (1 <j<k),
(23) ZixYik + Virxir = (- )k (1 <j<Ek).

We also have the results

(24) eixii + xijei = ejxij + xije; = %ij (i <.

Then (e;—e;)xij=x:;(e;—e;) and (e;+e;)xs;=x:j(ei+e;) =x:; whence

(25) ei%i; = %ijej, €ixi; = Xi€; (<.
The subset &; =i+ Wj;+ Asj =Ue,40;(1) by the known properties of AP

and so &;; is a subalgebra of 9. Then & is a central simple Jordan algebra
of degree 2 over §, ©;; is stable,
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WaiWi; = Wy, Wi Wi = Wy, A Wi; = Wi, WA < Wsj
and
Wi = A Wi = 0, 31?,‘ = e + Ay + Wy

It is evident from an examination of algebras of degree two that the property
%, <Ui;+;; is not true in general.

It remains to compute products x;;yx, where at least three of 4, j, &, p are
distinct. We note first that %;;Ax, =0 if neither ¢ nor j is equal to & or p. In-
deed Uij=W..4e;(1) while Arp <W,.4.;(0). It then remains to compute the
products appearing in (27), (28), (29), (30). We observe first that

(26) Wi WA = Aig, Wi < Wir (1 <j<k).

Indeed Aij =Weire;(1), Win = Weyie;(1/2) and so A A and AAs; are both sub-
spaces of ¥..4q,(1/2). However they are subsets of the algebra Ue,ye;4e,(1)
=Wsi+ Wi+ Wi+ Ws;+ Ui +Ajn and it follows that the products are con-
tained in Aup+UAjp. Similarly Wi SWeire,(1/2), Wi SUejte, (1) so that their
products are subspaces of Mi-+Ai;. The intersection of these subspaces is
A and we have (26).

We now use the flexibility property z(xy)+y(x2) = (zx)y+ (yx)z. We take
z=e¢; and compute ek(x;,y,-k) +y,~k(x,~,-ek) = (ekx.-j)y,-k-l-(yjkx.-j)ek. But XijCr = €xXij
=0and so ek(x.-,y,-k) + (x;,yjk)ek = (x,-jy,-,,+y,~kx,~,~)ek. Since XY ik isin 2[.’); we have
ex(xiiyin) + (xXi7yin)er =%:;y;x. We may then use (23) and have

(27) %ii¥ie = (% Y)ir = (% 9)irek (i <j<bk).
Since (es+ex)(x-y)a=(x-¥)a we evidently have
(28) Virtsi = ee(x- V) ix = (®-y)ares (1 <j<Ek).

In exactly the same fashion we compute ex(x:jyi) 4y (xiier) = (exxs)Yix
+ (yaxis)er to obtain xiyi= (¥:;yi+yaxis)er, that is,
Ve = €(%- V) = (% 9)irer, .
(29) iYik (Z-3)ix y)ixex G <j<h.
Yirxi; = ex(Z- )i = (% y)unes.
Finally we compute e;(xayi)+yir(xae;) = (eixa)yin+ (yiuxa)e; whence xuyin
= (xayi+yixxa)e; and so
XikVik = €; x--'n:(x.'l..e.’
(30) i = el y_)’ y_)” (i<j<k.
YirZie = ej(x-§)i; = (x-9)ises
We have now computed all products required, but have not exhausted
the possible implications of the flexible law. Use z=e¢; and have e;(x:/yit)
+yin(xiie;) = (ejxi))yin+ (Vinxi)e;. Then e;(xijyi) = (ypxs;)e;=0 since both
xiyie-and yixs; are in A <U;(0). Then yulrije;) = (ei)yin, *ifym=(exs;
+x585) Y= (x:j€5) Vi +yx(%ije;). Define
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(31) eixij = (25:7)s

where S;; is then a uniquely determined linear transformation of the vector
space €. Then we have proved that

(32) xijy i = (280 9)ir (1 <7<k
To obtain a similar formula with v, the transformed vector, we compute
ei(Yinxi;) +xii(yines) = (€;yin)xXij+ (xijyin)e;. As before e;(yuxi;) = (xijyin)e;=0
and so x:;(yiue;te;yin) =%y = (€;yix)%s;+xii(€jyi), that is,

(33) %3y ik = (%3S x)r (i <j<k.
However our first value of x,y,; may be written as [(x-y)Si]ix and so we have
proved that

(34) xSijy = 2 ySp = (x-9)Six (1<j<h).
We now take y=f to be the unity quantity of € and so have xSi;j=xSu
for every x, that is, S;; =S for ¢ <j<k. Then Sip=Si3= - - + =S, Similarly

take x =f and have yS; =S, Siu=Si, Su=Sj for k>j>1 and so Si2=3S1s
= Sz3, Sjx =512 for all j <k and we have proved that every S;;=S=Si. More-
over we now have xS-y=x-yS=(x-y)S, that is,

(35) SR, = R,S = Rys

for every vy in the algebra €. This implies that S=R;s is commutative with
every element of € and this is possible for algebras € of order four and eight,
cases where € is central simple, only when S is a scalar transformation.

Let us now consider the algebra ® =3+ Ajo+ Az, a flexible J-simple sub-
algebra of 2. The order of & is g=3, 4, 6 or 8 according as the order of € is
1, 2, 4 or 8. We may assume that we are working over an extension of the base
field so that @ is a split algebra, that is, @ has a basis e=uy, s, + - -, %, with
u?=e. Moreover we may define e = (e—u;)/2, ey = (e+u:)/2 and then see
that the subspace ;2 of @ is spanned by the g—2 elements #; for j1, 4.
When g=6, 8 the mapping S=.S(7) is a scalar mapping for every selection
of ¢ and so e{u;=N\iu;. But then wuu;=(e—2e{)u;=(1—2\;j)u; which is
possible, by (18), only if 1—2\;;=0, that is,  is a Jordan algebra. We have
also proved that @ is a Jordan algebra when g=3in §5.5.

The multiplication table of % has been shown to depend upon relations
which can vary only as the algebra @ varies. If % is taken to be a central sim-
ple (split) Jordan algebra we know that A=A and that @ is a Jordan
algebra. But then our study shows that when ® is a Jordan algebra so is 2.
If B is a total matric algebra the algebra B is a split Jordan algebra, B has
the subalgebra ®o=B1u+Bi+Bx, A=B(\) has the subalgebra &=E,(\)
=y 4 Aga+Ase. Then when @ is prescribed to be quasiassociative of degree
two and order four the structure of ¥ is completely known and A=8B(Q) is
quasiassociative. The extension of the base field which splits @ may now be
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eliminated since clearly a central J-simple algebra 9 is quasiassociative if and
only if any scalar extension of % is quasiassociative. We have proved

THEOREM 13. Let U be a flexible J-simple algebra. Then N is either a Jordan
algebra or is quastassociative.

We shall now apply our results to a determination of all simple standard
algebras. Every simple standard algebra U is flexible and J-simple and so is a
quasiassociative algebra. Moreover, after a suitable extension of the center
of ¥, if necessary, we may assume that A=B(\) where B is a total matric
algebra. Then U has a subalgebra & =5+ Wso+Woe = M:(N\) where e is the
total matric algebra of degree two over §. It follows that @ has a basis
e, %, v, w over § where e is the unity quantity of ® and #?=12=w?=e¢, uv =pw,
uww= —py, vw=pu. Since @ is a standard algebra it satisfies the identity
w(x(ys) |4+ [(wy)x]a+ [(we)x ]y = (wx) (y2) + (wy) (x2) + (w2) (xy). Take y=z
=u and x=v to obtain w[v(uu)]+2[(wn)v]u= (wv)(uu)=+2(wu)(vu). But
w(v(uu) | =wv = (wv) (uu) and so [(wu)v]u=(wu)(u), [o(v0)]u=(ov)(—pw),
(o+p)u=0, p(14p2) =0. If p=0 then @ is a Jordan algebra, A=1/2, A is a
Jordan algebra. If 14p2=0 then (uv)2= —e¢ and ® is associative, A\=1 and %
is associative. We have proved

THEOREM 14. A standard simple algebra is either an associative algebra or a
Jordan algebra.

8. Problems. We shall close our discussion with a list of some unsolved
problems of our theory. A major question is that of the existence of simple
nilalgebras in the class of algebras we have called static algebras. An investi-
gation of shrinkable non-commutative algebras of low level seems desirable
and might lead to some interesting new types of algebras. A further study of
commutative simple algebras also seems desirable. Indeed examples of simple
power-associative algebras are needed and some may be furnished by a study
which the author will make of the power-associativity of crossed products and
some types of crossed extensions. It is desirable to investigate the structure
of algebras like Lie algebras and, in particular, of all algebras % which are
flexible, power-associative, and such that ¢ is a semi-simple Lie algebra.
The type of study which led to our definition of standard algebras may evi-
dently be extended and other forms of Jordan-like identities may yield new
classes of simple algebras. Finally, it would be desirable to extend the theory
of standard algebras to rings with chain conditions, an extension not yet made
even for Jordan algebras.
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