AUTOMORPHISMS OF THE PROJECTIVE UNIMODULAR GROUP

BY
L. K. HUA AND I. REINER

Notation. Let \(\mathcal{M}_n \) denote the group of \(n \times n \) integral matrices of determinant \(\pm 1 \) (the unimodular group). By \(\mathcal{M}_n^+ \) we denote that subset of \(\mathcal{M}_n \) where the determinant is \(+1 \); \(\mathcal{M}_n^- \) is correspondingly defined. Let \(\mathcal{P}_n \) be obtained from \(\mathcal{M}_n \) by identifying \(+X \) and \(-X, X \in \mathcal{M}_n \). (This is the same as considering the factor group of \(\mathcal{M}_n \) by its centrum.) We correspondingly obtain \(\mathcal{P}_n^+ \) and \(\mathcal{P}_n^- \) from \(\mathcal{M}_n^+ \) and \(\mathcal{M}_n^- \). Let \(I^{(n)} \) (or briefly \(I \)) be the identity matrix in \(\mathcal{M}_n \), and let \(X' \) denote the transpose of \(X \). The direct sum of \(A \) and \(B \) is represented by \(A + B \), while

\[
A = B
\]

means that \(A \) is similar to \(B \).

In this paper we shall find explicitly the generators of the group \(\mathcal{P}_n \) of all automorphisms of \(\mathcal{P}_n \), thereby obtaining a complete description of these automorphisms. This generalizes the result due to Schreier\(^1\) for the case \(n = 1 \).

We shall frequently refer to results of an earlier paper: Automorphisms of the unimodular group, L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 331-348. We designate this paper by AUT.

1. The commutator subgroup of \(\mathcal{P}_n \). The following useful result is an immediate consequence of the corresponding theorem for \(\mathcal{M}_n \) (AUT, Theorem 1).

Theorem 1. Let \(\mathcal{Z}_n \) be the commutator subgroup of \(\mathcal{P}_n \). Then clearly \(\mathcal{Z}_n \subset \mathcal{P}_n^+ \). For \(n = 1 \), \(\mathcal{Z}_2 \) is of index 2 in \(\mathcal{P}_2^+ \), while for \(n > 1 \), \(\mathcal{Z}_n = \mathcal{P}_n^+ \).

Theorem 2. In any automorphism of \(\mathcal{P}_n \), always \(\mathcal{P}_n^+ \) goes into itself.

Proof. This is a corollary to Theorem 1 when \(n > 1 \), since the commutator subgroup goes into itself under any automorphism. For \(n = 1 \), suppose that \(\pm S \rightarrow \pm S_1 \) and \(\pm T \rightarrow \pm T_1 \), where

\[
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]

Since \(S \) and \(T \) generate \(\mathcal{M}_2^+ \), it follows that \(\pm S \) and \(\pm T \) generate \(\mathcal{P}_2^+ \).

Received by the editors May 18, 1951.

467
and hence so must $\pm S_1$ and $\pm T_1$. It is therefore sufficient to prove that
$\det S_1 = \det T_1 = +1$. From $(ST)^3 = I$ we deduce $S_1T_1 = \pm T_1^{-1}S_1^{-1}T_1^{-1}S_1^{-1}$, so
that $\det S_1T_1 = 1$. Hence either S_1 and T_1 are both in Ψ_2^+ or both in Ψ_2^-; we
shall show that the latter alternative is impossible.

Suppose that $\det S_1 = \det T_1 = -1$. From $S^2 = I$ we deduce $S_1^2 = \pm I$; if
$S_1^2 = -I$, then $S_1^2 + I = 0$ and the characteristic equation of S_1 is $\lambda^2 + 1 = 0$,
from which it follows that $\det S_1 = 1$; this contradicts our assumption that
$\det S_1 = -1$, so of necessity $S_1^2 = I$. But if this is the case, then it is easy to
show that there exists a matrix $A \in \Psi_2$ such that AS_1A^{-1} takes one of the
two canonical forms

$$
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 & 0 \\
-1 & 1
\end{pmatrix}.
$$

By considering instead of the original automorphism τ, a new automorphism
τ' defined by: $X' = AXA^{-1}$, we may hereafter assume that

$$
S_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{or} \quad \pm \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.
$$

Let

$$
T_1 = \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix};
$$
then $ad - bc = -1$.

Now we observe that $J = (1) + (-1)$ is distinct from $\pm I$ and $\pm S$, that
it commutes with S, and that JT is an involution. Hence there exists a matrix
$M \in \Psi_2$ distinct from $\pm I$ and $\pm S_1$, such that M commutes with S_1, and MT_1
is an involution.

Case 1.

$$
S_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
$$

Since $(S_1T_1)^3 = \pm I$, we find that $a - d = \pm 1$. The only matrices commuting
with S_1 which are distinct from $\pm I$ and $\pm S_1$ are

$$
\pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

If M is either of the first two matrices, then the condition that MT_1 be an
involution yields $b + c = 0$. Thus $a = d \pm 1$, $b = -c$, and $ad - bc = -1$. Combin-
ing these, we obtain $d(d \pm 1) + c^2 = -1$, which is impossible. The other two
choices for M imply $b = c$, and therefore $d(d \pm 1) - c^2 = -1$. Hence $1 - 4(1 - c^2)$
is a perfect square; but $4c^2 - 3 = f^2$ implies $(2c + f)(2c - f) = 1$, whence $c = \pm 1$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
But then \(ad = 0\); from \(a - d = \pm 1\) we deduce that \(a^2 - d^2 = \pm 1\), whence \((S_1T_1)^3 = \pm I\), which is impossible.

Case 2.

\[
S_1 = \pm \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

From \((S_1T_1)^3 = \pm I\) we obtain \(a - d + b = \pm 1\). For \(M\) there are the four possibilities

\[
\pm \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \pm \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}.
\]

Since \(MT_1\) is an involution, in the first two cases we have \(a - 2c - d = 0\), whence

\[
ad - bc = \{(a + d)^2 + (a - d \pm 1)^2 - 1\}/4 \neq -1.
\]

In the second two cases we find that \(a - 2c + b - d = 0\), so that \(2c = a + b - d = \pm 1\), which is again a contradiction. This completes the proof of Theorem 2.

2. **Automorphisms of \(\mathfrak{S}^+_2\).** Let us now determine all automorphisms of \(\mathfrak{S}^+_2\).

Since every such automorphism takes \(\mathfrak{S}^+_2\) into itself, we begin by considering all automorphisms of \(\mathfrak{S}^+_2\).

Theorem 3. Every automorphism of \(\mathfrak{S}^+_2\) is of the form \(X \in \mathfrak{S}^+_2 \rightarrow AXA^{-1}\) for some \(A \in \mathfrak{M}_2^+\); that is, all automorphisms of \(\mathfrak{S}^+_2\) are "inner" (with \(A \in \mathfrak{M}_2\) rather than \(A \in \mathfrak{S}^+_2\)).

Proof. Let \(\tau\) be any automorphism of \(\mathfrak{S}^+_2\), and define \(S\) and \(T\) as before; let \(S_0 \in \mathfrak{M}_2\) be a fixed representative of \(\pm S\). By Theorem 2, \(S_0 \in \mathfrak{M}_2^+\), and therefore \(S_0^2 = -I\). Let \(T_0\) be that representative of \(\pm T\) for which \((S_0T_0)^3 = I\) is valid. Then \(S \rightarrow S_0, T \rightarrow T_0\) induces a mapping from \(\mathfrak{M}_2^+\) onto itself. The mapping is one-to-one, for although an element of \(\mathfrak{M}_2^+\) can be expressed in many different ways as a product of powers of \(S\) and \(T\), these expressions can be gotten from one another by use of \(S^2 = -I, (ST)^3 = I\); since \(S_0\) and \(T_0\) satisfy these same relations, the mapping is one-to-one. It is an automorphism because \(\tau\) is one. Therefore (AUT, Theorem 2) there exists an \(A \in \mathfrak{M}_2\) such that \(S_0 = \pm ASA^{-1}, T_0 = \pm ATA^{-1}\). This proves the result.

Corollary. Every automorphism of \(\mathfrak{S}_2\) is of the form \(X \in \mathfrak{S}_2 \rightarrow AXA^{-1}\) for some \(A \in \mathfrak{M}_2\).

(This corollary is a simple consequence of Theorem 3, as is shown in AUT by the remarks following the statement of Theorem 4.)

3. **The generators of \(\mathfrak{S}_{2n}\).** Our main result may be stated as follows:

Theorem 4. The generators of \(\mathfrak{S}_{2n}\) are

(i) The set of all inner automorphisms:
\[\pm X \in \mathfrak{P}_{2n} \rightarrow \pm AXA^{-1} \quad (A \in \mathfrak{M}_{2n}), \]

and

(ii) The automorphism \(\pm X \in \mathfrak{P}_{2n} \rightarrow \pm X' X^{-1} \).

Remark. For \(n = 1 \), the automorphism (ii) is a special case of (i).

In the proof of Theorem 4 by induction on \(n \), the following lemma (which has already been established for \(n = 1 \)) will be basic:

Lemma 1. Let \(J_1 = (-1) + X^{(2n-1)} \). In any automorphism \(\tau \) of \(\mathfrak{P}_{2n} \), \(J_1' = \pm AJ_1A^{-1} \) for some \(A \in \mathfrak{M}_{2n} \).

Proof. The result is already known for \(n = 1 \). Hereafter let \(n \geq 2 \). Certainly \((J_1')^2 = \pm I \) and \(\det J_1 = -1 \). If \((J_1')^2 = -I \), then the minimum function of \(J_1' \) is \(\lambda^2 + 1 \), and its characteristic function must be some power of \(\lambda^2 + 1 \), whence \(\det J_1' = 1 \). Therefore \((J_1')^2 = I \) is valid in \(\mathfrak{M}_{2n} \). After a suitable inner automorphism, we may assume that

\[J_1' = W(x, y, z) = L + \cdots + L + (-I)^{y} + I^{z}, \]

where

\[L = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \]

occurs \(x \) times, \(2x + y + z = 2n \), and \(x + y \) is odd. (This follows from AUT, Lemma 1.)

Let \(\mathfrak{G}_1 \) be the group consisting of all elements of \(\mathfrak{P}_{2n} \) which commute with \(J_1 \), and \(\mathfrak{G}_2 \) the corresponding group for \(J_1' \). The lemma will be proved if we can show that \(\mathfrak{G}_1 \) is not isomorphic to \(\mathfrak{G}_2 \) unless \(J_1' = \pm J_1 \). The group \(\mathfrak{G}_1 \) consists of the matrices \(\pm (1 + X_1) \in \mathfrak{P}_{2n} \), so that \(\mathfrak{G}_1 \cong \mathfrak{M}_{2n-1} \). The number of nonsimilar involutions in \(\mathfrak{G}_1 \) is therefore \(n(n+1) \) (see AUT, §4). We shall prove that \(\mathfrak{G}_2 \) contains more than \(n(n+1) \) involutions which are nonsimilar in \(\mathfrak{G}_2 \), except when \(x = 0, y = 1, z = 2n - 1 \) or \(x = 0, y = 2n - 1, z = 1 \).

Those elements \(\pm C \in \mathfrak{P}_{2n} \) which commute with \(W \) must satisfy one of the two equations: \(CW = WC \) or \(CW = -WC \). The solutions of the first of these equations form a subgroup of \(\mathfrak{G}_2 \), and this subgroup is known (see AUT, proof of Lemma 2) to be isomorphic to \(\mathfrak{G}_0 = \mathfrak{G}_0(x, y, z) \) consisting of all matrices in \(\mathfrak{P}_{2n} \) of the form

\[\begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} + \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}, \]

where \(S_1, S_2, T_1, \) and \(T_2 \) are square matrices of dimensions \(x, x, z, \) and \(y \) respectively, and where \(S_1 \equiv S_2 \pmod{2} \), \(2x + y + z = 2n \), and \(x + y \) and \(x + z \) are both odd.

Next we prove that \(\overline{CW} = -WC \) is solvable only when \(y = z \). The space
We may now proceed to find a lower bound for the number of nonsimilar matrices in $\mathcal{O}_0(x, y, z)$. We briefly denote the elements of \mathcal{O}_0 by $A + B$, where

$$A = \begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}.$$

If $A_1 + B_1$ and $A_2 + B_2$ are two distinct involutions in \mathcal{O}_0, where either $A_1 \neq A_2$ in M_{x+z} or $B_1 \neq B_2$ in M_{x+y}, then certainly $A_1 + B_1 \neq A_2 + B_2$ in \mathcal{O}_0.

Now let

$$A = I^{(a_1)} + (-I)^{(b_1)} + L + \cdots + L,$$

$$B = I^{(a_2)} + (-I)^{(b_2)} + L + \cdots + L,$$

where L occurs c_1 times in A and c_2 times in B; the various elements $A + B$ gotten by taking different sets of values of $(a_1, b_1, a_2, b_2, c_1, c_2)$, if they lie in \mathcal{O}_0, are certainly nonsimilar in \mathcal{O}_0, except that $A + B$ and $(-A) + (-B)$ are the same element of \mathcal{O}_0. Hence the number N of nonsimilar involutions of \mathcal{O}_0 is at least half of the number N_1 of solutions of

$$a_1 + b_1 + 2c_1 = x + z,$$

$$a_2 + b_2 + 2c_2 = x + y,$$

where if $x \neq 0$ we impose the restrictions that $c_1 \leq (x+1)/2$, $c_2 \leq (y+1)/2$, and that in B instead of L we use L'. (These conditions insure that $A + B \in \mathcal{O}_0$.) As in the previous paper, one readily shows that $N > n(n+1)$ unless $J_1 = \pm J_1$. We omit the details.

This leaves only the case where $y = z$. If $\overline{CW} = -W\overline{C}$, then $\overline{CW} = (-1)^kW\overline{C}^k$; therefore no odd power of \overline{C} can be $\pm I$. Let p be a prime such that $n < p < 2n$. Since $x + y = n$, certainly n is odd, and $p \geq n + 2$. Now \mathcal{O}_1 (being isomorphic to \mathfrak{M}_{2n-1}) contains infinitely many elements of order p. However, \mathcal{O}_2 contains only two such elements, since $\overline{C}^p \neq \pm I$ by the above argument, while if $C \in \mathcal{O}_0$ and $C^n = \pm I$, then setting $C = A^{(n)} + B^{(n)}$ shows that $A^p = \pm I$ and $B^p = \pm I$. However, $A \in \mathfrak{M}_n$, and if $A^p = \pm I$, then the minimum function of A must divide $\lambda^p \mp 1$. But the degree of the minimum function is at most n, and therefore is less than $p - 1$, whereas $\lambda^p \mp 1$ is the
product of a linear factor \(\lambda \pm 1 \) and an irreducible factor of degree \(p - 1 \); thence the minimum function of \(A \) is \(\lambda \pm 1 \), so \(A = \pm I \). In the same way \(B = \pm I \). Hence the only solutions are \(C = I^{(n)} \pm I^{(n)} \) and \(C = -I^{(n)} \pm I^{(n)} \). This completes the proof of the lemma. We remark that the use of the existence of the prime \(p \) could have been avoided, but the proof is much quicker this way.

4. Proof of the main theorem. We are now ready to prove Theorem 4 by induction on \(n \). Hereafter, let \(n \geq 2 \) and assume that Theorem 4 holds for \(n - 1 \). Let \(\tau \) be any automorphism of \(\mathfrak{P}_{2n} \); then by Lemma 1, \(J_1 = \pm \lambda J_1 \lambda^{-1} \) for some \(A \in \mathfrak{M}_{2n} \). If we change \(\tau \) by a suitable inner automorphism, we may assume that \(J_1 = \pm J_1 \).

Therefore, every \(M \in \mathfrak{P}_{2n} \) which commutes with \(J_1 \) goes into another such element, that is,

\[
\pm \begin{bmatrix}
1 & \ldots & n' \\
X & \ldots & 1
\end{bmatrix} = \pm \begin{bmatrix}
1 & \ldots & n' \\
n & \ldots & 1
\end{bmatrix},
\]

where \(n \) denotes a column vector all of whose components are zero, and \(X \in \mathfrak{M}_{2n-1} \). Thus, \(\tau \) induces an automorphism on \(\mathfrak{M}_{2n-1} \). Consequently (AUT, Theorem 4) there exists a matrix \(A \in \mathfrak{M}_{2n-1} \) such that \(Y = AX^* A^{-1} \) for all \(X \in \mathfrak{M}_{2n-1} \), where either \(X^* = X \) for all \(X \in \mathfrak{M}_{2n-1} \) or \(X^* = X'^{-1} \) for all \(X \in \mathfrak{M}_{2n-1} \). After a further inner automorphism by a factor of \((1) \pm A^{-1} \), we may assume that \(J_1 = \pm J_1 \) and also that \(X^* = Y = X^* \) for all \(X \in \mathfrak{M}_{2n-1} \).

Let \(J_* \) be obtained from \(I^{(2n)} \) by replacing the \(\nu \)th diagonal element by \(-1\). Then

\[
(J_1 J_{2n})^* = \pm \begin{bmatrix}
1 & 0 & \cdots & 0 & 0 \\
0 & -1 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \cdots & -1 & 0 \\
0 & 0 & \cdots & 0 & 1
\end{bmatrix} = \pm \begin{bmatrix}
1 & \ldots & n' \\
n & \ldots & 1
\end{bmatrix},
\]

so that \(\pm J_{2n} \) is invariant. Similarly, all of the matrices \(\pm J_* \) \((\nu = 1, \ldots, 2n)\) are invariant. Therefore for any \(X \in \mathfrak{M}_{2n-1} \) we have

\[
\pm \begin{bmatrix}
1 & \ldots & n' \\
X & \ldots & 1
\end{bmatrix} = \pm \begin{bmatrix}
1 & \ldots & n' \\
A \lambda X^* A^{-1}
\end{bmatrix} = \pm \begin{bmatrix}
A_{2n} X^* A_{2n}^{-1} & \ldots & n' \\
n' & 1
\end{bmatrix},
\]

with \(A_* \in \mathfrak{M}_{2n-1} \), and in fact \(A_1 = I \).

Now suppose that \(Z \in \mathfrak{M}_{2n-2} \), and consider \(\pm (Z \pm I^{(2)}) \); since it commutes with \(J_{2n-1} \) and \(J_{2n} \), so does its image. But therefore
where Z denotes some matrix in \mathbb{M}_{2n-2}. From this one easily deduces that A_{2n} must be of the form $B \oplus (1)$, with $B \in \mathbb{M}_{2n-2}$. By considering the matrices commuting with J_ν and J_{2n} for $\nu = 1, \ldots, 2n - 2$ we see that A_{2n} must be diagonal. Furthermore, it is clear that all of the $A_\nu (\nu = 1, \ldots, 2n)$ must be diagonal, and all are sections of one diagonal matrix $D^{(2n)}$. Using the further inner automorphism factor D^{-1}, we find that $\pm X^r = \pm X^*$ for every decomposable matrix $\pm X \in \mathbb{P}_{2n}$. Since \mathbb{P}_{2n} is generated by the set of its decomposable matrices, the theorem is proved.

Tsing Hua University,
Peking, China.
University of Illinois,
Urbana, Ill.