\[a \cdot m \circ b = am + b, \quad a(b + c) = ab + ac, \]
\[(a + b) + c = a + (b + c), \quad (a + b)m = am + bm, \]
\[(6.17.1) \quad a + b = b + a, \quad a1 = 1a = a, \]
\[a + 0 = 0 + a = a, \quad aa^{-1} = a^{-1}a = 1, \ a \neq 0, \]
\[a + (-a) = (-a) + a = 0, \quad a^{-1}(ab) = b. \]

If Theorem L holds for \(A, B, M, N \) on three lines not in a pencil, then it is a universal theorem in \(\pi \). In addition to (6.17.1) we also have (6.17.2) \((ab)^{-1} = b^{-1}a^{-1} \), \((ba)a^{-1} = b \) and any natural ring of \(\pi \) is an alternative field. The collineation group of \(\pi \) is transitive on the triangles of \(\pi \).

Ohio State University,
Columbus, Ohio

ERRATA, VOLUME 64

Don Mittleman, The unions of trajectorial series of lineal elements generated by the plane motion of a rigid body.

p. 503, line 2 of Theorem 1. For “\((x, y) \)” read “\(u(x, y) \)”.