ABELIAN GROUP ALGEBRAS OF FINITE ORDER

BY

SAM PERLIS AND GORDON L. WALKER

Introduction. A group G of finite order n and a field F determine in well
known fashion an algebra G_F of order n over F called the group algebra of G
over F. One fundamental problem(1) is that of determining all groups H
such that H_F is isomorphic to G_F.

It is convenient to recast this problem somewhat: If groups G and H of
order n are given, find all fields F such that G_F is isomorphic to H_F (nota-
tionally: $G_F \cong H_F$). We present a complete solution of this problem for the
case in which G (and thus necessarily H) is abelian and F has characteristic
infinity or a prime not dividing n. The result, briefly, is that F shall contain
a certain subfield which is determined by the invariants of G and H and the
characteristic of F.

1. Multiplicities. If G is abelian of order n and F is a field whose char-
acteristic does not divide n, the group algebra G_F has the structure

$$G_F = \sum_{d|n} a_d F(\zeta_d)$$

where ζ_d is a primitive dth root of unity, a_d is a non-negative integer, and
$a_d F(\zeta_d)$ denotes the direct sum of a_d isomorphic copies of $F(\zeta_d)$. In fact,
each irreducible representation S of G_F maps G_F onto a field $F_S \cong F$ and
maps the elements of G on nth roots of unity. The image of G is a subgroup of
the group of all nth roots of unity, thus is a cyclic group of some order divid-
ing n. It follows that $F_S = F(\zeta_d)$ where ζ_d is a primitive dth root of unity.
Formula (1) expresses the fact that a complete set of irreducible representa-
tions of G_F over F include precisely a_d which map G onto a cyclic group of
order d. Now if K is the root field over F of $x^n - 1 = 0$ we have

$$G_K = \sum_{d|n} n_d K_d$$

where every $K_d = K(\zeta_d)$ is isomorphic to K, $\sum n_d = n$, and each n_d is the
number of irreducible representations T of G_K mapping G on a cyclic group of
order d.

Lemma 1. The integer n_d in (2) is the number of elements of order d in G.

There is a one-to-one correspondence between the elements g of G and the
representations $T = T_{\gamma}$. The formulae (3) for this correspondence make it evident that g has order d if and only if T_{γ} maps a basis of G onto a set of elements, the l.c.m. of whose orders is d. Then some element of G is mapped on an element of order d, all others on elements of order not greater than d. The map of G is thus a cyclic group of order d, and this proves the lemma.

Each irreducible representation S of $G_{\mathbb{F}}$ over F may be extended to a representation of G_K over K, the extension not altering the map of G. If S maps $G_{\mathbb{F}}$ onto $F(\xi_d)$ where the degree of $F(\xi_d)/F$ is

\begin{equation}
\text{deg } F(\xi_d)/F = v_d,
\end{equation}

then S maps G_K on the direct sum (4)

\begin{equation}
F(\xi_d)_K = K^{(1)} \oplus \cdots \oplus K^{(v_d)} = v_dK,
\end{equation}

giving rise to v_d irreducible representations T of G_K over K.

Lemma 2. If S maps G onto a cyclic group of order d, so does each representation T defined above.

Each element g in G is mapped by S on $g^S = \sum g_i g_i$, in $K^{(g)}$, and the corresponding irreducible representations over K are T_i: $g^S_i \equiv g_i$. It may be seen (4) that the g_i are obtainable from one another by automorphisms of $F(\xi_d)_K$ leaving the elements of K invariant. Hence all the g_i have the same minimum function over K, and all of them are primitive dth roots of unity if g^S is one. Lemma 2 follows immediately, and it follows that the T_i into which the representations S split are the only irreducible representations of G_K mapping G on a cyclic group of order d. The a_d choices of S give rise to $a_d v_d$ representations T_i, whence $n_d = a_d v_d$.

Theorem 1. The multiplicity a_d in (1) is given (5) by $a_d = n_d/v_d$ where n_d is the number of elements of order d in G and v_d is the degree $F(\xi_d)/F$.

Now let G and H be abelian of common order $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$ for distinct primes p_i, so there are unique expressions $G = G_1 \times \cdots \times G_k$ and $H = H_1 \times \cdots \times H_k$ for G and H as direct products of groups G_i and H_i of order $n_i = p_i^{\alpha_i}$. Then:

Corollary 1. $G_{\mathbb{F}} \cong H_{\mathbb{F}}$ if and only if $G_i \mathbb{F} \cong H_i \mathbb{F}$ for $i = 1, \cdots, k$.

By hypothesis and Theorem 1

(3) Ibid.
(4) The authors are indebted to the referees for the simple approach to Theorem 1 which has been presented here.
where the number of elements of order d in G_i is g_{id}, in H_i is h_{id}, and in G or H is m_d. But if $d
mid n_i$, the elements of G having order d lie in G_i, so $m_d = g_{id}$ and likewise $h_d = h_{id}$, whence $G_{id} \cong H_{id}$. The converse is trivial.

In the remaining sections only the prime-power case is considered.

2. Cyclotomic fields. When $n = p^e$ for a prime p the notation in (1) will be changed to

$$G_P = \sum_{d \mid n} m_d/v_dF(\xi_d) \cong H_P,$$

$$G_{i_P} = \sum_{d \mid n_i} g_{id}/v_dF(\xi_d), \quad H_{i_P} = \sum_{d \mid n_i} h_{id}/v_dF(\xi_d)$$

where the number of elements of order d in G_i is g_{id}, in H_i is h_{id}, and in G or H is m_d. But if $d \nmid n_i$, the elements of G having order d lie in G_i, so $m_d = g_{id}$ and likewise $h_d = h_{id}$, whence $G_{i_P} \cong H_{i_P}$. The converse is trivial.

In the remaining sections only the prime-power case is considered.

2. Cyclotomic fields. When $n = p^e$ for a prime p the notation in (1) will be changed to

$$G_P = \sum_{i=0}^a a_iF(\xi_i)$$

where ξ_i and a_i are new symbols for ξ_d and a_d, $d = p^i$. This section explores conditions under which $F(\xi_d) \cong F(\xi_j)$. Taking $i \leq j$ we may and shall assume that $F(\xi_i) \subseteq F(\xi_j)$, so the question now is concerned with the equality of these fields. Let P always denote the prime subfield of F.

Lemma 3. Let i and j be positive integers such that $i < j$. Then $F(\xi_i) = F(\xi_j)$ if and only if F has a subfield $F_0 \subseteq P(\xi_j)$ such that $F_0(\xi_i) = F_0(\xi_j)$.

Proof. If $F_0(\xi_i) = F_0(\xi_j)$, the field $F(\xi_i)$ must contain ξ_j. Conversely, suppose $F(\xi_i) = F(\xi_j)$. The minimum function $f(x)$ of ξ_i over F has degree s equal to that of ξ_j, and is a factor of the minimum function $m(x)$ of ξ_j over P. The coefficients of $f(x)$ then must lie in the root field $P(\xi_j)$ of $m(x)$ over P, and hence generate a subfield F_0 of $P(\xi_j)$ such that $F_0 \subseteq F$. Then $F_0(\xi_j) \supseteq F_0(\xi_i)$, and

$$\deg F_0(\xi_j)/F_0 = s \geq \deg F_0(\xi_i)/F_0 = r \geq \deg F(\xi_i)/F = s,$$

whence $r = s$, $F_0(\xi_i) = F_0(\xi_j)$.

It is necessary now to make a brief detour because of some peculiarities arising if P is finite. Suppose that

$$P \leq P(\xi_1) = \cdots = P(\xi_e) \leq P(\xi_{e+1}) \quad (e \geq 1)$$

if p is odd, and

$$P \leq P(\xi_2) = \cdots = P(\xi_e) \leq P(\xi_{e+1}) \quad (e \geq 2)$$

if $p = 2$. These equalities never occur if $P = R$ but do occur if P is a finite prime field whose characteristic is appropriately related to p (see Lemma 5).

Definition. Let p be a prime and let P be a prime field of characteristic not equal to p. Then the integer e defined by (6) and (7) is called the cyclotomic number of P relative to p (or cyclotomic p-number of P).

Lemma 4. Let P be a finite prime field of characteristic π, n be an integer not
divisible by \(\pi \), and \(P(\xi) \) be the root field over \(P \) of \(x^n - 1 \). Then \(\deg P(\xi)/P = e \) where \(e \) is defined as the exponent to which \(\pi \) belongs modulo \(n \).

Let \(P_f \) be a field of degree \(f \) over \(P \) so its nonzero quantities are roots of \(x^n - 1 = 0 \), \(n = \pi^f - 1 \). Then \(P_f \) contains the \(n \)th roots of unity if \(n \) divides \(\nu \). Conversely, if \(P_f \) contains a primitive \(n \)th root of unity, \(\xi \), the equation \(\nu = gn + r \ (0 \leq r < n) \) leads to \(\xi^n = 1 = \xi^r \) so \(r = 0 \), and \(n \) divides \(\nu \). The smallest value of \(\nu = \pi^f - 1 \) obeying this condition is given by \(f = e \). On the other hand the smallest value surely belongs to \(P_f = P(\xi) \).

Now let \(n = p^i \), where \(p \) is a prime not equal to \(\pi \), and denote the corresponding integer \(e \) of Lemma 4 by \(e_i \). Then the cyclotomic \(p \)-number of \(P \) is the integer \(e \) determined by the conditions \(e_1 = e_2 = \cdots = e_e < e_{e+1} \ (p \ odd) \), \(e_2 = e_3 = \cdots = e_e < e_{e+1} \ (p = 2) \). Hence:

Lemma 5. The cyclotomic \(p \)-number of \(P \) is the maximum integer \(e \) such that \(p^e \) divides \(n^e - 1 \) where \(e \) is the exponent to which \(\pi \) belongs modulo \(p \) if \(p \) is odd, or modulo 4 if \(p = 2 \).

The fact that \(P(\xi_i) < P(\xi_{i+1}) \) for every \(i \geq e \) is a consequence of the following result.

Lemma 6. The extension \(P(\xi_{i+1})/P(\xi_i) \) has degree \(\delta_i = p^i \ (i = 1, 2, \cdots) \).

Writing \(e_i = \epsilon \) we have \(\delta_i = e_{i+1}/\epsilon \) and know(\(^* \)) that \(\delta_i = p^j \cdots \leq i \), \(e_{e+1} = p^e \epsilon \). By Lemma 5, \(\pi^e = 1 + ap^e \) where \(a \) is not divisible by \(p \). A trivial induction shows that

\[
\pi^{p^i} = 1 + a_i p^{e+1}, \quad (a_i, p) = 1,
\]

for \(i = 0, 1, 2, \cdots \). This proves that \(e_{e+1} = p^e \epsilon \).

Lemma 7. If \(p \) is an odd prime and \(P \) is any prime field of characteristic not \(p \), \(P(\xi_p) \) has the structure

\[
P(\xi_p) = P(\xi_1) \times L_q, \quad \deg L_q/P = \text{power of } p,
\]

where \(L_q \) is unique. Moreover, \(L_q = P \) if \(q \) does not exceed the cyclotomic \(p \)-number of \(P \).

The proof of this result is similar to the known(\(^7 \)) proof for the case \(P = R \).

Lemma 8. Let \(p \) be odd and \(q > 1 \). Then the following conditions are equivalent:

(i) \(F(\xi_q) = F(\xi_i), \ 1 \leq i < q \).

(ii) \(F(\xi_q) = F(\xi_{q-1}) = \cdots = F(\xi_1) \).

(iii) \(F \) contains the field \(L_q \) defined by Lemma 7.

(\(^* \)) A. A. Albert, Modern higher algebra, Chicago, 1937, p. 188, Theorem 21. The desired result is obtained by repeated application of this reference theorem.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The condition (iii) implies that $F(\zeta_i)$ contains $L_q(\zeta_i) = P(\zeta_q)$, $F(\zeta_i) = F(\zeta_q)$, so (ii) follows. That (ii) implies (i) is obvious. Now we assume (i) and use Lemma 3 to reduce considerations to the case $F \leq P(\zeta_q) = F(\zeta_i)$. If $q \leq e$ where e is the cyclotomic p-number of P, $L_q = P \leq F$ so (iii) is valid. Now let q be greater than e.

The field $F(\zeta_i)$ is the composite $F \cap P(\zeta_i)$. Denoting the intersection $F \cap P(\zeta_i)$ by F_i, we have

$$\text{deg } F/F_i = \text{deg } F(\zeta_i)/P(\zeta_i) = \text{deg } P(\zeta_i)/P(\zeta_i).$$

Also, $\text{deg } P(\zeta_q)/P = p^n u$, $\text{deg } F/P = p^m v$ for suitable integers $\epsilon, a, u = \text{deg } (P(\zeta_i)/P$, and v a divisor of u. To complete preparations for substituting in (9) note that $P(\zeta_i)/P$ is cyclic, hence possesses a unique subfield of any given degree dividing $p^m u$. Thus: $\text{deg } F_i/P = \gcd[p^m v, p^m u] = p^m v$ where $\mu = \min \{a, \epsilon\}$. From (9), $p^{\epsilon - \mu} = p^\epsilon$ where $\epsilon = \epsilon - \epsilon_i = a - \mu$. Since $q > e$, we have $\epsilon_q - \epsilon_i > 0$, $\mu < a$, $\mu = \epsilon_i$, so $a = \epsilon_q$, $\text{deg } F/P = p^m v$. Every such subfield F of $P(\zeta_q)$ must contain the subfield L_q of degree p^ϵ.

For the case $p = 2$ similar results are obtainable. The extension $P(\zeta_q)/P$ is cyclic of degree a power of 2 if P is finite, and for this case we define

$$L_q = P \text{ if } q \leq e, \quad L_q = P(\zeta_q) \text{ if } q > e,$$

where e is the cyclotomic number of P relative to $p = 2$. For $P = R$ we have $P(\zeta_q) = P(\zeta_2) \times L_q$ where L_q is arbitrarily one of the fields

$$L_q = P(\zeta_q + \zeta^{-1}_q), \quad L_q = P(\zeta_q - \zeta^{-1}_q)$$

and $\text{deg } L_q/P = 2^{v-2}$. We then state without proof:

Lemma 9. Let $p = 2$ and $q > 2$. Then the following conditions are equivalent:

(i) $F(\zeta_q) = F(\zeta_i)$, $2 \leq i < q$.

(ii) $F(\zeta_q) = F(\zeta_{q-1}) = \cdots = F(\zeta_2)$.

(iii) F contains one of the fields L_q above.

3. Determination of the fields. Let G and H be abelian groups of common prime-power order p^a and let F be any field of characteristic not p. In this section all fields F are determined such that $G_F \cong H_F$.

As in (5) we have

$$G_F = \sum_{i=0}^{a} a_i F(\zeta_i), \quad H_F = \sum_{i=0}^{a} b_i F(\zeta_i),$$

so there is a unique integer $q = q(G, H)$ defined as the maximum integer i such that $a_i \neq b_i$. From Theorem 1 this integer is the maximum i such that $m_i \neq n_i$ where m_i and n_i are the numbers of elements of order p^i in G and H, respectively. Thus q is independent of F. Since $m_0 = n_0 = 1$, q is never less than 2, but it may happen that q does not exist, that is, every $m_i = n_i$. In
this case we define \(q = 0 \).

Theorem 2. The group algebras \(G_F \) and \(H_F \) are isomorphic if and only if (\(\alpha \)) holds when \(p \) is odd, and (\(\beta \)) or (\(\gamma \)) holds when \(p = 2 \):

(\(\alpha \)) \(F \cong L_q \) defined by Lemma 7.

(\(\beta \)) \(G \) and \(H \) have the same number of invariants and \(F \) contains one of the fields \(L_q \) defined by Lemma 9.

(\(\gamma \)) \(G \) and \(H \) have unequal numbers, \(\gamma \) and \(\eta \), of invariants and \(F \) contains \(P(\xi_q) \) where \(P \) is the prime subfield of \(F \).

If \(q = 0 \) the theorem is trivial, so we assume \(q > 0 \), hence \(q \geq 2 \). Note that \(G_F \cong H_F \) if and only if \(A \cong B \) where

\[
A = \sum_{i=0}^{q} a_i F(\xi_i), \quad B = \sum_{i=0}^{q} b_i F(\xi_i).
\]

Suppose (\(\alpha \)) holds. Then (Lemma 8) both \(A \) and \(B \) becomes \(F \oplus m F(\xi_i) \) for a suitable integer \(m \), so \(A \cong B \). If \(p = 2 \), \(F(\xi_i) = F \), \(a_i = 2^{-1} \) so

\[
A = 2^q F \oplus \sum_{i=2}^{q} a_i F(\xi_i), \quad B = 2^q F \oplus \sum_{i=2}^{q} b_i F(\xi_i)
\]

whence (\(\beta \)) implies that \(A = 2^q F \oplus m F(\xi_i) \cong B \). If (\(\gamma \)) holds, \(A \) and \(B \) are diagonal over \(F \) and of the same order, hence isomorphic. Conversely, suppose \(A \cong B \) and first let \(p \) be odd. The assumption that \(F(\xi_i) \) is not isomorphic to \(F(\xi_j) \) for \(i < q \) implies that \(A \) has precisely \(a_q \) components \(F(\xi_i) \) and \(B \) has precisely \(b_q \) such components. But then the fact that \(a_q \neq b_q \) conflicts with the isomorphism of \(A \) and \(B \). Hence \(F(\xi_i) = F(\xi_j) \) for \(i < q \) so \(F \cong L_q \). The proofs for \(p = 2 \) are obtained in similar fashion.

The case in which \(F \) is a prime field is interesting.

Theorem 3. Let \(G \) and \(H \) be abelian groups of order \(p^n \). If \(R \) is the rational number field, \(G_R \cong H_R \) if and only if \(G \cong H \). If \(P \) is a finite prime field of characteristic \(\pi \neq p \), \(G_P \cong H_P \) if and only if \(q \leq e \) (where \(e \) is the cyclotomic \(p \)-number of \(P \)) unless \(p = 2 \) and \(G \) and \(H \) have different numbers of invariants. In the latter case \(G_P \cong H_P \) if and only if \(q \leq e \) and \(\pi \equiv 1 \) (mod 4).

For \(F = R \) the decompositions (12) are unique. Hence the condition \(G_R \cong H_R \) implies that \(q = 0 \), and for each integer \(k = p^h \) dividing \(p^n \), \(G \) and \(H \) have the same number of elements of order \(k \). This number is \(N_k(G)\phi(k) \) where \(\phi \) denotes the Euler \(\phi \)-function and \(N_k(G) = N_k \) the number of cyclic subgroups of order \(k \) in \(G \). The numbers \(N_k \) have been determined(8) by formulae which show that the group invariants are determined when the \(N_k \)

are specified. Thus $G \cong H$. The remaining parts of the theorem follow from Theorem 2 and our lemmas.

To compute the "\(q\)-number" directly from the invariants of \(G\) and \(H\), denote the latter by \(p^i_i (i = 1, \ldots, \gamma)\) and \(p^j_i (i = 1, \ldots, \eta)\), respectively, numbered in descending order of magnitude.

Theorem 4. Define \(\lambda\) as the minimum integer \(i\) such that \(e_i \neq f_i\). Then \(q = \max [e_\lambda, f_\lambda]\).

For proof, note that \(G = K \times \bar{G}\), \(H = K \times \bar{H}\) where \(K\) has invariants \(p^\iota\), \(i = 1, \ldots, \lambda - 1\), and those of \(\bar{G}\) and \(\bar{H}\) are evident. Let the common order of \(\bar{G}\) and \(\bar{H}\) be \(\bar{n}\) and let the numbers of elements of order \(p^\iota\) in \(G\), \(H\), and \(K\), respectively, be \(m_i\), \(n_i\), and \(k_i\). Then \(i > e_\lambda\) implies \(m_i = \bar{n}k_i\) and \(i > f_\lambda\) implies \(n_i = \bar{n}k_i\). For definiteness take \(e_\lambda > f_\lambda\), so \(i > e_\lambda\) implies \(m_i = n_i\), \(q \leq e_\lambda\). For \(i = e_\lambda > f_\lambda\), however, \(n_i = \bar{n}k_i\), \(m_i > n_i\). This proves that \(q = e_\lambda\).

Purdue University,
Lafayette, Ind.