THE AUTOMORPHISM GROUP OF A LIE GROUP

BY

G. HOCHSCHILD

Introduction. The group $A(G)$ of all continuous and open automorphisms of a locally compact topological group G may be regarded as a topological group, the topology being defined in the usual fashion from the compact and the open subsets of G (see §1). In general, this topological structure of $A(G)$ is somewhat pathological. For instance, if G is the discretely topologized additive group of an infinite-dimensional vector space over an arbitrary field, then $A(G)$ already fails to be locally compact.

On the other hand, if G is a connected Lie group, we shall show without any difficulty that the compact-open topology of $A(G)$ coincides with the topology obtained by identifying $A(G)$ with a closed subgroup of the linear group of automorphisms of the Lie algebra of G, as was done by Chevalley (in [1]) in order to make $A(G)$ into a Lie group. We shall then deduce that $A(G)$ is a Lie group whenever the group of its components, G/G_0, is finitely generated(*), where G_0 denotes the component of the identity element in G.

The other questions with which we shall be concerned are the following: Let $I(G_0)$ denote the group of the inner automorphisms of G_0, and let $E(G_0, G)$ denote the natural image in $A(G_0)$ of $A(G)$. Regard $I(G_0)$ and $E(G_0, G)$ as subgroups of $A(G_0)$. Are these subgroups closed in $A(G_0)$? Is $E(G_0, G)$ topologically, as well as group-theoretically, isomorphic with the corresponding factor group of $A(G)$?

We shall show, under the assumption that G/G_0 is finitely generated, that these questions are related as follows: The natural continuous homomorphism of $A(G)$ onto $E(G_0, G)$ is open if and only if $E(G_0, G)$ is closed in $A(G_0)$. Under the stronger assumption that G/G_0 is finite, a sufficient condition for $E(G_0, G)$ to be closed in $A(G_0)$ is that $I(G_0)$ be closed in $A(G_0)$. Finally, in order to throw some light on the difficulties which are involved here, we shall give a simple example in which $I(G_0)$ and $E(G_0, G)$ are not closed in $A(G_0)$. In this example, G has only two components and G_0 is homeomorphic with Euclidean 5-space.

1. Topological preparation. We shall describe the topology of a group G in terms of a fundamental system \mathcal{V} of neighborhoods V of the identity element. A system \mathcal{V} of subsets of G will define a Hausdorff topology consistent with the group operations if and only if it satisfies the following conditions(†):

Received by the editors May 1, 1951.

(*) I am indebted to the referee for the remark that my original requirement, "G/G_0 finite", can be relaxed to the present one.

(†) We are taking these from §2 of [4].
I. The intersection of all $V \in \mathcal{B}$ is the set consisting of the identity element of G only.

II. If V_1 and V_2 are sets belonging to \mathcal{B}, there is a $V \in \mathcal{B}$ such that $V \subseteq V_1 \cap V_2$.

III. For every $V \in \mathcal{B}$ there is a $W \in \mathcal{B}$ such that $W^{-1}W \subseteq V$.

IV. For every $g \in G$ and $V \in \mathcal{B}$ there is a $W \in \mathcal{B}$ such that $W \subseteq g^{-1}Vg$.

The neighborhoods of the identity element are then all the sets containing a set belonging to \mathcal{B}.

If C is any compact subset of G and $V \in \mathcal{B}$, we denote by $N(C, V)$ the set of all $a \in A(G)$ for which $a(x)x^{-1} \in V$ and $a^{-1}(x)x^{-1} \in V$, whenever $x \in C$.

We claim that if G is locally compact, the system of these $N(C, V)$ satisfies conditions I–IV above. In fact, I holds quite evidently. If $V \subseteq V_1 \cap V_2$, we clearly have $N(C \cup C_2, V) \subseteq N(C_1, V_1) \cap N(C_2, V_2)$, so that II is satisfied.

In order to verify III we proceed as follows: Since G is locally compact, given $V \in \mathcal{B}$, there is a compact set C_0 and a $V_0 \in \mathcal{B}$ such that $V_0 \subseteq C_0$ and $V_0V_0V_0 \subseteq V$. From the identity $(\beta^{-1}(\alpha)(c))c^{-1} = [\beta^{-1}(\alpha(c)c^{-1})(\alpha(c)c^{-1})^{-1}] \cdot [\alpha(c)c^{-1}]^{-1}$, we can see immediately that we have then $N(C \cup C_0, V_0)^{-1}N(C \cup C_0, V_0) \subseteq N(C, V)$, which shows that III is satisfied.

Finally, we have, with $a \in A(G)$,

$$\alpha^{-1}N(\alpha(C), \alpha(V)) \alpha \subseteq N(C, V),$$

whence IV holds.

From now on, if G is any locally compact group, $A(G)$ will denote the group of all continuous and open automorphisms of G, with the topology defined by the $N(C, V)$, where C ranges over the compact subsets of G and V over the set of neighborhoods of the identity element in G.

Next we shall prove two elementary results which we shall need later on.

Lemma 1. Let G be a topological group, U a neighborhood of the identity element, C a compact subset of G. Then the intersection of all the sets $c^{-1}Uc$, with $c \in C$, is a neighborhood of the identity element.

Proof. We can find $V \in \mathcal{B}$ such that $VVV^{-1} \subseteq U$. Then we have $\gamma^{-1}U \gamma \supseteq V$, for every $\gamma \in V$. Since C is compact, there are elements c_1, \ldots, c_n in C such that C is contained in the union of the n sets V_c. Now if c is any element in C, we write $c = yc_i$, with $y \in V$. Then $c^{-1}Uc = c_i^{-1}y^{-1}Uyc_i \supseteq c_i^{-1}Vc_i$. Hence the intersection of all the sets $c^{-1}Uc$ contains the finite intersection of the $c_i^{-1}Vc_i$ and is therefore a neighborhood of the identity element.

Lemma 2. Suppose that G is connected and locally compact. Let C be a compact subset of G, V a neighborhood of the identity, and S a compact neighborhood of the identity. Then there exists a neighborhood W of the identity such that $N(S, W) \subseteq N(C, V)$.

Proof. Since G is connected and S a neighborhood of the identity, we have $G = \bigcup_{n=1}^{\infty} S^n$. Since C is compact and since $S^n \subseteq S^{n+1}$, it follows that $C \subseteq S^m$, for some m. Now choose a neighborhood T of the identity such that $T^m \subseteq V$,
and put $W = \cap_{k \in \mathbb{N}} x^{-1} T x$. By Lemma 1, W is a neighborhood of the identity, for S^n is compact. Now let $\alpha \in A(S, W)$ and $e \in C$. We have $e = x_1, \ldots, x_n$, with $x_i \in S$. Put $c_k = x_1 \cdot \ldots x_k$, and suppose we have already shown that $\alpha(c_k)c_k^{-1} \in T^k$. Then we have $\alpha(c_{k+1})c_{k+1}^{-1} = (\alpha(c_k)c_k^{-1})c_k(\alpha(x_{k+1})x_{k+1}^{-1})c_{k+1}^{-1} \in T^kCkWc_{k+1}^{-1} \subseteq T^{k+1}$. Hence we get $\alpha(c)c^{-1} \in T^n \subseteq V$, which clearly suffices to establish our lemma.

2. Automorphism groups. Let G be a connected Lie group. An automorphism $\alpha \in A(G)$ induces an automorphism $\tilde{\alpha}$ of the Lie algebra \mathfrak{g} of G. We denote by $A(\mathfrak{g})$ the group of automorphisms of \mathfrak{g}, with the topology induced by that of the full linear group of which $A(\mathfrak{g})$ is clearly a closed subgroup. It is shown in [1] that the mapping $\alpha \rightarrow \tilde{\alpha}$ is a group isomorphism of $A(G)$ onto a closed subgroup of $A(\mathfrak{g})$. (If G is simply-connected the image of $A(G)$ coincides with $A(\mathfrak{g})$.) We shall prove the following result:

Theorem 1. Let G be a connected Lie group. Then the group isomorphism $\alpha \rightarrow \tilde{\alpha}$ of $A(G)$ onto the corresponding closed subgroup of $A(\mathfrak{g})$ is also a homeomorphism.

Proof. We denote by e the “exponential mapping” of \mathfrak{g} into G. We have then, for $\alpha \in A(G)$, $e\alpha = a\alpha$, and e gives an analytic isomorphism between a neighborhood of 0 in \mathfrak{g} and a neighborhood of the identity in G. Let z_1, \ldots, z_n be a linear basis for \mathfrak{g} such that the corresponding solid sphere S_2 of radius 2, in the Euclidean metric defined by our basis, around 0 in \mathfrak{g}, is mapped by e 1-1 and analytically onto the canonical sphere $Z_2 = e(S_2)$ around the identity element in G. For any positive real number p, S_p will denote the closed solid sphere of radius p around 0 in \mathfrak{g}, and we set $Z_p = e(S_p)$.

Now if N is any neighborhood of the identity in $A(\mathfrak{g})$, there is a real number s such that $0 < s < 1$ and such that every $\tau \in A(\mathfrak{g})$ satisfying $\tau(z_i) - z_i \in B_s \subseteq N$. It follows from the elementary properties of the exponential mapping e that there is a real number $q > 1$ and a real number r, $s > r > 0$, such that, for all $a, b \in B_r$, we have $e(a)e(b) = e(a + b + c)$, with $|c| < q \cdot |a| + |b|$, where $|u|$ denotes the distance of u from 0 in \mathfrak{g}. Let $\alpha \in N(Z_r, Z_{r/2^q})$. Then, for $0 \leq t \leq r$, $e(\alpha(tz_i))e(tz_i)^{-1} = e(u_i(t))$, where $u_i(t) \subseteq B_{t^2r^2}$. Hence $e(t\alpha(z_i)) = e(u_i(t))e(tz_i) = e(u_i(t) + tz_i + v_i(t))$, with $|v_i(t)| < q |z_i| t \leq r^2/2$. In particular, this shows that $t\alpha(z_i)$ remains in B_{r} as t varies from 0 to r, and that we must have $r(\alpha(z) - z_i) = u_i(r) + v_i(r)$. Therefore, $|\alpha(z_i) - z_i| \leq r/2 + r^2/2 < r < s$, whence $\alpha \in N$. Thus we have shown that $N(Z_r, Z_{r/2^q}) \subseteq N$, and this implies that the mapping $\alpha \rightarrow \tilde{\alpha}$ is continuous.

On the other hand, given any neighborhood V of the identity in G, we can find a real number $r > 0$ such that $e(u+z) \subseteq V(z)$ whenever $|z| \leq 1$ and $|u| \leq r$, because e is uniformly continuous on B_r. Hence if α is such that $\alpha(z) - z \in B_r$ for all $z \in B_1$, then $\alpha(x)x^{-1} \subseteq V$ for all $x \in Z_1$. Since the $N(Z_1, V)$
constitute a fundamental system of neighborhoods of the identity in $A(G)$, by Lemma 2, and since the α satisfying the above conditions make up a neighborhood of the identity in the image of $A(G)$ in $A(\mathbb{G})$, we conclude that the mapping $\alpha \mapsto \alpha$ is also continuous. This completes the proof of Theorem 1.

Theorem 2. Let G be a Lie group, and let G_0 denote the component of the identity in G. Suppose that the group of components, G/G_0, is finitely generated. Then $A(G)$ is a Lie group and has at most countably many components.

Proof. Our assumption on G/G_0 means that there is a finite set g_1, \cdots, g_m of elements of G such that every component P of G is of the form $P = pG_0$, where p is a product of g_i's (with repetitions allowed). Now let B denote the subgroup of $A(G)$ which consists of all those automorphisms that map each component of G onto itself. It is clear from the form pG_0 of a component that we have $N((g_1, \cdots, g_m), G_0) \subseteq B$, whence we see that B is open in $A(G)$. (Note that G_0 is open in G.) Furthermore, since $A(G)/B$ is isomorphic with a subgroup of the automorphism group $A(G/G_0)$ of the finitely generated group G/G_0, it follows that $A(G)/B$ has at most countably many elements. Hence it will suffice to prove that B is a Lie group with at most countably many components.

Let H be the semi-direct product $(G_0^n \times A(G_0))_A$ whose elements are the $m+1$-tuples $(c_1, \cdots, c_m, \alpha)$, with $c_i \in G_0$ and $\alpha \in A(G_0)$, and where products are defined by the formula $(c_1, \cdots, c_m, \alpha) (d_1, \cdots, d_m, \beta) = (c_1\alpha(d_1), \cdots, c_m\alpha(d_m), \alpha\beta)$. If we topologize H by the natural product topology it is evident, since $A(G_0)$ is a Lie group, that H is a Lie group. Furthermore, since $A(G_0)$ may, according to Theorem 1, be identified with a subgroup of the full linear group, its topology satisfies the second axiom of countability, and the same holds therefore for H.

Now we define a mapping ϕ of B into H by setting $\phi(b) = (g_1^{-1}b(g_1), \cdots, g_m^{-1}b(g_m), \beta)$, where β is the restriction of b to G_0. It is immediately seen that ϕ is a continuous isomorphism of B into H. We show next that ϕ^{-1} maps $\phi(B)$ continuously onto B. For this it suffices to show that, if V is any neighborhood of the identity in G and C any compact subset of G, there is a neighborhood M of the identity in H for which $\phi^{-1}(M \cap \phi(B)) \subseteq N(C, V)$. Now, since C is compact, there is a finite set p_1, \cdots, p_k of products of the g_i's such that $C \subseteq \bigcup_{j=1}^k p_jG_0$. Let $S = \bigcup_{j=1}^k (p_j^{-1}C) \cap G_0$, and let W be a neighborhood of the identity in G_0. Note that S is compact, so that the corresponding subset $N_0(S, W)$ of $A(G_0)$ is a neighborhood of the identity in $A(G_0)$. Put $U = W \times \cdots \times W \times N_0(S, W)$. Then U is a neighborhood of the identity in H, and so is $M = U \cup U^{-1}$. Since every element of C can be written in the form $c = p_is$, with $s \in S$, it is not hard to see that, with a suitable choice of W, the neighborhood M will satisfy our above requirement. Hence ϕ is a homeomorphism of B onto $\phi(B)$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now for each component P of G select an explicit product p of g_i's such that $P = pG$. Let $\eta = (c_1, \cdots, c_m, \alpha)$ be an arbitrary element H. Let p' denote the element of G which is obtained from p by replacing each g_i by $g_i\alpha_i$. For $x \in G_0$, define $\tilde{\eta}(px) = p'\alpha(x)$. Then $\tilde{\eta}$ is evidently a homeomorphism of G onto itself. It follows that η will belong to $\phi(B)$ if and only if $\tilde{\eta}(uv) = \tilde{\eta}(u)\tilde{\eta}(v)$, for all $u, v \in G$. This shows that $\phi(B)$ is closed in H. Hence $\phi(B)$ is a Lie group. Since H satisfies the second axiom of countability, so does $\phi(B)$. Since the components of a Lie group are open sets, it follows that the number of components of B is at most countable. Hence also B is a Lie group with at most countably many components, and our proof is complete.

3. The restriction homomorphism. Let G be a Lie group, G_0 the component of the identity element in G. We assume that G/G_0 is finitely generated, or—which is equivalent—that G is generated by a compact subset. The restriction of automorphisms to G_0 evidently gives a continuous homomorphism, ρ say, of $A(G)$ onto a subgroup $E(G_0, G)$ of $A(G_0)$. Let R denote the kernel of ρ. It is natural to inquire under what conditions $A(G)/R$ is isomorphic, as a topological group, with $E(G_0, G)$, or, equivalently, under what conditions ρ is open. A superficial answer is given by the following theorem:

Theorem 3. The restriction homomorphism ρ of $A(G)$ onto $E(G_0, G)$ is open if and only if $E(G_0, G)$ is closed in $A(G_0)$.

Proof. Suppose first that ρ is open. Then $E(G_0, G)$ is homeomorphic with $A(G)/R$ and hence is locally compact. It follows from this, as is well known, that $E(G_0, G)$ is closed in $A(G_0)$.(5) Conversely, if $E(G_0, G)$ is closed in $A(G_0)$, then it is locally compact. Furthermore, as a subspace of $A(G_0)$, it satisfies the second axiom of countability. By Theorem 2, $A(G)$ is locally compact and satisfies the second axiom of countability. By a well known result(6), the continuous homomorphism ρ must therefore be open. This completes the proof.

We shall now give an example in which $E(G_0, G)$ is not closed in $A(G_0)$:

Let C denote the additive group of the complex numbers, R the additive group of the real numbers, both with the ordinary topology. We form the semi-direct product $G_0 = (C \times C \times R)_h$ with the multiplication

$$(c_1, c_2, r)(c_1', c_2', r') = (c_1 + e^{2\pi i h}r_1, c_2 + e^{2\pi i h}r_2, r + r'),$$

where h is a fixed irrational real number. Evidently, G_0 is a Lie group, and its underlying space is Euclidean 5-space.

Next we construct a semi-direct product G of G_0 by a group of order 2, with a generator g such that g^2 is the identity element $(0, 0, 0)$ of G_0 and G,

(5) See §3 of [4].

(6) Theorem 13, chap. III, in [3].
and \(g(c_1, c_2, r) g^{-1} = \gamma(c_1, c_2, r) = (\overline{c_1}, \overline{c_2}, -r) \), where \(\overline{c} \) denotes the complex conjugate of \(c \).

With \(s, t \) arbitrary real numbers, let \(\alpha = \alpha_{s,t} \) be the automorphism of \(G_0 \) which is defined by setting \(\alpha(c_1, c_2, r) = (e^{2\pi i c_1}, e^{2\pi i c_2}, r) \). We shall determine the extensions of \(\alpha \) to \(G \). Let \(\tilde{\alpha} \in A(G) \) be such that \(\rho(\tilde{\alpha}) = \alpha \). We must have \(\tilde{\alpha}(g) = zg \), with \(z \in G_0 \). If we write down the equations which express the fact that \(\tilde{\alpha} \) is a homomorphism, we find that we must have: (1) \(\gamma(z)z = (0, 0, 0) \), and (2) \(z\alpha\gamma(x) = \gamma\alpha(x)z \), for all \(x \in G_0 \).

Conversely, every element \(z \in G_0 \) which satisfies these conditions defines an extension \(\tilde{\alpha} \in A(G) \) of \(\alpha \).

Write \(z = (c_1, c_2, r) \). If we write down conditions (2) with \(x = (0, 0, u) \), we find that we must have \(c_1 = 0 = c_2 \). Then condition (1) holds with arbitrary \(r \in R \). If we rewrite conditions (2) with \(z = (0, 0, r) \) and all \(x \in G_0 \), we find that they are equivalent to the condition that \(r + 2s \) and \(hr + 2t \) be integers. Now, since \(h \) is irrational, we can find a sequence of integers \(k_n \) such that the congruence class mod 1 of \(hk_n/2 \) approaches the congruence class of \(1/3 \) as \(n \) becomes large. Put \(s_n = 1/2hn \) and \(t_n = 1/2n + hk_n/2 \). Let \(\alpha_n = \alpha_{s_n, t_n} \). If \(r_n = -k_n - 1/2n \), then it satisfies our above conditions on \(r \), whence we conclude that each \(\alpha_n \) belongs to \(E(G_0, G) \). On the other hand, \(\alpha_n \) evidently approaches the automorphism \(\alpha_{0,1/3} \) in \(A(G_0) \), and we claim that \(\alpha_{0,1/3} \in E(G_0, G) \). In fact, the conditions for the number \(r \) needed for extending \(\alpha_{0,1/3} \) become \(r = m \), and \(hr = n - 2/3 \), where \(m \) and \(n \) are integers. But these conditions are incompatible, because \(h \) is irrational. Hence \(E(G_0, G) \) is not closed in \(A(G_0) \).

It will be apparent from the next theorem that in the above example the group \(I(G_0) \) of the inner automorphisms of \(G_0 \) is not closed in \(A(G_0) \); a fact which could also be shown quite directly by considering the above automorphisms \(\alpha_{s,t} \).

Theorem 4. If \(G/G_0 \) is finite and \(I(G_0) \) is closed in \(A(G_0) \), then the restriction homomorphism \(\rho \) of \(A(G) \) onto \(E(G_0, G) \) is open.

Proof. Let \(B \) denote the subgroup of \(A(G) \) whose elements map each component \(g_i G_0, i = 1, \ldots, m, \) of \(G \) onto itself. We claim that it suffices to show that the restriction of \(\rho \) to \(B \) is an open homomorphism of \(B \) onto \(\rho(B) \). In fact, if this has been proved, we may conclude that \(\rho(B) \) is homeomorphic with \(B/R \cap B \), where \(R \) is the kernel of \(\rho \), and hence that \(\rho(B) \) is locally compact. This implies that \(\rho(B) \) is closed in \(E(G_0, G) \). Since \(A(G)/B \) is finite, so is \(E(G_0, G)/\rho(B) \). Hence the complement of \(\rho(B) \) in \(E(G_0, G) \) is the union of a finite number of cosets of \(\rho(B) \) and hence is closed. Hence \(\rho(B) \) is open in \(E(G_0, G) \). It follows that \(\rho \) is an open homomorphism of \(A(G) \) onto \(E(G_0, G) \), which proves our claim.

Now let us observe that our assumption on \(I(G_0) \) implies that the natural homomorphism of \(G_0 \) onto \(I(G_0) \) is open, as well as continuous. Indeed, the continuity is independent of our assumption; for, given a compact subset...
C of G_0 and a neighborhood V of the identity in G_0, it is clear that for each $c \in C$ we can find a neighborhood V_c of the identity such that $uxu^{-1}x^{-1} \in V$ for all $u \in V_x$ and $x \in cV_x$. Since C is compact, there is a finite subset c_1, \ldots, c_q of C such that $C \subseteq \bigcup_{i=1}^q c_i V_{c_i}$. Then, if $W = \bigcap_{i=1}^q V_{c_i}$, we have $uxu^{-1}x^{-1} \in V$ for all $u \in W$ and $x \in C$, which proves that the natural homomorphism of G_0 onto $I(G_0)$ is always continuous. Now if $I(G_0)$ is closed in $A(G_0)$, then it is a connected Lie group. Since G_0 is also a connected Lie group, the continuous natural homomorphism of G_0 onto $I(G_0)$ must automatically be open.

It will be convenient to identify B with the closed subgroup $\phi(B)$ of the group H which we introduced in the proof of Theorem 2. It is easy to check that $\phi(R \cap B)$ is precisely the set of elements $(z_1, \ldots, z_m, 1) \in H$, where 1 stands for the identity automorphism of G_0, and where the elements z_i belong to the center, Z_0, say, of G_0 and satisfy the relations $g_i^{-1}z_ig_ig_j^{-1}z_j = z_{k(i,j)}$, the index $k(i,j)$ being determined by the relation $g_ig_j^{-1}g_{i(j)}g_{i(j)}^{-1}G_{i(j)}G_{i(j)}^{-1}$. The index $k(i,j)$ being determined by the relation $g_ig_j^{-1}g_{i(j)}g_{i(j)}^{-1}G_{i(j)}G_{i(j)}^{-1}$.

What we still have to prove therefore amounts to the following: Given a neighborhood U of the identity in G_0, there is a neighborhood M of the identity in $A(G_0)$, such that, for every element $(c_1, \ldots, c_m, \alpha) \in \phi(B)$ with $\alpha \in M$, we can find elements z_i as above and such that $z_ic_i \in U$.

Since Z_0 is a Lie group, there is a neighborhood D of the identity in G_0 which has the following properties:

1. For every $z \in D \cap Z_0$, there is an element $t \in D \cap Z_0$ such that $t^m = z$.
2. If s, t belong to $(g_j^{-1}Dg_jDD^{-1}) \cap Z_0$ and $s^m = t^m$, then $s = t$.
3. $DD \subseteq U$.

Let us choose a neighborhood S of the identity in G_0 such that $S^{2m} \subseteq D$. Let γ_i denote the inner automorphism $u \rightarrow g_i^{-1}ug_i$, and choose a neighborhood V of the identity in G_0 such that $V = V^{-1}$ and $V\gamma_i\gamma_j^{-1}(VV) \subseteq S$, for all i, j, k.

Now observe that if $\phi(b) = (c_1, \ldots, c_m, \alpha)$, then $\gamma_i\alpha\gamma_i^{-1}\alpha^{-1}(x) = c_\alpha x\alpha^{-1}$, for every $x \in G_0$. Since the homomorphism of G_0 onto $I(G_0)$ is open, we can find a neighborhood M' of the identity in $A(G_0)$ such that every automorphism belonging to $I(G_0) \cap M'$ is effected by an element belonging to V. Choose a neighborhood M of the identity in $A(G_0)$ such that, for every $\alpha \in M$, we have $\gamma_i\alpha\gamma_i^{-1}\alpha^{-1} \in M'$, for each i, and also $\alpha(a(i, j))a(i, j)^{-1} \in V$, for each pair (i, j), where $a(i, j) = g_i^{-1}g_{i(j)}^{-1}g_{i(j)}g_i$.

Now let $\alpha \in M$ and $(c_1, \ldots, c_m, \alpha) = \phi(b)$. Then the inner automorphism of G_0 which is effected by c_i is also effected by an element $v_i \in V$, whence $c_i = v_i c_i$, with $t_i \in Z_0$. We have $\gamma_j(c_j) = g_j^{-1}g_j^{-1}b(g_jg_i) = g_j^{-1}g_j^{-1}g_{i(j)}g_{i(j)}^{-1}a(a(i, j))$

(?) For the argument which now follows I am indebted to T. Nakayama. The idea of this proof is that if α is "small" enough the c_i can be replaced by "small" elements. This possibility is due to the fact that a factor set, defined on G/G_0, and with sufficiently small values in Z_0, must be a transformation set, because unique divisibility holds near the identity in Z_0. Such a device has been used by Iwasawa on p. 510 of [2] in dealing with the automorphisms of a compact group.
\[a(i, j)^{-1} c_{k(i, j)} a(i, j), \text{ whence } \gamma_j(t_i) t_i^{-1} = a(i, j)^{-1} v_{k(i, j)} a(i, j) v_j^{-1} \gamma_j(v_i^{-1}) \]
\[= \gamma_j(t_i) v_j^{-1} a(i, j) a(i, j) v_j^{-1} \gamma_j(v_i^{-1}) \in S^2. \]

Hence \(\prod_{i=1}^m \gamma_j(t_i) t_i^{-1} \in S^m \subseteq D, \) i.e., \(\gamma_j(t)^{-1} \in D \cap Z_0, \) where \(t = t_1 \cdots t_m. \) By property (1) of \(D, \) there are elements \(u_j \in D \cap Z_0 \) such that \(u_j^m = \gamma_j(t)^{-1} \), and then we have \((\gamma_j(u_i) u_j u_i^{-1})^m = (\gamma_j(t_i) t_i^{-1})^m. \) By property (2) of \(D, \) it follows that \(\gamma_j(u_i) u_j u_i^{-1} = \gamma_j(t_i) t_i^{-1}. \) Set \(z_i = u_i a_i^{-1}. \) Then \(g_j^{-1} z_i g_j z_i = z_{k(i, j)}, \) and \(z_i c_i = u_i a_i \in DD \subseteq U. \) This is what we had to prove in order to establish Theorem 4.

Corollary. If \(G_0/Z_0 \) is compact, or if \(G_0 \) is semisimple, then the restriction homomorphism of \(A(G) \) onto \(E(G_0, G) \) is open.

Proof. If \(G_0/Z_0 \) is compact, so is \(I(G_0), \) and hence \(I(G_0) \) is closed in \(A(G_0). \) If \(G_0 \) is semisimple, then \(I(G_0) \) coincides with the component of the identity in \(A(G_0), \) and hence is closed in \(A(G_0). \)

Bibliography