ABELIAN GROUP ALGEBRAS OF FINITE ORDER

BY

SAM PERLIS AND GORDON L. WALKER

Introduction. A group G of finite order n and a field F determine in well known fashion an algebra G_F of order n over F called the group algebra of G over F. One fundamental problem(1) is that of determining all groups H such that H_F is isomorphic to G_F.

It is convenient to recast this problem somewhat: If groups G and H of order n are given, find all fields F such that G_F is isomorphic to H_F (notationally: $G_F \cong H_F$). We present a complete solution of this problem for the case in which G (and thus necessarily H) is abelian and F has characteristic infinity or a prime not dividing n. The result, briefly, is that F shall contain a certain subfield which is determined by the invariants of G and H and the characteristic of F.

1. Multiplicities. If G is abelian of order n and F is a field whose characteristic does not divide n, the group algebra G_F has the structure

$$G_F = \sum_{d|n} a_d F(\zeta_d)$$

where ζ_d is a primitive dth root of unity, a_d is a non-negative integer, and $a_d F(\zeta_d)$ denotes the direct sum of a_d isomorphic copies of $F(\zeta_d)$. In fact, each irreducible representation S of G_F maps G_F onto a field $F_S \cong F$ and maps the elements of G on nth roots of unity. The image of G is a subgroup of the group of all nth roots of unity, thus is a cyclic group of some order dividing n. It follows that $F_S = F(\zeta_d)$ where ζ_d is a primitive dth root of unity.

Formula (1) expresses the fact that a complete set of irreducible representations of G_F over F include precisely a_d which map G onto a cyclic group of order d. Now if K is the root field over F of $x^n - 1 = 0$ we have

$$G_K = \sum_{d|n} n_d K_d$$

where every $K_d = K(\zeta_d)$ is isomorphic to K, $\sum n_d = n$, and each n_d is the number of irreducible representations T of G_K mapping G on a cyclic group of order d.

Lemma 1. The integer n_d in (2) is the number of elements of order d in G.

There is a one-to-one correspondence between the elements g of G and the

representations $T=T_g$. The formulae\(^{(2)}\) for this correspondence make it evident that g has order d if and only if T_g maps a basis of G onto a set of elements, the l.c.m. of whose orders is d. Then some element of G is mapped on an element of order d, all others on elements of order not greater than d. The map of G is thus a cyclic group of order d, and this proves the lemma.

Each irreducible representation S of G_F over F may be extended to a representation of G_K over K, the extension not altering the map of G. If S maps G_F onto $F(\xi_d)$ where the degree of $F(\xi_d)/F$ is

\(\text{(3)}\) \[\deg F(\xi_d)/F = v_d,\]

then S maps G_K on the direct sum\(^{(4)}\)

\(\text{(4)}\) \[F(\xi_d)K = K(\xi_d) \oplus \cdots \oplus K^{(v_d)} = v_dK,\]

thus giving rise to v_d irreducible representations T of G_K over K.

Lemma 2. If S maps G onto a cyclic group of order d, so does each representation T defined above.

Each element g in G is mapped by S on $g^S = \sum g_i, g_i$ in $K(\xi_d)$, and the corresponding irreducible representations over K are T_i: $g_i^T = g_i$. It may be seen\(^{(4)}\) that the g_i are obtainable from one another by automorphisms of $F(\xi_d)_K$ leaving the elements of K invariant. Hence all the g_i have the same minimum function over K, and all of them are primitive dth roots of unity if g^S is one. Lemma 2 follows immediately, and it follows that the T_i into which the representations S split are the only irreducible representations of G_K mapping G on a cyclic group of order d. The a_d choices of S give rise to $a_d v_d$ representations T, whence $n_d = a_d v_d$.

Theorem 1. The multiplicity a_d in (1) is given\(^{(5)}\) by $a_d = n_d / v_d$ where n_d is the number of elements of order d in G and v_d is $\deg F(\xi_d)/F$.

Now let G and H be abelian of common order $n = p_1 \cdots p_k$ for distinct primes p_i, so there are unique expressions $G = G_1 \times \cdots \times G_k$ and $H = H_1 \times \cdots \times H_k$ for G and H as direct products of groups G_i and H_i of order $n_i = p_i^k$. Then:

Corollary 1. $G_F \cong H_F$ if and only if $G_{iF} \cong H_{iF}$ for $i = 1, \cdots , k$.

By hypothesis and Theorem 1

\(^{(4)}\) Ibid.

\(^{(5)}\) The authors are indebted to the referees for the simple approach to Theorem 1 which has been presented here.
where the number of elements of order d in G_i is g_{id}, in H_i is h_{id}, and in G or H is m_d. But if $d | n_i$, the elements of G having order d lie in G_i, so $m_d = g_{id}$ and likewise $m_d = h_{id}$ so $g_{id} = h_{id}$, whence $G_{iF} \cong H_{iF}$. The converse is trivial.

In the remaining sections only the prime-power case is considered.

2. Cyclotomic fields. When $n = p^a$ for a prime p the notation in (1) will be changed to

$$G_p = \sum_{d | n} a_d F(\zeta_d),$$

where ζ_i and a_i are new symbols for ζ_d and a_d, $d = p^i$. This section explores conditions under which $F(\zeta_i) \cong F(\zeta_j)$. Taking $i \leq j$ we may and shall assume that $F(\zeta_i) \subseteq F(\zeta_j)$, so the question now is concerned with the equality of these fields. Let P always denote the prime subfield of F.

Lemma 3. Let i and j be positive integers such that $i < j$. Then $F(\zeta_i) = F(\zeta_j)$ if and only if F has a subfield $F_0 \subseteq P(\zeta_j)$ such that $F_0(\zeta_i) = F_0(\zeta_j)$.

Proof. If $F_0(\zeta_i) = F_0(\zeta_j)$, the field $F(\zeta_i)$ must contain ζ_j. Conversely, suppose $F(\zeta_i) = F(\zeta_j)$. The minimum function $f(x)$ of ζ_j over F has degree s equal to that of ζ_i, and is a factor of the minimum function $m(x)$ of ζ_j over P. The coefficients of $f(x)$ then must lie in the root field $P(\zeta_j)$ of $m(x)$ over P, and hence generate a subfield F_0 of $P(\zeta_j)$ such that $F_0 \subseteq F$. Then $F_0(\zeta_j) \supseteq F_0(\zeta_i)$, and

$$\deg F_0(\zeta_j)/F_0 = s \geq \deg F_0(\zeta_i)/F_0 = r \geq \deg F(\zeta_i)/F = s,$$

whence $r = s$, $F_0(\zeta_i) = F_0(\zeta_j)$.

It is necessary now to make a brief detour because of some peculiarities arising if P is finite. Suppose that

$$P \leq P(\zeta_1) = \cdots = P(\zeta_e) < P(\zeta_{e+1}) \quad (e \geq 1)$$

if p is odd, and

$$P \leq P(\zeta_2) = \cdots = P(\zeta_e) < P(\zeta_{e+1}) \quad (e \geq 2)$$

if $p = 2$. These equalities never occur if $P = R$ but do occur if P is a finite prime field whose characteristic is appropriately related to p (see Lemma 5).

Definition. Let p be a prime and let P be a prime field of characteristic not equal to p. Then the integer e defined by (6) and (7) is called the cyclotomic number of P relative to p (or cyclotomic p-number of P).

Lemma 4. Let P be a finite prime field of characteristic π, n be an integer not
divisible by \(\pi \), and \(P(\zeta) \) be the root field over \(P \) of \(x^n - 1 \). Then \(\deg P(\zeta)/P = \epsilon \) where \(\epsilon \) is defined as the exponent to which \(\pi \) belongs modulo \(n \).

Let \(P_f \) be a field of degree \(f \) over \(P \) so its nonzero quantities are roots of \(x^n - 1 = 0, \nu = \pi^n - 1 \). Then \(P_f \) contains the \(n \)th roots of unity if \(n \) divides \(\nu \). Conversely, if \(P_f \) contains a primitive \(n \)th root of unity, \(\zeta \), the equation \(\nu = qn + r \) \((0 \leq r < n)\) leads to \(\zeta^n = 1 = \zeta^r \) so \(r = 0 \), and \(n \) divides \(\nu \). The smallest value of \(\nu = \pi^f - 1 \) obeying this condition is given by \(f = \epsilon \). On the other hand the smallest value surely belongs to \(P_f=P(\zeta) \).

Now let \(n = p^i \), where \(p \) is a prime not equal to \(\pi \), and denote the corresponding integer \(\epsilon \) of Lemma 4 by \(\epsilon_i \). Then the cyclotomic \(p \)-number of \(P \) is the integer \(\epsilon \) determined by the conditions \(\epsilon_1 = \epsilon_2 = \cdots = \epsilon = \epsilon_{\epsilon+1} \) \((p \ odd)\), \(\epsilon_1 = \epsilon_2 = \cdots = \epsilon = \epsilon_{\epsilon+1} \) \((p = 2)\). Hence:

Lemma 5. The cyclotomic \(p \)-number of \(P \) is the maximum integer \(\epsilon \) such that \(p^\epsilon \) divides \(\pi^n - 1 \) where \(\epsilon \) is the exponent to which \(\pi \) belongs modulo \(p \) if \(p \) is odd, or modulo 4 if \(p = 2 \).

The fact that \(P(\zeta_i) < P(\zeta_{i+1}) \) for every \(i \geq \epsilon \) is a consequence of the following result.

Lemma 6. The extension \(P(\zeta_{i+1})/P(\zeta_i) \) has degree \(\delta_i = p^i \) \((i = 1, 2, \cdots)\).

Writing \(\epsilon_i = \epsilon \) we have \(\delta_i = \epsilon_{\epsilon+i}/\epsilon \) and know that \(\delta_i = p^i, j \leq i, \epsilon_{\epsilon+i} = p^i\epsilon \).

By Lemma 5, \(\pi^i = 1 + a p^t \) where \(a \) is not divisible by \(p \). A trivial induction shows that

\[
\pi^\epsilon = 1 + a_i p^{\epsilon+i},
\]

for \(i = 0, 1, 2, \cdots \). This proves that \(\epsilon_{\epsilon+i} = p^i\epsilon \).

Lemma 7. If \(p \) is an odd prime and \(P \) is any prime field of characteristic not \(p \), \(P(\zeta_o) \) has the structure

\[
P(\zeta_o) = P(\zeta_i) \times L_q, \quad \deg L_o/P = \text{power of } p,
\]

where \(L_q \) is unique. Moreover, \(L_o = P \) if \(q \) does not exceed the cyclotomic \(p \)-number of \(P \).

The proof of this result is similar to the known proof for the case \(P = R \).

Lemma 8. Let \(p \) be odd and \(q > 1 \). Then the following conditions are equivalent:

(i) \(F(\zeta_o) = F(\zeta_i), 1 \leq i < q \).

(ii) \(F(\zeta_q) = F(\zeta_{q-1}) = \cdots = F(\zeta_i) \).

(iii) \(F \) contains the field \(L_q \) defined by Lemma 7.

(\(^*\)) A. A. Albert, *Modern higher algebra*, Chicago, 1937, p. 188, Theorem 21. The desired result is obtained by repeated application of this reference theorem.

The condition (iii) implies that $F(\xi_1)$ contains $L_\phi(\xi_1) = P(\xi_\phi)$, $F(\xi_2) = F(\xi_3)$, so (ii) follows. That (ii) implies (i) is obvious. Now we assume (i) and use Lemma 3 to reduce considerations to the case $F \leq P(\xi_q) = F(\xi_q)$. If $q \leq e$ where e is the cyclotomic p-number of P, $L_q = P = F$ so (iii) is valid. Now let q be greater than e.

The field $F(\xi_3)$ is the composite $F \cap P(\xi_3)$. Denoting the intersection $F \cap P(\xi_3)$ by F_ϕ, we have

\[
\deg F/F_\phi = \deg F(\xi_3)/P(\xi_3) = \deg P(\xi_3)/P(\xi_3).
\]

Also, $\deg P(\xi_q)/P = p^u$, $\deg F/P = p^v$ for suitable integers e_ϕ, a, $u = \deg (P(\xi_1)/P)$, and v a divisor of u. To complete preparations for substituting in (9) note that $P(\xi_q)/P$ is cyclic, hence possesses a unique subfield of any given degree dividing p^{u+v}. Thus: $\deg F_\phi/P = \gcd[p^v, p^{u+v}] = p^v$ where $\mu = \min[e, e_\phi]$. From (9), $p^{e-\mu} = p^e$ where $c = e - e_\phi = a - \mu$. Since $q > e$, we have $e_\phi - e > 0$, $\mu < a$, $\mu = e_\phi$, so $a = e_\phi$, $\deg F/P = p^{e_\phi+v}$. Every such subfield F of $P(\xi_q)$ must contain the subfield L_q of degree p^{e_ϕ}.

For the case $p = 2$ similar results are obtainable. The extension $P(\xi_q)/P$ is cyclic of degree a power of 2 if P is finite, and for this case we define

\[
L_q = P \text{ if } q \leq e, \quad L_q = P(\xi_q) \text{ if } q > e,
\]

where e is the cyclotomic number of P relative to $p = 2$. For $P = R$ we have $P(\xi_q) = P(\xi_2) \times L_q$ where L_q is arbitrarily one of the fields

\[
L_q = P(\xi_2 + \xi_2^{-1}), \quad L_q = P(\xi_2 - \xi_2^{-1})
\]

and $\deg L_q/P = 2^{q-2}$. We then state without proof:

Lemma 9. Let $p = 2$ and $q > 2$. Then the following conditions are equivalent:

(i) $F(\xi_q) = F(\xi_1)$, $2 \leq i < q$.

(ii) $F(\xi_q) = F(\xi_{q-1}) = \cdots = F(\xi_2)$.

(iii) F contains one of the fields L_q above.

3. **Determination of the fields.** Let G and H be abelian groups of common prime-power order p^x and let F be any field of characteristic not p. In this section all fields F are determined such that $G_F \cong H_F$.

As in (5) we have

\[
G_F = \sum_{i=0}^{a} a_i F(\xi_i), \quad H_F = \sum_{i=0}^{a} b_i F(\xi_i),
\]

so there is a unique integer $q = q(G, H)$ defined as the maximum integer i such that $a_i \neq b_i$. From Theorem 1 this integer is the maximum i such that $m_i \neq n_i$ where m_i and n_i are the numbers of elements of order p^i in G and H, respectively. Thus q is independent of F. Since $m_0 = n_0 = 1$, q is never less than 2, but it may happen that q does not exist, that is, every $m_i = n_i$. In
this case we define \(q = 0 \).

Theorem 2. The group algebras \(G_F \) and \(H_F \) are isomorphic if and only if (\(\alpha \)) holds when \(p \) is odd, and (\(\beta \)) or (\(\gamma \)) holds when \(p = 2 \):

(\(\alpha \)) \(F \cong L_q \) defined by Lemma 7.

(\(\beta \)) \(G \) and \(H \) have the same number of invariants and \(F \) contains one of the fields \(L_q \) defined by Lemma 9.

(\(\gamma \)) \(G \) and \(H \) have unequal numbers, \(\gamma \) and \(\eta \), of invariants and \(F \) contains \(P(\zeta_q) \) where \(P \) is the prime subfield of \(F \).

If \(q = 0 \) the theorem is trivial, so we assume \(q > 0 \), hence \(q \geq 2 \). Note that \(G_F \cong H_F \) if and only if \(A \cong B \) where

\[
A = \sum_{i=0}^{q} a_i F(\zeta_i), \quad B = \sum_{i=0}^{q} b_i F(\zeta_i).
\]

Suppose (\(\alpha \)) holds. Then (Lemma 8) both \(A \) and \(B \) becomes \(\sum_{i=2}^{q} a_i F(\zeta_i) \) for a suitable integer \(m \), so \(A \cong B \). If \(p = 2 \), \(F(\zeta_i) = F \), \(a_i = 2^{i-1} \) so

\[
A = 2^k F \oplus \sum_{i=2}^{q} a_i F(\zeta_i), \quad B = 2^k F \oplus \sum_{i=2}^{q} b_i F(\zeta_i)
\]

whence (\(\beta \)) implies that \(A = 2^k F \oplus m F(\zeta_i) \cong B \). If (\(\gamma \)) holds, \(A \) and \(B \) are diagonal over \(F \) and of the same order, hence isomorphic. Conversely, suppose \(A \cong B \) and first let \(p \) be odd. The assumption that \(F(\zeta_q) \) is not isomorphic to \(F(\zeta_i) \) for \(i \leq q \) implies that \(A \) has precisely \(a_q \) components \(F(\zeta_q) \) and \(B \) has precisely \(b_q \) such components. But then the fact that \(a_q \neq b_q \) conflicts with the isomorphism of \(A \) and \(B \). Hence \(F(\zeta_q) = F(\zeta_i) \) for \(i < q \) so \(F \cong L_q \). The proofs for \(p = 2 \) are obtained in similar fashion.

The case in which \(F \) is a prime field is interesting.

Theorem 3. Let \(G \) and \(H \) be abelian groups of order \(p^a \). If \(R \) is the rational number field, \(G_R \cong H_R \) if and only if \(G \cong H \). If \(P \) is a finite prime field of characteristic \(p \neq p \), \(G_P \cong H_P \) if and only if \(q \leq e \) (where \(e \) is the cyclotomic \(p \)-number of \(P \)) unless \(p = 2 \) and \(G \) and \(H \) have different numbers of invariants. In the latter case \(G_P \cong H_P \) if and only if \(q \leq e \) and \(p = 1 \) (mod 4).

For \(F = R \) the decompositions (12) are unique. Hence the condition \(G_B \cong H_B \) implies that \(q = 0 \), and for each integer \(k = p^h \) dividing \(p^a \), \(G \) and \(H \) have the same number of elements of order \(k \). This number is \(N_k(G) \phi(k) \) where \(\phi \) denotes the Euler \(\phi \)-function and \(N_k(G) = N_k \) the number of cyclic subgroups of order \(k \) in \(G \). The numbers \(N_k \) have been determined by formulae which show that the group invariants are determined when the \(N_k \)

are specified. Thus $G \cong H$. The remaining parts of the theorem follow from Theorem 2 and our lemmas.

To compute the "g-number" directly from the invariants of G and H, denote the latter by $p^\alpha (i=1, \cdots, \gamma)$ and $p^\eta (i=1, \cdots, \eta)$, respectively, numbered in descending order of magnitude.

Theorem 4. Define λ as the minimum integer i such that $e_i \neq f_i$. Then $q = \max \{e_\lambda, f_\lambda\}$.

For proof, note that $G = K \times \bar{G}$, $H = K \times \bar{H}$ where K has invariants p^α, $i=1, \cdots, \lambda-1$, and those of \bar{G} and \bar{H} are evident. Let the common order of \bar{G} and \bar{H} be \bar{n} and let the numbers of elements of order p^i in G, H, and K, respectively, be m_i, n_i, and k_i. Then $i > e_\lambda$ implies $m_i = \bar{n}k_i$ and $i > f_\lambda$ implies $n_i = \bar{n}k_i$. For definiteness take $e_\lambda > f_\lambda$, so $i > e_\lambda$ implies $m_i = n_i$, $q \leq e_\lambda$. For $i = e_\lambda > f_\lambda$, however, $n_i = \bar{n}k_i$, $m_i > n_i$. This proves that $q = e_\lambda$.

Purdue University,
Lafayette, Ind.