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Introduction. In the theory of sphere bundles the imbedding theorem

of Whitney-Steenrod(2) has played an important rôle, as it reduces the prob-

lem of the classification of sphere bundles to that of the homotopy classifica-

tion of the mappings of the base space into a Grassmann manifold. With this

theorem the characteristic ring (relative to a coefficient ring) of the sphere

bundle can be defined as the image under the dual homomorphism of the

cohomology ring of the Grassmann manifold. It is natural to ask whether an

analogous theorem holds for any fibre bundle. The main purpose of this

paper is to establish such a theorem, and to give some of its generalizations

and extensions.

The paper is divided into five sections. §1 gives the definitions of various

notions concerning fibre bundles. The imbedding theorem and its proof, for

the case that the base space is a finite polyhedron, are given in §2. Its exten-

sion to the case of metric compact ANR (= absolute neighborhood retract) is

given in §3. In §4 we extend the notion of the product of two sphere bundles

in the sense of Whitney (3) to general fibre bundles and prove a simultaneous

imbedding theorem for the product of fibre bundles. A treatment is given in

§5 of the cases where the reference groups are the classical groups, namely,

the orthogonal, the properly orthogonal, the general linear, the unitary, and

the symplectic groups. As is well known, the former two cases give the

sphere bundles.

1. Definitions and notations. The notion of a fibre bundle arises in a sense

from problems which are concerned with the applications of topology, and is

therefore somewhat complicated in abstract formulation. We give in this

section the definition of various concepts connected with it. A novel feature

consists in the definition of the topology of the fibre bundle in terms of the

coordinate functions, which simplifies the treatment somewhat.

1. Fibre bundle. A fibre bundle, tobe denoted by vj or {F, G; X, B; \j/, <pu},

consists of:

(1) A space F, called the director space, which is transformed by a topo-
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0) After the paper had been submitted for publication, Professor N. E. Steenrod informed
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logical group of homeomorphisms G, called the reference group, such that the

map GXF-+F defined by the operations of G on F is continuous.

(2) A set X, which will be given a natural topology in the course of defini-

tion;

(3) A space B, called the base space;

(4) A transformation \f/, called the projection, of X onto 73 ;

(5) A system of neighborhoods 11= { U} which cover 73, such that to each

U there exists a one-one transformation

<fo: UXF^^(U)

satisfying the condition \¡/<pu(b, y) =b, bÇ^U, yÇîF.

These entities are supposed to satisfy the following:

Paste Condition. For given U, b with bÇ^U denote by <j>u,b the one-one

transformation of F onto i^_1(b) defined by <j>u,b(y) =4>u(b, y), yEF. If b be-

longs to the neighborhoods U and V, then 4>vfi4>u,bEG and depends con-

tinuously on b(EUr\ V.

We shall define a topology in X. Let {N] be a base in F, and W an open

set contained in a neighborhood U of U. X is topologized by the condition

that the sets <pu(WXN) form a base. With this topology X is a space, \p is a

mapping (that is, a continuous transformation), and <j>u are homeomorphisms.

We shall call X the total space, the homeomorphisms <pu the coordinate func-

tions, and the neighborhoods of U the coordinate neighborhoods. For a given

Z>£73 the set^_1(^) ls called the fibre at b. For simplicity we shall also say that

X is a fibre bundle over 73.

Suppose 73' be a subspace of 73. As a covering of 73' we take

U'={ur\B'\ UEVi}. Define

X' =   U  t~\b) C X
bE.B'

and the coordinate functions

<t>'unB>(b, y) = 4>u(b, y), b G U C\ 73', y G F.

Then g'= {F, G; X', B';\p, <j>unB'} 1S a fibre bundle with the base space 73',

which may be called the part of % over B ' and denoted by g | 73 '.

Equally naturally we may define an extension of %. Let J be the unit

interval O^i^l. We consider the Cartesian product 73X7" and take

{ UXl\ ¡7GU} to be its covering. Put

X* =   U *-»(*) X I
bEB

and define

4>*y<~l(b) Xt) = bXt,       <t>*xi(b X I, y) = <t>u(b, y) X t.
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Then {F, G; X*, BXI; \p*, 4>txi} is a fibre bundle, to be denoted by g XT'.

For a given value ¿G7" we shall denote by %Xt the contraction %Xl\BXt-

It is easy to verify that %Xt, t(EI, is equivalent to §X0.

The fibre bundle is called a sphere bundle if F is a sphere and G the

group of orthogonal transformations of F. It is called a vector bundle if F is a

vector space and G the group of linear transformations in F. The sphere

bundle and the vector bundle are said to be oriented if G is the group of

proper orthogonal transformations and the group of linear transformations

of positive determinant respectively.

2. Equivalence. Equivalence is here defined for two fibre bundles

with the same F, G, B. Two fibre bundles {F, G; X, B; \p, <pu\ and

{F, G; X*, B; \¡/*, <£¡/*} are called equivalent if there exists a homeomorphism

hoiXonto X*, which satisfies the conditions:

(1) For each b<EB, h(ip~l(b)) =\p*~1(b).

(2) To each ÔG73 and any two neighborhoods U, U* containing b of the

coverings it, U*, we have

*—i
4>u',bh<j>u,b G G

and depends continuously on b G UC\ U*.

Clearly this equivalence relation is reflexive, symmetric, and transitive.

It therefore enables us to divide the fibre bundles with given F, G, B into

mutually disjoint equivalence classes. We shall use the notation = to denote

equivalence.

3. Mapping and induced bundle. Given a fibre bundle %= {F, G; X, B;

\p,4>u}, and a mapping/: A-^B. We shall define a fibre bundle {F, G; X*, A;

$*> </>£/*}> called the induced bundle and to be denoted by (\5;f: A) or A(f),

as follows: X* is the union \JaçAaX^~1(f(a)), and

**(« X ^(/(o))) = a.

The neighborhoods U* are defined to be the open sets f_1(U) so that { U*}

is a covering of A. Then we define

<i>u'(a, y) = a X <¡>u(f(a), y).

It is easy to verify that the Paste Condition is satisfied.

4. Admissible mapping of fibre bundles. Let

%= {F,G;X,B;t,4>u},        $* = {F, G; X*, B*; **, &>}

be two fibre bundles with the same F, G. We take the points £>G73, b*G.B*,

and consider the fibres yp_1(b), \p*~x(b*). A mapping k: i^-1(è)—>i/'*-1(ô*) is

called admissible if b, b* have respectively the coordinate neighborhoods

U, U*, such that <t>u*,l*k<t>u,bG.G. Notice that the condition is independent of

the choice of U, U*. This definition also applies to the case that % and g* are

identical.
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A mapping

h : X -> X*

is called admissible if the following conditions are satisfied :

(1) For each b<=B, h(yf/-l(b))=il/*-l(b*), where b*EB*. It follows that h
induces a transformation h': 73—»-23* defined by h'(b)=b*. Because of our

definition of the topologies in X and X* the transformation h' is continuous.

(2) For each &G73 the partial mapping h\ip~l(b) is admissible. Moreover,

if U and U* are coordinate neighborhoods which contain b and b*=h'(b) re-

spectively, the homeomorphism 4>v',l*h<f>u,b£zG depends continuously on

bEUnh'-^U*).
For simplicity h is said to define an admissible mapping h: g—>S*- Ad-

missible mapping of fibre bundles generalizes the notion of equivalence.

The following theorem is easily verified:

Theorem 1.1. If h: g—>v5* is an admissible mapping, the induced bundle

(g*; h': B) is equivalent to %.

5. Principal fibre bundles; the operations t and tJ1. Given a fibre bundle

[F, G; X, B; \f/, 4>u}, we shall, following Ehresmann(4), define its principal

fibre bundle [G,G; X*, B;^*, </>£}, as follows:

Let ¿G UQB. We denote by Gb the set of functions of the form qbv.bg for

all gGG. Gb depends only on b; for, if &G V, then <pr,b =4>u,bgo, goGG, and the

set 4>v,bG is identical with <pu,bG. We put X* = \Jb£ßGb and define the projec-

tion \p* to be ip*(Gb) =b. The director space is G, operated on by G as the

group of left translations.

The coordinate functions 4>u are defined by

♦ —
<t>u(b, g) = 4>u,bg, ?GG.

If bÇiU, V, and gGG, we have <j>v,b=<l>u,bgo, goGG, and

<t>V,b(g)  = <j>U,bg, <t>V,b(g)  =  <t>V,bg =  <t>u,bgog,

so that <p*fi1<Pv,b is the mapping g—>g0~1g in G and the Paste Condition is

satisfied.

We shall write {G, G; X*, B; if,*, <pv] =t{F, G; X, B; t, 4>u\.
To the operation r so defined there is an inverse operation. In fact, let

%*= {G, G; X*, B; ^*, q>%] be a principal fibre bundle, and let F be a space

operated on by the group G such that the transformation FXG—>F defined

by the group operation is continuous. Define

X=   U <t>*u,bF,      W4*.tF) = b,       4>u(b,y) = <¡>l,hy, y G F.

(') Ehresmann [l].
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Then { F, G; X, B;\[/, qbu} is a fibre bundle, to be denoted by Tf'g*. It follows

from definition that the following relations hold:

«¡m« = g,       tt?$* m g*.

Two fibre bundles gi and $2 are called associated if r5i = Tg2. From the

above relations we see that two associated bundles are equivalent if they

have the same director space.

For later use we state here the following theorems, whose proofs are

immediate:

Theorem 1.2 (Ehresmann). Two fibre bundles are equivalent if and only if

their principal bundles are equivalent.

It follows that the operations r and t?1 are defined for equivalence classes

of fibre bundles.

Theorem 1.3. Let g be a fibre bundle and A a space which is mapped by f

into the base space of %. Then

(r%;f:A)=r(%;f:A).

If g is a principal fibre bundle, then

(r~F1%;f:A) = T~F\%;f:A).

In other words, the induction of fibre bundles commutes with the operations t and

rF1.

In a principal fibre bundle it is possible to define a group of transforma-

tions, which will be of importance in several connections. In fact, let g

= {G, G;X,B;ip, <¡>u] be a principal bundle. Let goGG. Then go acts on X as

a right translation as follows :

x-go = <t>u,b(<t>u,b(x)go),

where b=ip(x) and U is a neighborhood containing b. Clearly, the point in

the right-hand side is independent of the choice of U. The mapping x-go in-

duces a mapping on each fibre, and is in general not admissible. For any fixed

Xo the mapping of G onto the fibre through x0 given by g—>x0-g is admissible.

6. Universal fibre bundle. Consider the fibre bundles with given F, G, B. A

fibre bundle \F, G; X, A ; -d/, d>u\ is called universal (relative to F, G, 73) if

the equivalence classes of fibre bundles over 73 are in one-one correspondence

with the homotopy classes of mappings 73—>A, or, more precisely, if the fol-

lowing properties hold :

(1) Every bundle with the same F, G, B is equivalent to the bundle in-

duced by a mapping 73—>^4.

(2) The bundles induced by the mappings /, g: B—>A are equivalent if

and only if / and g are homotopic.
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It will be our main purpose to prove theorems on the existence of uni-

versal fibre bundles and to draw consequences therefrom.

7. Simple bundles. As an example we consider a class of fibre bundles

called simple. There is a natural way to define from the product space BXF

a bundle whose reference group G0 consists of the identity. If g is any bundle

over 73 with the director space T^and reference group G, then G0CG, and BXF

determines an equivalence class of bundles relative to F, G, B, of which BXF

is a member. Each such bundle is said to be equivalent to the product bundle

or simply a product bundle.

A fibre bundle % = {F, G ; X, B ; -ty, <pv} is called parallelisable if it admits

a cross section, that is, if there exists a mapping X: 73—>X such that i^X is the

identity. % is called simple if its principal bundle is parallelisable.

Suppose now that %* = {G, G; X*, 73;^*, <j>y} is a principal bundle over 73

which is parallelisable with the cross section X: 73-^>X*. Define/: B'XG—*X*

by f(b, g) =X(6) -g. Then / provides an equivalence of 73 XG and %*. Thus a

principal bundle is a product bundle if and only if it is parallelisable.

Now let g be a simple bundle. Then g*=rg is parallelisable and is hence

a product bundle. It follows from Theorem 1.2 that g is also a product

bundle. Thus simple bundle means the same thing as product bundle.

If %* is a fibre bundle over 73* and/0 maps 73 into a point of 73*, then the

induced bundle is a product bundle. Hence, if %* is a universal bundle rela-

tive to F, G, B, the induced bundle ($*;/: 73) is a product bundle if and only

if / is homotopic to a constant.

2. The imbedding theorem for finite polyhedra. The imbedding theorem

is concerned with sufficient conditions for the existence of universal fibre

bundles. An answer will be given in this section for the case that the base

space is a finite polyhedron. This generalizes the imbedding theorem of

Whitney-Steenrod for sphere bundles.

1. Fibre bundles induced by homotopic mappings. Let § be a fibre bundle

with the base space 73, A a compact space, and/o,/i: A—»73 two mappings of

A into 73. We shall, following a procedure due essentially to Steenrod(B), prove

the theorem that A(f0) and A (f%) are equivalent if ft and/i are homotopic. By

the use of the notion of admissible mapping of fibre bundles the result can be

put in a slightly more general form, which includes both the last mentioned

result and the covering homotopy theorem as particular cases. This theorem

can be stated as follows:

Theorem 2.1. Let föandft'be two fibre bundles with the base spaces B andB'

respectively, of which 73' is compact. Letf: v5'X0—>$ be an admissible mapping

and f: B'XI—>B an extension of its induced mapping f¿: 73'XO—>73. Then

there exists an admissible mapping f: $'X7—»§ which coincides with /0 on

v5'X0 and whose induced mapping is f.

(6) Steenrod [4, pp. 302-303].
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Proof. Let g= {F, G; X, B;$, <¡>v), g'= {F, G; X', B';^'^¡j']. For each

bGB we select a pair of neighborhoods V, W of b such that VGW and that

W is contained in some coordinate neighborhood U. Since B'Xl is compact,

there exists a S>0 such that, for any point b'GB', the image f'(b'Xl') is

contained in some member of the family { V], provided that I'dl is an

interval of length less than d. Let 0 = to<h< • • • </„ = l be a division of I,

with tk+i — tk<o, and let Ik denote the interval h'etSth+i-

Since, for each b', there exists a F containing the image of b'Xlk under/',

it follows by continuity that there is a neighborhood N of b' such that /'

maps NXlk into some V. Since 73' is compact, we may select a finite covering

by these neighborhoods: Nkjl, ■ • • , Nk,m. Let Vk,i~Df'(Nk,iXlk) and let

Wk.i form a pair with Vk,i.

By the Urysohn lemma, there exists a continuous real-valued function

Uk,i(b) on 73 such that 0 5= ut,i(b) ^ 1 and

«»,ff» = 1,        b é Vk,i,       ukii(b) = 0,        bGB- Wk.i.

Let

Tk,j(b') = tk+ (tk+i — tk) max <     min   uk,i(f'(b', t))> .
¡úi    \ he'i'k+i )

Clearly Tk,j is continuous, tk^Tk.jútk+u rkj(b') úrk,i+\(b'), and Tk,m(b') =tk+i.

We define by convention Tk,o(b') =tk-

The proof of the theorem hinges on the definition of a mapping

/:    X' X I -> X

with the desired properties. This will be achieved by double induction on k

and j. It is clearly sufficient to define

/:   X' X U -> X

for   (*',    t)GX'Xlk   such    that   rklj(b') <t^Tk,j+1(b'),   b'=^'(x'),   where

/(*'. Tk.j(b')) is given.

Denote by T the set of points (b', t) GB ' X /such that rk,j(b') <t^Tk,j+i(b').

Then min¡iáfs¿t+1 uk,j+i(f'(b', t))^0, and we _have_«*,,-+i(/'(¿>', i))^0 or

/'(&', ¿)GíF*,;+i for (£>', ¿)GT. It follows that/'(r)CW*,/+i, where the latter

belongs to a coordinate neighborhood, say U, of 73. Let <j> be the coordinate

function relative to U. Since <j> establishes a homeomorphism between UXF

and ^-1(t7), there exists a mapping f : ^~l(U)-^F such that ¡T</>(Z>, y) =y f°r

¿>G¡7, yGT7. Writing b'=\¡/'(x'), we define

f(x', t) = <f>(f(b'), #(*', rM(6'))).

This completes the induction. It is easy to verify that/defines an admissible

mapping/: g'X7->r5-
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Remark. The theorem remains true if 73' is the union of a countable num-

ber of compact spaces.

Theorem 2.2. Let % be a fibre bundle with the base space 73, A a compact

space, and fo, fi'. A-^B two mappings of A into 73. If fo and/i are homotopic,

then A (fo) and A (/i) are equivalent.

Proof. It follows from Theorems 1.1 and 2.1 that

gXi-^C/i), i-0,1.

Since gX0=gXl, we get A(f0)=A(fi).
For the sake of completeness we state here the following useful theorem:

Theorem 2.3 (Covering homotopy theorem). If X is the total space of a

fibre bundle over 73, A a compact space, f a continuous map A—^X, and h(a, t)

a homotopy of the map \pf of A into 73, then there exists a homotopy g(a, t) of f

which covers h(a, t).

2. Equivalent fibre bundles. We shall first reduce the problem of universal

fibre bundles to that of universal principal fibre bundles by means of the fol-

lowing theorem:

Theorem 2.4. Let G operate on F such that the induced transformation

G X F—*F is continuous. If %0 is a universal principal fibre bundle relative to

G, G, 73, then tj?1^ is a universal fibre bundle relative to F, G, 73.

Proof. Denote by 730 the base space of g0. Let g= {F, G; X, 73; \p, 4>v] be

a fibre bundle. Then rg; is equivalent to the bundle (v5o;/: 73) induced by a

mapping/: 73—>A. It follows that

g m rjVg m nfalf: 73) = (r^g«;/: 73),

by Theorem 1.3.

Consider next two induced bundles (rf^y,/- B) and (rj?1^; g- B). They

are equivalent if and only if r^föyf: 73) and TjF'dJo; g- B) are equivalent,

and hence if and only if (go;/: 73) and (g0; g: 73) are equivalent, go being a

universal principal fibre bundle, a necessary and sufficient condition for the

latter property is that / and g are homotopic.

Theorem 2.5. Let § = {G, G; X, B: \p, <pa] be a principal fibre bundle

having as base space 73 a polyhedron of dimension n. Let %* — {G, G; X*, 73*;

'/'*. 0t/*} be a principal fibre bundle such that tt,(X*)=0, O^i^n— 1. Denote

by Bo a subpolyhedron of B and by %0 the part of % over 730. Then every admissible

mapping fo'. %o~>5* can be extended to an admissible mapping f: g—»g*-

Proof. We take a simplicial decomposition of 73 which is so fine that each

simplex belongs to a coordinate neighborhood. By hypothesis there exists a
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mapping/„: ^-1(730)-»Z* such that fo(^~l(b)) = \p*~l(b*) for ÔG730 and that

the partial mapping/oli/'-1^) is admissible. It is sufficient to define an exten-

sion/ of /o over \p~l(B), with the desired properties. This extension/ will be

defined on xp~1(Bo^JBr), by induction on r, where 73r denotes the r-dimen-

sional skeleton of 73.

For r = 0 the definition of/|^—1(730W73°) is obvious, it being only necessary

to take /|^-1((T0) to be an admissible mapping into a fibre of X* for any

0-dimensional simplex <r°G-Bo- Suppose/|i/'-1(73oVJ73''_1) be defined and let ar

be an r-simplex not belonging to 73 0. Take a coordinate neighborhood U con-

taining ar, and denote by e the identity of G. Then the map f<j>u(do-TXe) is the

map of an (r—1)-sphere into X* and is contractible. It follows that there is

an extension fcj>u(arXe) of f4>u(d<rrXe). Define then

f<t>u(b, g) = (f<t>u(b, e)) -g, bGc\gGG.

Since <pu: <rrXG—^\p~l(ar) is a homeomorphism, / is defined for \p~l(<rT) and

the induction is complete. It can be verified that / defines an admissible

mapping of g into g*.

From Theorem 2.5 we derive the following theorems which give sufficient

conditions for a universal principal fibre bundle.

Theorem 2.6. Let %={G,G;X,B;\p,<pu\ be a principal fibre bundle having

as base space 73 a polyhedron of dimension n. Let \G,G; X*, 73*; \p*, <f>**} be a

principal fibre bundle such that ttí(X*) =0, O^i^n—1(6). There exists a map-

ping f: 73->73* such that %=B(f).

Proof. Take 730 to be empty and apply Theorem 2.5.

Theorem 2.7. Let {G, G; X*, 73*; \p*, </>*,*} be a principal fibre bundle such

that iTi(X*) =0, O^i^n. If B is a polyhedron of dimension n and f, g: B—>B*

are mappings which induce equivalent fibre bundles 73 (/)= 73(g), then the map-

pings f and g are homotopic.

Proof. Replacing, in Theorem 2.5, g by g XT', 73 by 73 XI, and 730 by
(73X0)U(73X1), we get the theorem.

3. Existence of universal fibre bundles. From Theorems 2.2, 2.6, and 2.7, it

is now easy to prove, by an explicit construction, the existence of universal

fibre bundles for the case that the base space is a finite polyhedron and that

the reference group is a linear group. The assumption on the reference group

is reasonable in view of applications, as the most important case of compact

Lie groups is included.

We denote by An the general linear group in n variables, and At the sub-

group of all linear transformations of positive determinant of An- Let /„ de-

note the identical linear transformation in n variables. Then we can imbed

ImXAnGAm+n, ImXAt C^4m+Bi by assuming that Im operates on the first m

(•) TT0(X*) =0 means by definition that X* is arcwise connected.
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and A„ or At on the last n variables. Using these notations, we have the

theorem:

Theorem 2.8. The homogeneous spaces

Am+n/Im  X An, Am+nl Im  X'A-n, PI,  n  ^   1,

are arcwise connected and have their homotopy groups Ti = 0for l^i^n — l.

Proof. The two homogeneous spaces in question are homeomorphic. In

fact, for aGAm+n, define the mapping

a(I„ X An) —» r;ö(7m X An),        v = Im+n-i X sgn det a.

This induces a mapping

sim+n/1-m  x\ sin      '^uHn/^tn  s\ sin,

which is easily proved to be a homeomorphism. It is therefore sufficient to

consider the second space. '

We have

1Ti(Am+n/Im  X An)   ~  Xj(^4m+K, Im X An).

An element of the latter group is represented by the mapping of an ¿-cell

into At,+n with its boundary mapped into ImXAt- By the covering homotopy

theorem(7) we know that such a map is contractible into ImXAt with its

boundary fixed, if i^n — 1. The covering homotopy theorem also proves that

the space Af+n/ImXAt is arcwise connected. Hence the theorem is proved.

Let G be a linear group in m variables. Then Am+n+i/ImXAn+i is a fibre

bundle over ^4m+n+i/(G X-4n+i) with director space G subject to the same group

G as left translations. By Theorems 2.2, 2.6, 2.7, 2.8, it follows that this fibre

bundle is universal relative to G, G, 73, if 73 is a finite polyhedron of dimension

n. Applying the operation tj?1 to this universal principal fibre bundle, we get

a universal fibre bundle relative to F, G, 73. This result is now stated in the

following theorem:

Theorem 2.9. For fibre bundles whose base space B is a finite polyhedron

and whose reference group G is a linear group, universal fibre bundles exist rela-

tive to F, G, 73.

3. The imbedding theorem for compact metric ANR. We shall extend in

this section the theorem on the existence of universal fibre bundles to cover

the case that the base space is a compact metric ANR (absolute neighbor-

hood retract). For this purpose it is convenient to make use of the notion of a

bridge introduced by Hu(8) in his study of mappings. We begin by recalling

its definition and basic properties.

(r) Hurewicz-Steenrod [3, p. 64].

(8) Hu [2].
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1. Résumé of some theorems of IIu. Let X be a compact metric ANR, Xo

a closed subset of X, and Y a connected ANR. We shall denote a finite open

covering of X by the notation a= {au • ■ ■ , ar}. Suppose the nerve of a

be geometrically realized, and denote by A the geometrical complex which

realizes the nerve. The sets Xo^a,-, i = \, ■ ■ • , r, form an open covering of

Xo, and its realization A o is a subcomplex of A. Without danger of confusion

we use the symbol a( to denote at the same time a set of the covering and a

vertex of A. A mapping <j>a: X—>A is called a canonical mapping of a if for

each point xGX, 4>a(x) is contained in the closure of the simplex aiaail ■ • • a,m

of A, where ö,0, • • • , aim are the members of a containing x.

Let /: Xo—> F be a given mapping and a a covering of X. A mapping

ypa: Ao—*Y is called a bridge mapping for/ if the partial mapping ypa4>*\ Xo is

homotopic to/ for each canonical mapping </>„: X—>A of the covering a. If

such a bridge mapping \pa exists, a is called a bridge for the mapping.

Concerning this notion of bridge Hu has established the following three

basic theorems:

(1) Bridge refinement theorem. For a given mapping f: -X"0—>F, any

refinement ß of a bridge a is a bridge.

(2) Bridge existence theorem. Every mapping f: X0-+Yhas a bridge a.

(3) Bridge homotopy theorem. If a, ß are two bridges for a given map-

ping f: X0—>F, with the bridge mappings \pa: A—>Y, \p$: B—+Y, there exists a

common refinement y of a and ß such that ipapya \ Co and \pßpyß \ Co are homotopic

where pya: C^A, pyß'. C^>B are arbitrary simplicial projections.

2. The imbedding theorem.

Theorem 3.1. Let B be a compact metric ANR of dimension n, and let F be

the director space and G the reference group. Let go be a universal fibre bundle

relative of F, G, 73', where 73' is a finite polyhedron of dimension n. Then go is

also a universal fibre bundle relative to F, G, 73.

Proof. Consider the identity mapping i: B—±B. By the bridge existence

theorem and the bridge refinement theorem there exist a bridge a, a geo-

metrical realization as an «-dimensional complex A of the nerve of a, and a

bridge mapping g: A—>B such that gh is homotopic to t for each canonical

mapping h: B-^A. The mapping g induces a bundle ^l(g) over A. Since A is

an «-dimensional complex, there exists a mapping s: A—*B0, where 730 is

the base space of g0, such that A(s)=A(g). It follows that B(sh)=B(gh).

Since gh is homotopic to i, we have 73 (gh) =g. Therefore 73 (sä) =g, and the

mapping sh: 73—»730 induces a bundle over 73, which is equivalent to the given

bundle g.

Suppose next that/0,/i: B-^B0 are mappings such that 73(/0) =B(fi). We

shall prove that then /o—/i. In fact, introducing the bridge mapping g and
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the canonical mapping h as above, we have A (fog) =^4 (fig). Since A is a finite

complex, it follows from Theorem 2.7 that /0g~/ig. Then f0gh^figh. Since

gfe~i, we have/¿g&~/f, i = 0, 1. Consequently, we get /o^/i, which is to be

proved.

The above theorem reduces the question on the existence of universal fibre

bundles for the case that the base space is a compact metric ANR to the case

that the base space is a finite polyhedron.

3. The characteristic ring. The imbedding theorem permits us to define an

important invariant of a fibre bundle, its characteristic ring. Let go, with the

base space 730, be a universal fibre bundle relative to F, G, 73. Let 7? be a

commutative ring, and H(B0, R) the cohomology ring of 730 with the coeffi-

cient ring 7?. The classes of equivalent fibre bundles with the same F, G, 73

being in one-one correspondence with the homotopy classes of mappings

73—>730, to each equivalence class of fibre bundles corresponds a definite ring

homomorphism H(Bo, R)—*H(B, R). We shall call the image of this ring

homomorphism the characteristic ring relative to the coefficient ring 7? and

denote it by C(73, 7?). The cohomology classes of C(73, 7?) are called the char-

acteristic cohomology classes.

The characteristic ring depends by definition on the choice of the uni-

versal fibre bundle g0, which is by no means unique. It is very likely that the

ring C(73, 7?) as an abstract ring is independent of the choice of go, but we are

not able to prove it(9).

4. Product of fibre bundles. In studying the problem of position of one

sphere bundle in another we are naturally led to the notion of the product of

sphere bundles. This section will be devoted to a discussion of the product of

fibre bundles. A simultaneous imbedding theorem will be established, which is

useful for the description of the position of one fibre bundle in another.

1. Definitions. Let

i'- {F'.G'iZ'.BH'.Ú},       r-{F",G";X",B;yp",^'}

be two fibre bundles, with the same base space 73 and the same family of co-

ordinate neighborhoods { U}. We shall define a fibre bundle, their product,

g' X g" = {F' X F", G' X G"; X, B; f, <pu\

as follows: The director space is F'XF" and is transformed by G'XG" ac-

cording to the formula (g'Xg")(y'Xy") =g'(y')Xg"(y"), g'GG', g"GG",

y'GF', y"GF". The total space is

X =    U   <t>'u,b(F') X 4>ü.b(F"),

(9) In the case of sphere bundles this can be proved by interpreting the generators of the

characteristic ring as certain obstructions.
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while projection \p is defined by

4>{<t>ú,b(F')X<bu',b(F")} =b.

The coordinate functions are

<t>u(b, y X y") = 4>u,b(y') X <Pv.b(y").

It is easily verified that the Paste Condition is satisfied.

This definition of the product bundle does not include the case of sphere

bundles as defined by Whitney. We shall, however, show in the next section

how, with the help of a relationship between sphere bundles and vector

bundles, the product of vector bundles in the sense just defined will lead to

the product of sphere bundles in the sense of Whitney.

2. Change of the reference group. In order to derive from our product of

fibre bundles Whitney's product of sphere bundles, we shall study a relation-

ship between fibre bundles with different reference groups. In fact, let H be a

subgroup of G. A fibre bundle with the reference group H can be considered

as a bundle with the group G. The converse question is solved by the follow-

ing result of Ehresmann(10).

Theorem 4.1. Let g be a fibre bundle with the reference group G and let H be

a subgroup of G. Construct from the principal bundle rg the bundle rö/arg whose

director space is the homogeneous space G/H of left cosets of G relative to 77". g

is equivalent to a bundle with the reference group H 'if and only if Te/ffrg is

parallelisable.

Suppose the base space 73 be given. Denote by (73, G) an equivalence

class of principal fibre bundles relative to G, G, 73. If H is a subgroup of G,

then there is a natural correspondence X: (73, H)—»(73, G). From Theorem 4.1

it follows that the correspondence is onto if and only if the bundles of the

class tg/#(73, G) is parallelisable. If 73 is a polyhedron of dimension n, a

sufficient condition for this is tví(G/H) =0, O^i^n — 1.

Suppose the bundles relative to G, G, 73 have a universal bundle go,

whose base space we denote by 730. Two induced bundles B (f0) and 73(/i) are

equivalent if and only if/0 and/i are homotopic, that is, if and only if there is

a mapping F: BXI^B0, with 7?(73X0) -/», F(BXl) =/i- If we write 73'=73
XT', the mapping F induces a bundle 73'(F) over 73', and the bundles 73 (/<,) and

73(/i) are equivalent relative to H if B'(F) is equivalent relative to G to a

bundle with the reference group H. A necessary and sufficient condition for

the latter property is that TgfHB'(F) is parallelisable. This condition is satis-

fied if Tn(G/H)=0, O^i^n.
It follows, when 73 is a polyhedron of dimension n, that the correspondence

X is one-one and onto if Ti(G/H) =0, 0=¿ = «.

(10) Ehresmann [l].
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When G=A+(n), H = 0+(n), the homogeneous space G/His a Euclidean

space and is hence contractible. Therefore there is a one-one correspondence

between classes of sphere bundles and classes of vector bundles.

3. The simultaneous imbedding theorem. It is important to remark that the

above "product" admits an inverse operation. In fact, let {F'XF", G'XG";

X, 73; Tp, 4>u\ be a fibre bundle, where the reference group G'XG" operates

on the director space F'XF" as in the last paragraph. We shall define two

fibre bundles whose product is a fibre bundle equivalent to the given one.

Write a point of F'XF" in the form y'Xy", y'GF', y"GF", and define the

projections Çi(y'Xy")=y', ^(y'Xy")=y". LetbGUCB. Two points z, z'

G^_1(b) are called equivalent if r«(<£Í7,¡>(2)) = U(<ßüj>(^')) < **—1> 2. This equiva-

lence relation is independent of the choice of the neighborhood U. The

equivalence classes thus obtained form a decomposition space Zi(b), »—1, 2.

Denote by (z)¿ the class which contains z. Put

x' -  U Zi(b),    x" =  u z2(b),
b&B bGB

and define

*'(Z,(6)) - b,       *"(Z*(i)) = b,

*v(b X y) = (Mb X (y' X y")))u

4n/(b X y") = (<t>u(b X (y X y")))t.

According to these definitions we get the fibre bundles

g'= \F',G';X',B;*', ¿},        g" = {F", G" ; X", B;*", ^'}.

It is easily verified that g'Xg" is equivalent to the given fibre bundle.

Consider two fibre bundles

g'= {F',G';X',B;4,',úh       g" = {F", G"; X", B;+", *v\,

with the same base space 73 and their product bundle g'Xg". Such a triple of

bundles we shall call a triad. We consider the triads with given 7**', F",

G', G",B. A triad {<£', ©", g'X®"}, with the director spaces F', F", the

reference groups G', G", and the base space A, is called a universal triad of

fibre bundles relative to F', F", G', G", 73, if the following conditions are

satisfied :

(1) To every triad g', g", g'Xg" there exists a mapping/: 73—>A such

that («';/:*)-8', («";/: B)m%", (<S'x<5";/: 73) = g'Xg".
(2) The three fibre bundles in the triads induced by the mappings

fo,fi- B—fA are respectively equivalent if and only if /o—/i.

Relative to F', F", G', G", 73 the problem on the existence of a universal

triad of fibre bundles is solved by the following theorem:
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Theorem 4.2. The triad {(S', Qs"; @'X@"} is a universal triad of fibre

bundles, relative to F', F", G', G", 73, if and only if the fibre bundle (S'XS" is a

universal fibre bundle relative to F'XF", G'XG", 73.

The proof of this theorem is straightforward, and we shall omit it here.

5. The classical groups. We shall devote this section to exhibit ex-

plicitly the universal fibre bundles for the cases that the reference groups are

the classical groups, namely, the general linear group GL(n, R) with real

coefficients, its subgroup GL+(n, R) of the linear transformations with posi-

tive determinant, the orthogonal group 0(n, R), the proper orthogonal group

SO(n, R), the unitary group U(n, C), and the unitary symplectic group

Sp(n).

1. The universal fibre bundles for the classical groups. The universal fibre

bundles in question will be constructed according to the following general

process: Let 7? be a Lie group, and K, H closed subgroups of R, HGK- Define

the projection of R/H onto R/K as the mapping which maps the coset rH

into the coset rK, rGR- With coordinate functions defined by the canonical

coordinates, Steenrod(H) proved that a fibre bundle can be defined with the

director space K/H, operated on by the group K as left translations, and with

the total space R/H and the base space R/K. We shall denote such a fibre

bundle by

{K/H, K; R/H, R/K],

omitting the projection and the coordinate functions, or simply by

{R/H, R/K], indicating only the total space and the base space.

To construct universal fibre bundles for the classical groups the general

idea is to consider the same classical groups with more variables and construct

their coset spaces. We begin with the following notations:

GL(n) denotes the group of all w-rowed real matrices with nonzero de-

terminant, GL+(n) the subgroup of GL(n) consisting of all matrices of posi-

tive determinant. H+(n, N) and H(n, N) denote respectively the subgroups

of GL+(n, N) consisting of all matrices of the form

/GL+(n) 0     \ /GL(n)        0    \

\     *       GL+(N))'        \    *      GL(N))'

where the elements in the upper right corners are zero. 0(n) denotes the

group of all «-rowed real orthogonal matrices and SO(n) the subgroup of

0(n) consisting of all the matrices of determinant +1. U(n) denotes the group

of all w-rowed unitary matrices, that is, matrices <r with complex elements

satisfying c = <r'~1. For a quaternion q=aoJraii-sra2J-\-a3k let q = a0 — aii — a2J

— a¡k be its conjugate quaternion. Then Sp(n) denotes the group of all n-

rowed matrices t with quaternion elements satisfying f =t'_1.

(") Steenrod [4, pp. 300-302].
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When there are several groups in different numbers of variables, it is

possible to imbed one in another. We agree by convention that the imbeddings

SO(N)CSO(n + N), SO(n)XSO(N)CSO(n + N) are such that

fin        0    \ /SO(n)        0/In        0    \ /SO(n)        0    \

\0   SO(N))'        \    0      SO(N))'

and similarly for the other groups.

With all these definitions and conventions we consider the following fibre

bundles:

$OL+(n, N) = {GL+(n + N)/GL+(N), GL+(n + N)/H+(n, N)],

gso(«, N) = {SO(n + N)/SO(N), SO(n + N)/SO(n) X SO(N)\,

%u(n, N) = {U(n + N)/U(N), U(n + N)/U(n) X U(N)},

$sP(n, N) = {Sp(n + N)/Sp(N), Sp(n + N)/Sp(n) X Sp(N)].

Take, for instance, %so(n, N). Its director space is SO(n) XSO(N)/InXSO(N),

operated on by SO(n) XSO(N) as left translations. By a natural homeo-

morphism we can take SO(n) for director space, which is then operated on

by SO(n) as left translations. It follows that gso(w, TV) is a principal fibre

bundle. Similarly, we see that goz+(«, TV), %v(n, TV) and %sP(n, TV) are

principal fibre bundles. These fibre bundles will serve as universal principal

fibre bundles for the cases that the reference groups are the classical groups,

as given by the following theorem:

Theorem 5.1. Let 73 be a finite polyhedron of dimension k, and $ a universal

principal fibre bundle relative to G, G, 73. When G is a classical group, a cor-

responding ^5 is given by the following table.

G $

SO(n) gs0(w, N) k =■ JV - 1

GL+(n) %GL+(n, N) k£N-î

U(n) %u(n, N) k g 27V

Spin) gSí,(«, 7Y) k =" AN + 2

Proof. It suffices to prove that the homotopy groups x¿, 0 =*';£&, of the

total spaces of 'iß are zero. As in the proof of Theorem 2.5, this follows from

successive applications of the covering homotopy theorem. The desired de-

formations can be carried out, because the spaces SO(N-\-l)/SO(N),

U(N+1)/U(N), Sp(N+l)/Sp(N) are homeomorphic to spheres of dimen-

sions N, 27V+1, 47V+3, respectively. This completes the proof of the theorem.

When the reference group is GL(n) or 0(n), the situation differs slightly

from the preceding ones, as these groups are not connected. In order that the

foregoing manipulations prevail, we have to consider the fibre bundles
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go(», TV) = {SO(n + N)/SO(N), SO(n + N)/SO(n) <g> SO(N)\,

%c,L(n, N) = \GL+(n + N)/GL+(N), GL+(n + N)/H(n, TV)},

where

SO(n) ® SO(N) = SO(n + N) f\ (0(n) X O(N)) in 0(n + TV).

This makes the total spaces connected, and the proof of Theorem 5.1 can be

applied. We state this result in the theorem :

Theorem 5.2. Let B be a finite polyhedron of dimension k. If k^N—i,

go(«, TV) and gGi,(w, TV) are universal principal fibre bundles relative to O(n),

73 and GL(n), 73, respectively.

By the process rj?1 universal fibre bundles can be constructed whenever

the reference group is one of the classical groups. We notice that the process

rj?1 does not affect the base space. For the description of the characteristic

ring it will be useful to know the base space, and in particular its cohomology

ring.

We consider the linear vector spaces F(»-f-TV, 7?), V(n-\-N, C),

V(n+N, Q), of dimension n+N, over the real field, the complex field, and

the quaternion field, respectively. Denote by G(n, TV, R),G(n, TV, C), G(n,N, Q)

respectively the manifolds of the linear spaces of dimension n through the

origin of these vector spaces. They are known as the Grassmann manifolds.

For the case of the real field we may also consider the Grassmann manifold

G(n, TV, R) of the oriented linear spaces of dimension n through the origin.

Each of these Grassmann manifolds is operated on transitively by the cor-

responding classical group in the vector space of dimension w+TV, and we

easily identify it with a space of cosets. In this way we deduce the theorem:

Theorem 5.3. The base spaces of the universal fibre bundles for the classical

groups are given by the following table.

Fibre Bundle Base Space

%GL+(n, TV) G(n, TV, R)

%*>(«, TV) G(n, TV, R)

gt/(«, TV) G(n, TV, C)

fop(». N) G(n, TV, Q)

go(«, TV) G(n, TV, 7?)

ge//«, TV) G(n, TV, R)

2. Whitney's product for sphere bundles and a universal triad. From

Theorem 5.3 we see that the universal sphere bundles and the universal

vector bundles, whether oriented or non-oriented, have the same base space,
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namely, G(n, TV, 7?) and G(n, TV, 7?), respectively. It follows from this and also

from the considerations of §4.2 that to each equivalence class of sphere

bundles over a base space 73 is associated an equivalence class of vector

bundles, and vice versa. Denote these operations by w and w~l, respectively.

Let gi and g2 be two sphere bundles over the same base space 73. The bundle

w-1(wgiXwg2) is then Whitney's product of the sphere bundles gi and g2.

To construct a universal triad for the product wgiXwg2 suppose m and

n be the dimensions of the director spaces of wgi and wgî, respectively.

Consider in V(m-\-n-\-N, R) the manifold whose elements consist of a linear

subspace of dimension m and a linear subspace of dimension n in general

position through the origin. Call this manifold an E-manifold and denote it

by E(m, n, TV, 7?)(12). A mapping B—>E(m, n, TV, 7?) then induces two vector

bundles and their product over 73. From Theorem 4.1 it follows that

E(m, n, TV, 7?) is the base space of a universal triad, provided that dim B^N

— 1. The study of the homology properties, and in particular of the cohomol-

ogy ring, of E(m, n, TV, 7?) has therefore an important significance for the

description of the position of one sphere bundle in another.
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