Uniqueness theory of Hermite series
Author:
Walter Rudin
Journal:
Trans. Amer. Math. Soc. 70 (1951), 387-403
MSC:
Primary 42.4X
DOI:
https://doi.org/10.1090/S0002-9947-1951-0040467-8
MathSciNet review:
0040467
Full-text PDF
References | Similar Articles | Additional Information
- [1] E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. vol. 43 (1937) pp. 363-371. MR 1563543
- [2] E. F. Beckenbach and R. H. Bing, On generalized convex functions, Trans. Amer. Math. Soc. vol. 58 (1945) pp. 220-230. MR 0013169 (7:116c)
- [3] R. Courant and D. Hilbert, Methoden der mathematischen Physik, Berlin, Springer, 1931.
- [4] A. G. Dominguez, Sobre las series de funciones de Hermite, Union Mathematica Argentina vol. 2 (1938) pp. 1-16.
- [5] E. Hille, Bemerkung zu einer Arbeit des Herrn Müntz, Math. Zeit. vol. 32 (1930) pp. 422-425. MR 1545175
- [6] W. Rudin, Integral representation of continuous functions, Trans. Amer. Math. Soc. vol. 68 (1950) pp. 278-286. MR 0034916 (11:663i)
- [7] S. Saks, Theory of the integral, 2d ed., Warsaw, 1937.
- [8] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publications, vol. 23, 1939.
- [9] G. N. Watson, Notes on generating functions of polynomials. II. Hermite polynomials, J. London Math. Soc. vol. 8 (1933) pp. 194-199.
- [10] E. C. Titchmarsh, The theory of functions, Oxford, 1932.
- [11] F. Wolf, Contributions à la théorie des séries trigonométriques generalisées, Publications de la Faculté des Sciences de l'Université Masaryk, no. 130, 1931, pp. 1-34.
- [12] A. Zygmund, Trigonometrical series, Warsaw, 1935.
- [13] -, On trigonometric integrals, Ann. of Math. vol. 48 (1947) pp. 393-440. MR 0021612 (9:88b)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42.4X
Retrieve articles in all journals with MSC: 42.4X
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1951-0040467-8
Article copyright:
© Copyright 1951
American Mathematical Society