AUTOMORPHISMS OF THE UNIMODULAR GROUP

BY

L. K. HUA AND I. REINER

Notation. Let \(\mathcal{M}_n \) denote the group of \(n \times n \) integral matrices of determinant \(\pm 1 \) (the unimodular group). By \(\mathcal{M}_n^+ \) we denote that subset of \(\mathcal{M}_n \) where the determinant is \(+1 \); \(\mathcal{M}_n^- \) is correspondingly defined. Let \(I^{(n)} \) (or briefly \(I \)) be the identity matrix in \(\mathcal{M}_n \), and let \(X' \) represent the transpose of \(X \). The direct sum of the matrices \(A \) and \(B \) will be represented by \(A + B \);

\[A = B \]

will mean that \(A \) is similar to \(B \). In this paper, we shall find explicitly the generators of the group \(\mathcal{N}_n \) of all automorphisms of \(\mathcal{M}_n \).

1. The commutator subgroup of \(\mathcal{M}_n \). The following result is useful, and is of independent interest.

Theorem 1. Let \(\mathcal{R}_n \) be the commutator subgroup of \(\mathcal{M}_n \). Then trivially \(\mathcal{R}_n \subseteq \mathcal{M}_n^+ \). For \(n = 2 \), \(\mathcal{R}_n \) is of index 2 in \(\mathcal{M}_n^+ \), while for \(n > 2 \), \(\mathcal{R}_n = \mathcal{M}_n^+ \).

Proof. Consider first the case where \(n = 2 \). Define

\[S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \]

It is well known that \(S \) and \(T \) generate \(\mathcal{M}_2^+ \). An element \(X \) of \(\mathcal{M}_2^+ \) is called even if, when \(X \) is expressed as a product of powers of \(S \) and \(T \), the sum of the exponents is even; otherwise, \(X \) is called odd. Since all relations satisfied by \(S \) and \(T \) are consequences of

\[S^2 = -I, \quad (ST)^3 = I, \]

it follows that the parity of \(X \in \mathcal{M}_2^+ \) depends only on \(X \), and not on the manner in which \(X \) is expressed as a product of powers of \(S \) and \(T \). Let \(\mathcal{C} \) be the subgroup of \(\mathcal{M}_2^+ \) consisting of all even elements; then clearly \(\mathcal{C} \) is of index 2 in \(\mathcal{M}_2^+ \). It suffices to prove that \(\mathcal{C} = \mathcal{R}_2 \).

We prove first that \(\mathcal{R}_2 \subseteq \mathcal{C} \). Since the commutator subgroup of a group is always generated by squares, it suffices to show that \(A \in \mathcal{M}_2 \) implies \(A^2 \in \mathcal{C} \). For \(A \in \mathcal{M}_2^+ \), this is clear. If \(A \in \mathcal{M}_2^- \), set \(A = XJ = JY \), where

\[J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]
and X and $Y \in \mathfrak{M}_n^+$. Then $A^2 = XY = XJ^{-1}XJ$. Hence we need only prove that if $X \in \mathfrak{M}_n^+$, X and $J^{-1}XJ$ are of the same parity. This is easily verified for $X = S$ or T; since S and T generate \mathfrak{M}_n^+, and $J^{-1}X_1X_2J = J^{-1}X_1J \cdot J^{-1}X_2J$, the result follows.

On the other hand we can show that $\mathfrak{E} \subseteq \mathfrak{S}_2$. For, \mathfrak{E} is generated by T^2 and ST, since $TS = (ST \cdot T^{-2})^2$. However, $T^2 = TJT^{-1}J^{-1} \in \mathfrak{S}_2$, and therefore also $(T')^{-2} \in \mathfrak{S}_2$. Furthermore, $ST = TST^{-1}(T')^{-2}T^2 \in \mathfrak{S}_2$. This completes the proof for $n = 2$.

Suppose now that $n > 2$, and define

$$R = \begin{pmatrix} 0 & \cdots & 0 & (-1)^{n-1} \\ 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{pmatrix} \in \mathfrak{M}_n^+, \quad S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + I^{(n-2)},$$

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + I^{(n-2)}.$$

(The symbols S and T defined here are the analogues in \mathfrak{M}_n^+ of those defined by (1). It will be clear from the context which are meant.) For $n > 2$ we have (1)

$$T' = [R^{-1}(TR)^{-(n-2)}R(TR)^{n-2}] (TR)^{-1} [R(RR)^{-(n-2)}R^{-1}(TR)^{n-2}](TR) \in \mathfrak{S}_n.$$

Further $S = TST^{-1}(T')^{-2}T \in \mathfrak{S}_n$. Finally, for odd n there exists a permutation matrix P such that $R^2 = P^{-1}RP$, whence $R = R^{-1}P^{-1}RP \in \mathfrak{S}_n$. For even n, R represents the monomial transformation

$$\begin{pmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_2 & x_3 & \cdots & x_n & -x_1 \end{pmatrix},$$

which is a product of

$$\begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_{n-1} & x_n \\ x_2 & -x_1 & x_3 & \cdots & x_{n-1} & x_n \end{pmatrix}, \quad \begin{pmatrix} x_1 & x_2 & x_3 & \cdots & x_n \\ -x_3 & x_2 & x_1 & x_4 & \cdots & x_n \end{pmatrix},$$

$$\begin{pmatrix} x_1 & x_2 & x_3 & x_4 & \cdots & x_n \\ x_4 & x_2 & x_3 & -x_1 & \cdots & x_n \end{pmatrix}, \ldots, \begin{pmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n \\ x_n & x_2 & \cdots & x_{n-1} & -x_1 \end{pmatrix},$$

each factor of which is similar to S (and hence is in \mathfrak{S}_n). Since T and R generate \mathfrak{M}_n^+, the theorem is proved.

Corollary 1. In any automorphism of \mathfrak{M}_n, always $\mathfrak{M}_n^+ \rightarrow \mathfrak{S}_n$.

Proof. For $n > 2$ this is an immediate corollary, since the commutator subgroup goes into itself in any automorphism. For $n = 2$, let $S \rightarrow S_1$ and

Then $ST \in \mathfrak{H}_2$ implies $S_1 T_1 \in \mathfrak{H}_2$, so $\det (S_1 T_1) = 1$. Further, $S^2 = -I$ implies $S_1^2 = -I$, so $\det S_1 = 1$, since the minimum function of S_1 is $x^2 + 1$, and the characteristic function must therefore be a power of $x^2 + 1$. This completes the proof when $n = 2$.

2. Automorphisms of \mathfrak{M}_n^+. We wish to determine the automorphisms of \mathfrak{M}_n. Since every automorphism of \mathfrak{M}_n takes W into itself, we shall first determine all automorphisms of \mathfrak{M}_2^+. For $X \in \mathfrak{M}_2^+$, define $\epsilon(X) = +1$ or -1, according as X is even or odd.

Theorem 2. Every automorphism of \mathfrak{M}_2^+ is of one of the forms

(I) $X \in \mathfrak{M}_2^+ \to AXA^{-1}$ \hspace{1cm} $A \in \mathfrak{M}_2$

or

(II) $X \in \mathfrak{M}_2^+ \to \epsilon(X) \cdot AXA^{-1}$, \hspace{1cm} $A \in \mathfrak{M}_2$.

That is, the automorphism group of \mathfrak{M}_2^+ is generated by the set of “inner” automorphisms $X \to AXA^{-1}$ ($A \in \mathfrak{M}_2$) and the automorphism $X \to \epsilon(X) \cdot X$.

Proof. Let τ be an automorphism of \mathfrak{M}_2^+; it certainly leaves $I(2)$ and $-I(2)$ individually unaltered. Let S and T (as given by (1)) be mapped into S^τ and T^τ. Then $(S^\tau)^2 = -I$. Since all second order fixed points are equivalent, there exists a matrix $B \in \mathfrak{M}_2$ such that $BSB^{-1} = S$. Instead of τ, consider the automorphism $\tau': X \to BX^\tau B^{-1}$, which leaves S unaltered. Assume hereafter that τ leaves S invariant. (It is this sort of replacement of τ by τ' which we shall mean when we refer to some property holding “after a suitable inner automorphism.”)

Set $T^\tau = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

From $(ST)^4 = I$ we obtain $(ST^\tau)^4 = I$, whence $b - c = 1$. Since $\det T^\tau = 1$, we get $ad = 1 + bc = c^2 + c + 1 > 0$.

Set $N = |a + d|$. If $N \geq 3$, consider the elements generated by S and T^τ (mod N). Since $a + d = 0$ (mod N), we find that $(T^\tau)^2 \equiv I$ (mod N). Furthermore $(ST^\tau)^2 \equiv I$ (mod N); therefore S and T^τ generate (mod N) at most the 12 elements

$\pm I, \pm S, \pm T^\tau, \pm ST^\tau, \pm T^\tau S, \pm ST^\tau S$.

But if τ is an automorphism, S and T^τ generate \mathfrak{M}_2^+, which has more than 12 elements (mod N) for $N \geq 3$.

Therefore $N \leq 2$. Since $ad > 0$, either $a = d = 1$ or $a = d = -1$, and thence $b = 1, c = 0$ or $b = 0, c = -1$. There are 4 possibilities for T^τ:
Since S and T generate SD_3^+, to determine τ it is sufficient to specify S^τ and T^τ. Thus every automorphism of SD_3^+ is of the form $S \rightarrow BSB^{-1}$, $T \rightarrow BTB^{-1}$ (for some i, $i = 0, 1, 2, 3$), where $B \in SD_2$. If J is given by (2), we have:

$$T_0 = T, \quad T_1 =STS^{-1}, \quad T_2 = -JTJ^{-1}, \quad T_3 = -SJTS^{-1},$$

and also $S = -JSJ^{-1}$. The possible automorphisms are:

- $i = 0$: $S \rightarrow BSB^{-1}$, $T \rightarrow BTB^{-1}$.
- $i = 1$: $S \rightarrow BS \cdot S \cdot S^{-1}B^{-1}$, $T \rightarrow BS \cdot T \cdot S^{-1}B^{-1}$.
- $i = 2$: $S \rightarrow -BJ \cdot S \cdot J^{-1}B^{-1}$, $T \rightarrow -BJ \cdot T \cdot J^{-1}B^{-1}$.
- $i = 3$: $S \rightarrow -BSJ \cdot S \cdot J^{-1}S^{-1}B^{-1}$, $T \rightarrow -BSJ \cdot T \cdot J^{-1}S^{-1}B^{-1}$.

These automorphisms are of two types: for $i = 0$ and 1, $S \rightarrow ASA^{-1}$, $T \rightarrow A^2A^{-1}$, which imply that $X \in SD_3^+ \rightarrow AXA^{-1}$, for $i = 2$ and 3, $S \rightarrow ASA^{-1}$, $T \rightarrow A^2A^{-1}$, which imply that $X \in SD_3^+ \rightarrow e(X) \cdot AXA^{-1}$. This completes the proof.

3. Automorphisms of SD_3^+ and SD_6. We are now faced with the problem of determining the automorphisms of SD_6 from those of SD_3^+. We shall have the same problem for SD_4 and SD_6. As we shall see, the passage from SD_3^+ to SD_6 is trivial, and most of the difficulty lies in determining the automorphisms of SD_6. In this paper we shall prove the following results:

Theorem 3. For $n > 2$, the group of those automorphisms of SD_6 which are induced by automorphisms of SD_3^+ is generated by

(i) the set of all “inner” automorphisms

$$X \in SD_3^+ \rightarrow AXA^{-1} \quad (A \in SD_3),$$

and

(ii) the automorphism

$$X \in SD_3^+ \rightarrow X^\tau.$$

Remark. When $n = 2$, the automorphism (ii) is the same as $X \rightarrow SXS^{-1}$, hence is included in (i). The automorphism $X \rightarrow e(X) \cdot X$ occurs only for $n = 2$. Furthermore, for odd n all automorphisms of SD_3^+ are induced by automorphisms of SD_3.

Theorem 4. The generators of SD_6 are

(i) the set of all inner automorphisms

$$X \in SD_3 \rightarrow AXA^{-1} \quad (A \in SD_3),$$
(ii) the automorphism $X \in M_n \rightarrow X^{t-1},$
(iii) for even n only, the automorphism
$$X \in M_n \rightarrow (\det X) \cdot X,$$
and
(iv) for $n = 2$ only, the automorphism
$$X \in M_2^+ \rightarrow e(X) \cdot X, \quad X \in M_2^- \rightarrow e(JX) \cdot X,$$
where J is given by (2).

Further, when $n = 2$, the automorphism (ii) may be omitted from this list.

Let us show that Theorem 4 is a simple consequence of Theorem 3. Let τ be any automorphism of M_n. By Corollary 1, τ induces an automorphism on M_n^+ which, by Theorems 2 and 3, can be written as:
$$X \in M_n^+ \rightarrow \alpha(X) \cdot AXA^{-1},$$
where $A \in M_n, \alpha(X) = 1$ for all X or $\alpha(X) = e(X)$ for all X (this can occur only when $n = 2$), and where either $X^* = X$ for all X or $X^* = X^{-1}$ for all X.

Let Y and $Z \in M_n$; then
$$YZ^r = (YZ)^r = \alpha(YZ) \cdot (YZ)^A A^{-1},$$
whence
$$Y^r = \alpha(YZ) \cdot AYZA^{-1}(Z^r)^{-1}.$$ Let $Z \in M_n^-$ be fixed; then
$$Y^r = \alpha(YZ) \cdot AYZB$$
for all $Y \in M_n^-$,
where A and B are independent of Y. But then
$$AY^*B \cdot AYZB = (Y^r)^2 = (Y^r)^r = \alpha(Y^2)A(Y^2)A^{-1},$$
so that
$$(BA)Y^*(BA) = \alpha(Y^2)Y^r.$$ Since this is valid for all $Y \in M_n^-$, we see that of necessity $\alpha(Y^2) = 1$ for all Y, and $BA = \pm I$. This shows that either $Y^r = \alpha(YZ) \cdot AYZA^{-1}$ for all $Y \in M_n^-$, or $Y^r = -\alpha(YZ) \cdot AYZA^{-1}$ for all $Y \in M_n^-$. If $n = 2$ and $\alpha(YZ) = e(YZ)$, it is trivial to verify that either $e(YZ) = e(JY)$ for all $Y \in M_2^-$ or $e(YZ) = -e(JY)$ for all $Y \in M_2^-.$

The remainder of the paper will be concerned with proving Theorem 3.

4. Canonical forms for involutions. In the proof of Theorem 3 we shall use certain canonical forms of involutions under similarity transformations.

Lemma 1. Under a similarity transformation, every involution $X \in M_n$ such
that \(X^2 = I^{(n)} \) can be brought into the form

\[
W(x, y, z) = L + \cdots + L + (-1)^y + I^{(z)},
\]

where \(2x + y + z = n \) and

\[
L = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.
\]

Proof. We prove first, by induction on \(n \), that every \(X \in \mathbb{M}_n \) satisfying \(X^2 = I \) is similar to a matrix of the form

\[
\begin{pmatrix} I^{(t)} & 0 \\ M & -I^{(n-t)} \end{pmatrix}.
\]

For \(n = 1 \) and 2, this is trivial. Let the theorem be proved for \(n \), and assume that \(X^2 = I^{(n+1)} \), where \(n \geq 2 \). Then \(X^2 - I = 0 \), or \((X - I)(X + I) = 0\). If \(X - I \) is nonsingular, then \(X = -I \) and the result is obvious. Hence, supposing that \(X - I \) is singular (so that \(\lambda = 1 \) is a characteristic root of \(X \)), there exists a primitive column vector \(t = (t_1, \ldots, t_{n+1})' \) with integral elements such that \(t'X = t' \). Choose \(P \in \mathbb{M}_{n+1} \) with first row \(t' \). Then

\[
PXP^{-1} = \begin{pmatrix} 1 & n' \\ \xi & X_1 \end{pmatrix},
\]

where \(n \) denotes a vector whose components are 0; thus

\[
X = \begin{pmatrix} 1 & n' \\ \xi & X_1 \end{pmatrix}.
\]

But

\[
I^{(n+1)} = X^2 = \begin{pmatrix} 1 & n' \\ (I + X_1)\xi & X_1^2 \end{pmatrix}
\]

shows that \(X_1^2 = I^{(n)} \) and \((I + X_1)\xi = n\). By the induction hypothesis,

\[
X_1 = \begin{pmatrix} I^{(m)} & 0 \\ M & -I^{(n-m)} \end{pmatrix},
\]

and, after making the similarity transformation, we have (as a consequence of \((I + X_1)\xi = n\))

\[
\begin{pmatrix} 2I^{(m)} & 0 \\ \xi M & 0 \end{pmatrix} = n.
\]

Therefore
\[\xi = (0, \cdots, 0, *, \cdots, *)', \]

where * denotes an arbitrary element. Thus

\[X = \begin{pmatrix}
1 & n' \\
0 & I^{(m)} \\
\vdots & 0 \\
* & M \\
\end{pmatrix} = \begin{pmatrix}
I^{(m+1)} & 0 \\
M & -I^{(n-m)} \\
\end{pmatrix}. \]

This completes the first part of the proof.

Suppose we now subject (5) to a further similarity transformation by

\[\begin{pmatrix}
A^{(i)} \\
C \\
D^{(n-i)} \\
\end{pmatrix} \in M_n. \]

A simple calculation shows that we obtain a matrix given by (5) with \(M \) replaced by \(M' \), where \(M' = 2CA^{-1} + DMA^{-1} \). Choosing firstly \(C = 0, A \) and \(D \) unimodular, we find that \(M' = DMA^{-1} \), and by proper choice of \(A \) and \(D \) we can make \(M' \) diagonal. Supposing this done, secondly put \(A = I, D = I; \) we find that \(M' = M + 2C \). Since \(C \) is arbitrary, we can bring \(M' \) into the form

\[\begin{pmatrix}
I^{(k)} & 0 \\
0 & 0 \\
\end{pmatrix}, \]

where \(k \) is the rank of \(M \). Since we can interchange two rows and simultaneously interchange the corresponding columns by means of a similarity transformation, the lemma follows.

It is easily seen that

\[W(x, y, z) = W(x, y, z) \]

only when \(x = \bar{x}, y = \bar{y}, \) and \(z = \bar{z} \). Furthermore, changing the order of terms in the direct summation does not alter the similarity class. The number \(A_n \) of nonsimilar involutions in \(M_n \) is therefore equal to the number of solutions of \(2x + y + z = n, x \geq 0, y \geq 0, z \geq 0 \). This gives

\[A_n = \begin{cases}
\binom{n + 2}{2}, & n \text{ even}, \\
\frac{(n + 1)(n + 3)}{4}, & n \text{ odd}.
\end{cases} \]
Let \(B_n \) be the number of nonsimilar involutions in \(\mathbb{M}^+_n \), where the similarity factors are in \(\mathbb{M}_n \). One easily obtains

\[
B_n = \begin{cases}
\frac{(A_n - 1)}{2}, & \text{if } n \equiv 0 \pmod{4}, \\
A_n/2, & \text{otherwise}.
\end{cases}
\]

5. Automorphisms of \(\mathbb{M}^+_n \). We shall now prove Theorem 3 for \(n = 3 \). Let

\[
I_1 = \begin{pmatrix} -1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 \end{pmatrix} \in \mathbb{M}^+_3.
\]

Then \(I_2^3 = I^{(3)} \). Let \(\tau \) be any automorphism of \(\mathbb{M}^+_3 \) and let \(X = I_1 \); then \(X^2 = I^{(3)} \).

By Lemma 1, the matrices \(I_1, I_2, \) and \(I^{(3)} \) form a complete system of nonsimilar involutions in \(\mathbb{M}^+_3 \). Therefore

\[
X = I_1 \text{ or } I_2.
\]

After a suitable inner automorphism, we may assume that either \(I_1 \to I_1 \) or \(I_1 \to I_2 \). We shall show that this latter case is impossible by considering the normalizer groups of \(I_1 \) and \(I_2 \). The normalizer group of \(I_1 \), that is, the group of matrices \(\in \mathbb{M}^+_3 \) which commute with \(I_1 \), consists of all elements of \(\mathbb{M}^+_3 \) of the form

\[
\begin{pmatrix}
a & b & 0 \\
c & d & 0 \\
0 & 0 & e
\end{pmatrix},
\]

and is isomorphic to \(\mathbb{M}_3 \). That of \(I_2 \) consists of all elements of \(\mathbb{M}^+_3 \) of the form

\[
\begin{pmatrix}
a & 0 & 0 \\
(a-e)/2 & e & f \\
-h/2 & h & i
\end{pmatrix},
\]

and is isomorphic to that subgroup \(\mathfrak{G} \) of \(\mathbb{M}_3 \) consisting of the elements

\[
\begin{pmatrix}
e & f \\
h & i
\end{pmatrix} \in \mathbb{M}_3, \quad \begin{cases}
e \equiv 1 \\
h \equiv 0 \pmod{2}.
\end{cases}
\]

Since \(e \) and \(i \) are both odd, \(\mathfrak{G} \) contains no element of order 3, and hence is not isomorphic to \(\mathbb{M}_3 \). But then \(I_1 \to I_2 \) is impossible.

We may assume thus that after a suitable inner automorphism, \(I_1 \) is invariant. Thence elements of \(\mathbb{M}^+_3 \) which commute with \(I_1 \) map into elements of the same kind, so that
(X' \ n') \in \mathfrak{M}_3^+ \rightarrow (X' \ n') \in \mathfrak{M}_3^+\rightarrow (X' \ n').

Since this induces an automorphism $X \rightarrow X'$ on \mathfrak{M}_3, we see that $\det X' = \det X$, and hence the plus signs go together, and so do the minus signs. By Theorem 2 and that part of Theorem 4 which follows from Theorem 2, there exists a matrix $A \in \mathfrak{M}_3$ such that $X' = \pm AXA^{-1}$; here, the plus sign certainly occurs when X is an even element of \mathfrak{M}_3^+, and if the minus sign occurs for one odd element of \mathfrak{M}_3^+, then it occurs for every odd element of \mathfrak{M}_3^+. By use of a further inner automorphism using the factor $A^{-1} + I^{(1)}$, we may assume that

(8) \[
\begin{pmatrix} X \ n' \\ n \pm 1 \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm X \ n' \\ n \pm 1 \end{pmatrix},
\]

so that

\[
M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow M \quad \text{or} \quad M \rightarrow N = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
\]

Since

\[
N = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},
\]

we may assume (after a further inner automorphism, if necessary) that I_1, M, and N are all invariant under the automorphism (but (8) need not hold).

Thus, after a suitably chosen inner automorphism, we have I_1, M, and N invariant. Therefore there exist A, B, and $C \in \mathfrak{M}_3$ such that

(9) \[
\begin{pmatrix} X \ n' \\ n \pm 1 \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm AXA^{-1} \ n' \\ n \pm 1 \end{pmatrix},
\]

\[
\begin{pmatrix} \pm 1 \ n' \\ n \ X \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \pm 1 \ n' \\ n \pm BXB^{-1} \end{pmatrix},
\]

\[
\begin{pmatrix} a \ 0 \ b \\ 0 \pm 1 \ 0 \\ c \ 0 \ d \end{pmatrix} \in \mathfrak{M}_3^+ \rightarrow \begin{pmatrix} \alpha \ 0 \ \beta \\ \gamma \ 0 \ \delta \end{pmatrix},
\]

where

\[
\begin{pmatrix} \alpha \ \beta \\ \gamma \ \delta \end{pmatrix} = \pm C \begin{pmatrix} a \ b \\ c \ d \end{pmatrix} C^{-1},
\]

and $n = (0, 0)'$. Here, the $+1$ on the left goes with the $+1$ on the right al-
ways (and the -1's go together); further, when X is an even element of \mathbb{M}_2^+, the plus sign occurs before AXA^{-1}, BXB^{-1}, and CXC^{-1}, while if the minus sign occurs before one of these for any odd $X \in \mathbb{M}_2^+$, it occurs there for every odd $X \in \mathbb{M}_2^+$.

Now we may assume that at most one of A, B, and C has determinant -1; for if both A and B (say) have determinant -1, apply a further inner automorphism (with factor N) which leaves I_1, M, and N invariant and changes the signs of det A and det B. Suppose hereafter, without loss of generality, that det $A = $ det $B = 1$.

Next, N is invariant, but by (9) goes into

$$
\pm A \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.
$$

This gives two possibilities:

$$
A = I^{(2)} \quad \text{or} \quad \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

The same holds true for B (but not necessarily for C, since det $C = \pm 1$).

Suppose firstly that either A or B is $I^{(2)}$, say $A = I^{(2)}$. Then

$$
T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \pm \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

Case 1. T invariant. Then

$$
\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}
$$

are both invariant. (The first matrix is invariant in virtue of the remarks after (9); the second is invariant because it is M times the first.) For either possible choice of B we find that

$$
\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 0 \\ 0 & \pm 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$
1951] AUTOMORPHISMS OF THE UNIMODULAR GROUP 341

Therefore
\[
U = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}
\]
is mapped into
\[
\begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{pmatrix} = \begin{cases} U, & \text{if } + \text{ is used,} \\
V, & \text{if } - \text{ is used,} \end{cases}
\]
where \(V = I_3 U T_1^{-1} \). Thus, in this case, \(T \rightarrow T = I_3 T T_1^{-1} \), and either \(U \rightarrow U \) or \(U \rightarrow I_3 U T_1^{-1} \). Since \(T \) and \(U \) generate \((9) \mathbb{M}_3^+\), the automorphism is inner.

Case 2.

\[
T \rightarrow \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

Then
\[
\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},
\]
and one finds in this case that
\[
U \rightarrow \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix} \text{ or } \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.
\]

If we set \(Z = T U^2 \), then
\[
(10) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (UZ^{-1})^2 UZ^2.
\]

Now certainly the left side of (10) maps into
\[
\begin{pmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]

(9) L. K. Hua and I. Reiner, loc. cit.
whereas, knowing \(T^r \) and \(U^r \), we can compute \(Z^r \) and thence can find the image of the right side of (10). We readily find (for either value of \(U^r \)) that the right side of (10) maps into

\[
\begin{pmatrix}
1 \\
3 \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \\
. \
\end{pmatrix},
\]

and hence we have a contradiction.

Therefore case 2 cannot occur, and so if either \(A \) or \(B \) equals \(I^{(2)} \), the automorphism is inner. Suppose hereafter that

\[
A = B = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
\]

In this case we have

\[
T \rightarrow \left(\pm \begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix} \right) \begin{pmatrix}
0 \\
0 \\
1
\end{pmatrix}.
\]

Case 1.

\[
T \rightarrow \begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Then as before

\[
\begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\text{ and } \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{pmatrix}
\]

are invariant, and again \(U^r = U \) or \(V \). After a further inner automorphism by a factor of \(I_1 \) (in the latter case) we also have \(U \rightarrow U \). But then

\[
T \rightarrow T'^{-1}, \quad U \rightarrow U'^{-1}.
\]

(This automorphism is easily shown to be a non-inner automorphism.)

Case 2.

\[
T \rightarrow \begin{pmatrix}
-1 & 0 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Then
and again we find that there are two possibilities for U^r, each of which leads to a contradiction, just as in case 2. Therefore Theorem 3 holds when $n = 3$.

6. A fundamental lemma. Theorem 3 will be proved by induction on n; the result has already been established for $n = 2$ and 3. In going from $n - 1$ to n, the following lemma is basic:

Lemma 2. Let $n \geq 4$, and define $J_1 = (-1)^{n-1} I$. In any automorphism τ of \mathcal{M}_n, $J_1^r = \pm AJ_1A^{-1}$ for some $A \in \mathcal{M}_n$.

Proof. By Corollary 1, $J_1^r \in \mathcal{M}_n^+$, and J_1^r is an involution. After a suitable inner automorphism, we may assume that $J_1^r = W(x, y, z)$ (as defined by (4)), where $2x + y + z = n$ and $x + y$ is odd. Every element of \mathcal{M}_n which commutes with J_1 maps into an element of \mathcal{M}_n which commutes with W. Every matrix in \mathcal{M}_n^+ maps into a matrix in \mathcal{M}_n^+. Combining these facts, we see that the group G_1 consisting of those elements of \mathcal{M}_n^+ which commute with J_1 is isomorphic to G_2, the corresponding group for W. If we prove that this can happen only for $x = 0, y = 1, z = n - 1$ or $x = 0, y = n - 1, z = 1$, the result will follow.

The group G_1 consists of the matrices in \mathcal{M}_n^+ of the form $(\pm 1)^r X_1$, $X_1 \in \mathcal{M}_{n-1}$, and so clearly $G_1 \cong \mathcal{M}_{n-1}$.

The group G_2 is easily found to consist of all matrices $C \in \mathcal{M}_1^+$ of the form (we illustrate the case where $x = 2$):

$$\begin{bmatrix}
 a_1 & 0 & a_2 & 0 & \cdots & 0 & 2\beta_1 & \cdots & 2\beta_z \\
 a_1 - d_1 & d_1 & a_2 - d_2 & d_2 & \alpha_1 & \cdots & \alpha_y & \beta_1 & \cdots & \beta_z \\
 2 & d_3 & a_4 & 0 & 0 & \cdots & 0 & 2\delta_1 & \cdots & 2\delta_z \\
 a_3 - d_3 & d_3 & a_4 - d_4 & d_4 & \gamma_1 & \cdots & \gamma_y & \delta_1 & \cdots & \delta_z \\
 \epsilon_1 & -2\epsilon_1 & \xi_1 & -2\xi_1 & \cdots & \cdots & U & 0 \\
 \epsilon_y & -2\epsilon_y & \xi_y & -2\xi_y & \cdots & \cdots & \eta_1 & \theta_1 & 0 \\
 \cdots & 0 \\
 \eta_z & 0 & & & & & & & & \eta_z & 2x & \theta_z & 0 \\
\end{bmatrix}$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
For the moment put
\[K = \left(\begin{array}{cc} 1 & 0 \\ -1/2 & 1 \end{array} \right) + \cdots + \left(\begin{array}{cc} 1 & 0 \\ -1/2 & 1 \end{array} \right) + I^{(n-2z)}. \]

Then a simple calculation gives:

\[KCK^{-1} = \left[\begin{array}{cccc} a_1 & 0 & a_2 & 0 & 0 & \cdots & 0 & 2\beta_1 \cdots 2\beta_z \\
0 & d_1 & 0 & d_2 & \alpha_1 \cdots \alpha_y & 0 & \cdots & 0 \\
a_3 & 0 & a_4 & 0 & 0 & \cdots & 0 & 2\delta_1 \cdots 2\delta_z \\
0 & d_3 & 0 & d_4 & \gamma_1 \cdots \gamma_y & 0 & \cdots & 0 \\
0 & -2\epsilon_1 & 0 & -2\xi_1 & \cdots & \cdots & \cdots & U & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots & \ddots \\
0 & -2\epsilon_y & 0 & -2\xi_y & \cdots & \cdots & \cdots & 0 & V \\
\eta_1 & 0 & \theta_1 & 0 & \cdots & \cdots & \cdots & 0 & \theta_1 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \ddots & \ddots & \vdots & \ddots \\
\eta_z & 0 & \theta_z & 0 & \cdots & \cdots & \cdots & 0 & \theta_z \\
\end{array} \right] \]

and so \(C \) is similar to

\[\left[\begin{array}{ccc} a_1 & a_2 & 2\beta_1 \cdots 2\beta_z \\
a_3 & a_4 & 2\delta_1 \cdots 2\delta_z \\
\eta_1 & \theta_1 & \vdots \\
\eta_z & \theta_z & \vdots \\
\end{array} \right] \] + \[\left[\begin{array}{ccc} d_1 & d_2 & \alpha_1 \cdots \alpha_y \\
d_3 & d_4 & \gamma_1 \cdots \gamma_y \\
-2\epsilon_1 & -2\xi_1 & \vdots \\
-2\epsilon_y & -2\xi_y & \vdots \\
U & \vdots & \ddots \\
\end{array} \right] \]

with a fixed similarity factor depending only on \(W \). Therefore \(\mathcal{G}_2 \cong \mathcal{G} \), where \(\mathcal{G} = \mathcal{G}(x, y, z) \) is the group of matrices in \(\mathcal{M}^+ \) of the form

\[\left[\begin{array}{cc} S_1 & 2R_1 \\
Q_1 & T_1 \end{array} \right] z + \left[\begin{array}{cc} S_2 & Q_2 \\
2R_2 & T_2 \end{array} \right] y, \]

where \(S_1 \equiv S_2 \) (mod 2). Here \(2x+t+y+z=n \) and \(x+y \) is odd.

We wish to prove that \(\mathcal{M}_{n-1} \cong \mathcal{G}(x, y, z) \) only when \(x=0, y=1, z=n-1 \) or \(x=0, y=n-1, z=1 \). In order to establish this, we shall prove that in all other cases the number of involutions in \(\mathcal{G} \) which are nonsimilar in \(\mathcal{G} \) is greater than the number of involutions in \(\mathcal{M}_{n-1} \) which are nonsimilar in \(\mathcal{M}_{n-1} \);
this latter number is, of course, A_{n-1} (given by (6)).

We shall briefly denote the elements of \mathfrak{O} by $A + B$, where

\[A = \begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}. \]

If $A_1 + B_1$ and $A_2 + B_2$ are two involutions in \mathfrak{O}, where either

\[A_1 \neq A_2 \]

in \mathcal{M}_{x+z} or

\[B_1 \neq B_2 \]

in \mathcal{M}_{x+y}, then certainly

\[A_1 + B_1 \neq A_2 + B_2 \]

in \mathfrak{O} (these may be similar in \mathcal{M}_{n}, however). Therefore, the matrices $A + B$, where

\[A = I^{(a_1)} + (-1)^{(b_1)} + L + \cdots + L, \quad \text{(c_1 terms)} \]
\[B = I^{(a_2)} + (-1)^{(b_2)} + L + \cdots + L, \quad \text{(c_2 terms)} \]

obtained by taking different sets of values of $(a_1, b_1, c_1, a_2, b_2, c_2)$, if they lie in \mathfrak{O}, are certainly nonsimilar in \mathfrak{O}. Here we have

\[a_1 + b_1 + 2c_1 = x + z, \quad a_2 + b_2 + 2c_2 = x + y, \quad b_1 + b_2 + c_1 + c_2 \text{ even.} \]

If $x \neq 0$, we impose the further restriction that $c_1 \leq (z+1)/2$, $c_2 \leq (y+1)/2$, and that in B instead of L we use L' These conditions will insure that $A + B \subseteq \mathfrak{O}$. We certainly do not (in general) get all of the nonsimilar involutions of \mathfrak{O} in this way, but instead we obtain only a subset thereof. Call the number of such matrices N.

For $x=0$, we have $N = B_y B_z + (A_y - B_y)(A_z - B_z)$. Since y is odd, $A_y = 2B_y$, and therefore

\[N = B_y A_z = B_y A_{n-y}. \]

Case 1. n even. Then $N = (y+1)(y+3)(n-y+1)(n-y+3)/32$. If neither y nor $n-y$ is 1 (certainly neither can be zero), then

\[(y + 1)(n - y + 1) \geq 4(n - 2) \quad \text{and} \quad (y + 3)(n - y + 3) \geq 6n, \]

so that

\[N \geq (24/32) n(n - 2). \]

For $n = 4$, $x = 0$, either $y = 1$ or $z = 1$. For $n \geq 6$, we have $N > A_{n-1}$. Hence in
this case \mathfrak{G} is not isomorphic to \mathfrak{M}_{n-1}. (If either y or $n-y=1$, then $W(x, y, z) = \pm J_1$.)

Case 2. n odd. Then $N = (y+1)(y+3)(n-y+2)^2/32$. We find again that $N > A_{n-1}$ for $n \geq 5$.

This settles the cases where $x = 0$. Suppose that $x \neq 0$ hereafter. Then N is the number of solutions of

$$a_1 + b_1 + 2c_1 = x + z, \quad a_2 + b_2 + 2c_2 = x + y, \quad b_1 + b_2 + c_1 + c_2 \text{ even},$$

$$0 \leq c_1 \leq \frac{z+1}{2}, \quad 0 \leq c_2 \leq \frac{y+1}{2}.$$

Using $\lfloor r \rfloor$ to denote the greatest integer less than or equal to r, we readily find that N is given by

$$\frac{1}{2} \left[\frac{z+3}{2} \right] \left[\frac{y+3}{2} \right] \left(x + z + 1 - \left\lfloor \frac{z+1}{2} \right\rfloor \right) \left(x + y + 1 - \left\lfloor \frac{y+1}{2} \right\rfloor \right).$$

By considering separately the cases where y and z are both even, one even and one odd, and so on, it is easy to prove that $N \geq A_{n-1}$ in all cases except when both y and z are zero. Leaving aside this case for the moment, consider the matrix $A_0 + I^{(x+y)} \in \mathfrak{G}$, where $A_0 \in \mathfrak{M}_{x+z}$ is given by

$$A_0 = \begin{bmatrix}
1 & 2 & 2 & \cdots & 2 \\
0 & -1 & 0 & \cdots & 0 \\
0 & 0 & -1 & \cdots & 0 \\
& & & \ddots & \ddots \\
0 & 0 & 0 & \cdots & -1 \\
\end{bmatrix}.$$

The matrix $A_0 + I^{(x+y)}$ is certainly an involution in \mathfrak{G}. Since, in \mathfrak{M}_{x+z},

$$A_0 = \begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & -1 & \cdots & 0 \\
& & \ddots & \ddots \\
0 & 0 & \cdots & -1 \\
\end{bmatrix} = A_1,$$

$A_0 + I^{(x+y)}$ can be similar (in \mathfrak{G}) only to that matrix (counted in the N matrices) of the form $A_1 + I^{(x+y)}$. But from

$$A_1 \cdot \begin{bmatrix}
a_1 & a_2 & \cdots & a_x & 2b_1 & \cdots & 2b_z \\
& & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} = \begin{bmatrix}
a_1 & a_2 & \cdots & a_x & 2b_1 & \cdots & 2b_z \\
& & \cdots & \cdots & \cdots & \cdots & \cdots \\
& & & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix} \cdot A_0$$

we obtain
which is impossible. Hence \mathfrak{G} contains at least $N+1$ nonsimilar involutions, and therefore \mathfrak{G} is not isomorphic to \mathfrak{M}_{n-1} in these cases.

We have left only the case $y = z = 0$, $x = n/2$; then n is singly even. Here we may choose $A = W(c_1, b_1, a_1)$, $B = W(c_2, b_2, a_2)$, where

$$a_1 + b_1 + 2c_1 = x, \quad a_2 + b_2 + 2c_1 = x, \quad b_1 + b_2 \text{ even.}$$

Then $A + B \not\in \mathfrak{G}$, and the various matrices are nonsimilar. The number of such matrices is $(x+1)(x+2)(x+3)/12$, which is greater than A_{n-1} for $n \geq 14$. For $n = 6$, \mathfrak{M}_{n-1} contains an element of order 5, while \mathfrak{G} does not. For $n = 10$, \mathfrak{M}_{n-1} contains an element of order 7, while \mathfrak{G} does not. This completes the proof of the lemma.

7. Proof of Theorem 3. We are now ready to give a proof of Theorem 3 by induction on n. Hereafter, let $n \geq 4$ and suppose that Theorem 3 holds for $n - 1$. If τ is any automorphism of \mathfrak{M}_n, by Corollary 1 and Lemma 2 we know that τ takes \mathfrak{M}_n^+ into itself, and $J_1^\tau = \pm AJ_1A^{-1}$. If we change τ by a suitable inner automorphism, then we may assume that $J_1 \rightarrow \pm J_1$. When n is odd, certainly $J_1 \rightarrow J_1$; when n is even, by multiplying τ by the automorphism $X \in \mathfrak{M}_n \rightarrow (\operatorname{det} X) \cdot X$ if necessary, we may again assume $J_1 \rightarrow J_1$.

Therefore, every $M \in \mathfrak{M}_n^+$ which commutes with J_1 goes into another such element, that is,

$$(\begin{pmatrix} \pm 1 & n' \\ n & X \end{pmatrix})^\tau = \begin{pmatrix} \pm 1 & n' \\ n & X^\tau \end{pmatrix}.$$

Since this induces an automorphism on \mathfrak{M}_{n-1}, we have $\det X^\tau = \det X$, so that the plus signs go together, as do the minus signs. Furthermore, by our induction hypothesis,

$$X^\tau = \pm AX^*A^{-1},$$

where $A \in \mathfrak{M}_{n-1}$ and either $X^* = X$ for all $X \in \mathfrak{M}_{n-1}$ or $X^* = X'^{-1}$ for all $X \in \mathfrak{M}_{n-1}$; here the minus sign can occur only for $X \in \mathfrak{M}_{n-1}$, and if it occurs for one such X, it occurs for all $X \in \mathfrak{M}_{n-1}$. After changing our original automorphism by a factor of $I^{(1)} \pm A^{-1}$, we may assume that $X^\tau = \pm X^*$. Let J_n be obtained from $I^{(n)}$ by replacing the nth diagonal element by -1. Then

$$J_nJ = \begin{pmatrix} -1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \cdot & \cdot & \cdot & \cdots & \cdot \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & n' \\ n & \pm \begin{pmatrix} 1 & \cdots & 0 & 0 \\ \cdot & \cdots & 0 & 0 \\ 0 & \cdots & 1 & 0 \\ 0 & \cdots & 0 & -1 \end{pmatrix} \end{pmatrix}.$$
The minus sign here is impossible by Lemma 2, since \(n \geq 4 \). Hence \(J_1J_n \) is invariant, and therefore so is \(J_n \). By the same reasoning all of the \(J_\nu \) (\(\nu = 1, \cdots, n \)) are invariant.

From the above remarks we see that for \(X \in \mathcal{M}_{n-1}^+ \),

\[
\begin{pmatrix}
1 & n' \\
n & X
\end{pmatrix}^r = \begin{pmatrix}
1 & n' \\
A_1X*A_1^{-1} & 1
\end{pmatrix}, \quad \cdots, \quad \begin{pmatrix}
X & n' \\
n' & 1
\end{pmatrix}^r = \begin{pmatrix}
A_nX*A_n^{-1} & n \\
n' & 1
\end{pmatrix},
\]

where \(A_\nu \in \mathcal{M}_{n-1} \), and in fact \(A_1 = I \). Now suppose that \(Z \in \mathcal{M}_{n-2}^+ \), and form \(I^{(2)}Z \). Since it commutes with both \(J_1 \) and \(J_2 \), its image must do likewise. But then

\[
A_1\begin{pmatrix}
1 & n' \\
n & Z
\end{pmatrix}A_1^{-1} = \begin{pmatrix}
1 & n' \\
n & Z
\end{pmatrix}
\]

for every \(Z \in \mathcal{M}_{n-2}^+ \). Setting

\[
A_1 = \begin{pmatrix}
a & \xi' \\
\eta & A
\end{pmatrix}
\]

we obtain \(\xi'Z = \xi', \ \eta = \bar{Z}\eta \). Since this holds for all \(Z \in \mathcal{M}_{n-2}^+ \), we must have \(\xi = \eta = n \), so that \(A_1 \) is itself decomposable. A similar argument (considering the matrices commuting with both \(J_1 \) and \(J_\nu \), for \(\nu = 3, \cdots, n \)) shows that \(A_1 \) is diagonal. Correspondingly, all of the \(A_\nu \) are diagonal. It is further clear that all of the \(A_\nu \) (\(\nu = 1, \cdots, n \)) are sections of a single diagonal matrix \(D^{(n)} \).

Using the further inner automorphism factor \(D^{-1} \), we may henceforth assume that \(X^* = X \) for every decomposable \(X \in \mathcal{M}_{n}^+ \), where either \(X^* = X \) always or \(X^* = X^{-1} \) always. Since \(\mathcal{M}_{n}^+ \) is generated by the set of decomposable elements of \(\mathcal{M}_{n}^+ \), the theorem is proved.

Tsing Hua University,
Peking, China.
University of Illinois,
Urbana, Ill.