AUTOMORPHISMS OF THE PROJECTIVE UNIMODULAR GROUP

BY

L. K. HUA AND I. REINER

Notation. Let \(M_n \) denote the group of \(n \times n \) integral matrices of determinant \(\pm 1 \) (the unimodular group). By \(M_n^+ \) we denote that subset of \(M_n \) where the determinant is +1; \(M_n^- \) is correspondingly defined. Let \(\mathfrak{U}_n \) be obtained from \(M_n \) by identifying +\(X \) and -\(X \), \(X \in M_n \). (This is the same as considering the factor group of \(M_n \) by its centrum.) We correspondingly obtain \(\mathfrak{U}_n^+ \) and \(\mathfrak{U}_n^- \) from \(M_n^+ \) and \(M_n^- \). Let \(I_n \) (or briefly \(I \)) be the identity matrix in \(M_n \), and let \(X' \) denote the transpose of \(X \). The direct sum of \(A \) and \(B \) is represented by \(A + B \), while

\[
A = B
\]

means that \(A \) is similar to \(B \).

In this paper we shall find explicitly the generators of the group \(\mathfrak{U}_n \) of all automorphisms of \(\mathfrak{U}_n \), thereby obtaining a complete description of these automorphisms. This generalizes the result due to Schreier\(^{1}\) for the case \(n = 1 \).

We shall frequently refer to results of an earlier paper: Automorphisms of the unimodular group, L. K. Hua and I. Reiner, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 331-348. We designate this paper by AUT.

1. The commutator subgroup of \(\mathfrak{U}_n \). The following useful result is an immediate consequence of the corresponding theorem for \(M_2 \) (AUT, Theorem 1).

Theorem 1. Let \(\mathfrak{C}_n \) be the commutator subgroup of \(\mathfrak{U}_n \). Then clearly \(\mathfrak{C}_n \subseteq \mathfrak{U}_n \). For \(n = 1 \), \(\mathfrak{C}_2 \) is of index 2 in \(\mathfrak{U}_2^+ \), while for \(n > 1 \), \(\mathfrak{C}_n = \mathfrak{U}_n^\pm \).

Theorem 2. In any automorphism of \(\mathfrak{U}_n \), always \(\mathfrak{U}_n^\pm \) goes into itself.

Proof. This is a corollary to Theorem 1 when \(n > 1 \), since the commutator subgroup goes into itself under any automorphism. For \(n = 1 \), suppose that \(\pm S \rightarrow \pm S_1 \) and \(\pm T \rightarrow \pm T_1 \), where

\[
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Since \(S \) and \(T \) generate \(M_2^\pm \), it follows that \(\pm S \) and \(\pm T \) generate \(\mathfrak{U}_2^\pm \).

Received by the editors May 18, 1951.

and hence so must $\pm S_1$ and $\pm T_1$. It is therefore sufficient to prove that
$\det S_1=\det T_1=+1$. From $(ST)^3=I$ we deduce $S_1T_1=\pm T_1^{-1}S_1^{-1}T_1^{-1}S_1^{-1}$, so
that $\det S_1T_1=1$. Hence either S_1 and T_1 are both in \mathfrak{B}_2^+ or both in \mathfrak{B}_2^-; we
shall show that the latter alternative is impossible.

Suppose that $\det S_1=\det T_1=-1$. From $S_1^2=I$ we deduce $S_1^2 = \pm I$; if
$S_1^2 = -I$, then $S_1^2 + I = 0$ and the characteristic equation of S_1 is $x^2 + 1 = 0$, from
which it follows that $\det S_1 = 1$; this contradicts our assumption that
$\det S_1 = -1$, so of necessity $S_1^2 = I$. But if this is the case, then it is easy to show that there exists a matrix $A \in \mathfrak{B}_2$ such that AS_1A^{-1} takes one of the
two canonical forms

$$
\begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
1 & 0 \\
-1 & -1
\end{pmatrix}.
$$

By considering instead of the original automorphism τ, a new automorphism
τ' defined by: $X' = AXA^{-1}$, we may hereafter assume that

$$
S_1 = \pm \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}
\quad \text{or} \quad
\pm \begin{pmatrix}
1 & 0 \\
1 & -1
\end{pmatrix}.
$$

Let

$$
T_1 = \pm \begin{pmatrix}
a & b \\
c & d
\end{pmatrix};
$$

then $ad-bc = -1$.

Now we observe that $J = (1) \pm (1)$ is distinct from $\pm I$ and $\pm S_1$, that
it commutes with S_1, and that JT is an involution. Hence there exists a matrix
$M \in \mathfrak{B}_2$ distinct from $\pm I$ and $\pm S_1$, such that M commutes with S_1, and MT_1
is an involution.

Case 1.

$$
S_1 = \pm \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix}.
$$

Since $(S_1T_1)^3 = I$, we find that $a-d = \pm 1$. The only matrices commuting
with S_1 which are distinct from $\pm I$ and $\pm S_1$ are

$$
\pm \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\quad \text{and} \quad
\pm \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
$$

If M is either of the first two matrices, then the condition that MT_1 be an
involution yields $b+c = 0$. Thus $a=d \pm 1$, $b=-c$, and $ad-bc = -1$. Combin-
ing these, we obtain $d(d \pm 1) + c^2 = -1$, which is impossible. The other two
choices for M imply $b = c$, and therefore $d(d \pm 1) - c^2 = -1$. Hence $1 - 4(1-c^2)$
is a perfect square; but $4c^2 - 3 = f^2$ implies $(2c+f)(2c-f) = 1$, whence $c = \pm 1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
But then \(ad = 0 \); from \(a - d = \pm 1 \) we deduce that \(a^2 - d^2 = \pm 1 \), whence \((ST)^3 = \pm I\), which is impossible.

Case 2.

\[
S_1 = \pm \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}.
\]

From \((ST_1)^3 = \pm I\) we obtain \(a - d + b = \pm 1 \). For \(M \) there are the four possibilities

\[
\pm \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \pm \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}.
\]

Since \(MT_1 \) is an involution, in the first two cases we have \(a - 2c - d = 0 \), whence

\[
ad - bc = \left\{ (a + d)^2 + (a - d + 1)^2 - 1 \right\}/4 \neq -1.
\]

In the second two cases we find that \(a - 2c + b - d = 0 \), so that \(2c = a + b - d = \pm 1 \), which is again a contradiction. This completes the proof of Theorem 2.

2. **Automorphisms of \(\mathbb{P}_2^+ \).** Let us now determine all automorphisms of \(\mathbb{P}_2^+ \). Since every such automorphism takes \(\mathbb{P}_2^+ \) into itself, we begin by considering all automorphisms of \(\mathbb{P}_2^- \).

Theorem 3. Every automorphism of \(\mathbb{P}_2^+ \) is of the form \(X \in \mathbb{P}_2^+ \rightarrow AXA^{-1} \) for some \(A \in \mathbb{M}_2 \); that is, all automorphisms of \(\mathbb{P}_2^+ \) are “inner” (with \(A \in \mathbb{M}_2 \) rather than \(A \in \mathbb{P}_2^- \)).

Proof. Let \(\tau \) be any automorphism of \(\mathbb{P}_2^+ \), and define \(S \) and \(T \) as before; let \(S_0 \in \mathbb{M}_2 \) be a fixed representative of \(\pm S^t \). By Theorem 2, \(S_0 \in \mathbb{M}_2^+ \), and therefore \(S_0^3 = -I \). Let \(T_0 \) be that representative of \(\pm T^t \) for which \((S_0T_0)^3 = I\) is valid. Then \(S \rightarrow S_0, T \rightarrow T_0 \) induces a mapping from \(\mathbb{M}_2^+ \) onto itself. The mapping is one-to-one, for although an element of \(\mathbb{M}_2^+ \) can be expressed in many different ways as a product of powers of \(S \) and \(T \), these expressions can be gotten from one another by use of \(S^2 = -I, (ST)^3 = I \); since \(S_0 \) and \(T_0 \) satisfy these same relations, the mapping is one-to-one. It is an automorphism because \(\tau \) is one. Therefore (AUT, Theorem 2) there exists an \(A \in \mathbb{M}_2 \) such that \(S_0 = \pm ASA^{-1}, T_0 = \pm ATA^{-1} \). This proves the result.

Corollary. Every automorphism of \(\mathbb{P}_2 \) is of the form \(X \in \mathbb{P}_2 \rightarrow AXA^{-1} \) for some \(A \in \mathbb{M}_2 \).

(This corollary is a simple consequence of Theorem 3, as is shown in AUT by the remarks following the statement of Theorem 4.)

3. **The generators of \(\mathbb{P}_{2n} \).** Our main result may be stated as follows:

Theorem 4. The generators of \(\mathbb{P}_{2n} \) are

(i) The set of all inner automorphisms:
\[\pm X \in \mathfrak{P}_{2n} \rightarrow \pm AXA^{-1} \quad (A \in \mathfrak{M}_{2n}), \]

and

(ii) The automorphism \[\pm X \in \mathfrak{P}_{2n} \rightarrow \pm X^{-1}. \]

Remark. For \(n=1 \), the automorphism (ii) is a special case of (i).

In the proof of Theorem 4 by induction on \(n \), the following lemma (which has already been established for \(n=1 \)) will be basic:

Lemma 1. Let \(J_1 = (-1) + I^{(2n-1)} \). In any automorphism \(\tau \) of \(\mathfrak{P}_{2n} \), \(J_1^\tau = \pm AJ_1A^{-1} \) for some \(A \in \mathfrak{M}_{2n} \).

Proof. The result is already known for \(n=1 \). Hereafter let \(n \geq 2 \). Certainly \((J_1)^2 = \pm I \) and \(\det J_1 = -1 \). If \((J_1)^2 = -I \), then the minimum function of \(J_1 \) is \(\lambda^2 + 1 \), and its characteristic function must be some power of \(\lambda^2 + 1 \), whence \(\det J_1 = 1 \). Therefore \((J_1)^2 = I \) is valid in \(\mathfrak{P}_{2n} \). After a suitable inner automorphism, we may assume that

\[J_1 = W(x, y, z) = L + \cdots + L + (-I)^{(x)} + I^{(z)}, \]

where

\[L = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix} \]

occurs \(x \) times, \(2x+y+z=2n \), and \(x+y \) is odd. (This follows from AUT, Lemma 1.)

Let \(\mathfrak{G}_1 \) be the group consisting of all elements of \(\mathfrak{P}_{2n} \) which commute with \(J_1 \), and \(\mathfrak{G}_2 \) the corresponding group for \(J_1^\tau \). The lemma will be proved if we can show that \(\mathfrak{G}_1 \) is not isomorphic to \(\mathfrak{G}_2 \) unless \(J_1^\tau = \pm J_1 \). The group \(\mathfrak{G}_1 \) consists of the matrices \(\pm (1 + X_1) \in \mathfrak{P}_{2n} \), so that \(\mathfrak{G}_1 \cong \mathfrak{M}_{2n-1} \). The number of nonsimilar involutions in \(\mathfrak{G}_1 \) is therefore \(n(n+1) \) (see AUT, §4). We shall prove that \(\mathfrak{G}_2 \) contains more than \(n(n+1) \) involutions which are nonsimilar in \(\mathfrak{G}_2 \), except when \(x = 0, y = 1, z = 2n-1 \) or \(x = 0, y = 2n-1, z = 1 \).

Those elements \(\pm C \in \mathfrak{P}_{2n} \) which commute with \(W \) must satisfy one of the two equations: \(CW = WC \) or \(CW = -WC \). The solutions of the first of these equations form a subgroup of \(\mathfrak{G}_2 \), and this subgroup is known (see AUT, proof of Lemma 2) to be isomorphic to \(\mathfrak{G}_0 = \mathfrak{G}_0(x, y, z) \) consisting of all matrices in \(\mathfrak{P}_{2n} \) of the form

\[
\begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} + \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix},
\]

where \(S_1, S_2, T_1, \) and \(T_2 \) are square matrices of dimensions \(x, x, z, \) and \(y \) respectively, and where \(S_1 \equiv S_2 \pmod{2} \), \(2x+y+z=2n \), and \(x+y \) and \(x+z \) are both odd.

Next we prove that \(CW = -WC \) is solvable only when \(y = z \). The space
of vectors u such that $Wu = u$ is of dimension $x+z$, while the space B of vectors v for which $Wv = -v$ has dimension $x+y$. But if $CW = -WC$, then $W^2u = -Cu$ and $W^2v = -Cv$, so the dimensions of u and B must be the same, whence $y = z$. Hence if $y \neq z$, there are no solutions of $CW = -WC$, $C \in \mathfrak{M}_{2n}$.

We may now proceed to find a lower bound for the number of nonsimilar matrices in $\mathfrak{S}_0(x, y, z)$. We briefly denote the elements of \mathfrak{S}_0 by $A + B$, where

$$A = \begin{pmatrix} S_1 & 2R_1 \\ Q_1 & T_1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} S_2 & Q_2 \\ 2R_2 & T_2 \end{pmatrix}.$$

If $A_1 + B_1$ and $A_2 + B_2$ are two distinct involutions in \mathfrak{S}_0, where either

$$A_1 \neq A_2 \quad \text{in} \quad M_{x+z} \quad \text{or} \quad B_1 \neq B_2 \quad \text{in} \quad M_{x+y},$$

then certainly

$$A_1 + B_1 \neq A_2 + B_2 \quad \text{in} \quad \mathfrak{S}_0.$$

Now let

$$A = I^{(a_1)} + (-I)^{(b_1)} + L + \cdots + L,$$

$$B = I^{(a_2)} + (-I)^{(b_2)} + L + \cdots + L,$$

where L occurs c_1 times in A and c_2 times in B; the various elements $A + B$ gotten by taking different sets of values of $(a_1, b_1, c_1, a_2, b_2, c_2)$, if they lie in \mathfrak{S}_0, are certainly nonsimilar in \mathfrak{S}_0, except that $A + B$ and $(-A) + (-B)$ are the same element of \mathfrak{S}_0. Hence the number N of nonsimilar involutions of \mathfrak{S}_0 is at least half of the number N_1 of solutions of

$$a_1 + b_1 + 2c_1 = x + z,$$

$$a_2 + b_2 + 2c_2 = x + y,$$

where if $x \neq 0$ we impose the restrictions that $c_1 \leq (z+1)/2$, $c_2 \leq (y+1)/2$, and that in B instead of L we use L'. (These conditions insure that $A + B \in \mathfrak{S}_0$.) As in the previous paper, one readily shows that $N > n(n+1)$ unless $J_1 = \pm J_1$. We omit the details.

This leaves only the case where $y = z$. If $CW = -WC$, then $C^kW = (-1)^kWC^k$; therefore no odd power of C can be $\pm I$. Let p be a prime such that $n < p < 2n$. Since $x+y = n$, certainly n is odd, and $p \geq n+2$. Now \mathfrak{S}_1 (being isomorphic to \mathfrak{M}_{2n-1}) contains infinitely many elements of order p. However, \mathfrak{S}_2 contains only two such elements, since $C^p \neq \pm I$ by the above argument, while if $C \in \mathfrak{S}_0$ and $C^p = \pm I$, then setting $C = A^{(p)} + B^{(p)}$ shows that $A^p = \pm I$ and $B^p = \pm I$. However, $A \in \mathfrak{M}_n$, and if $A^p = \pm I$, then the minimum function of A must divide $\lambda^p + 1$. But the degree of the minimum function is at most n, and therefore is less than $p-1$, whereas $\lambda^p + 1$ is the
product of a linear factor $\lambda \mp 1$ and an irreducible factor of degree $p - 1$; thence the minimum function of A is $\lambda \mp 1$, so $A = \pm I$. In the same way $B = \pm I$. Hence the only solutions are $C = I^{(n)} \mp I^{(n)}$ and $C = -I^{(n)} \mp I^{(n)}$. This completes the proof of the lemma. We remark that the use of the existence of the prime p could have been avoided, but the proof is much quicker this way.

4. Proof of the main theorem. We are now ready to prove Theorem 4 by induction on n. Hereafter, let $n \geq 2$ and assume that Theorem 4 holds for $n - 1$. Let τ be any automorphism of \mathfrak{P}_2n; then by Lemma 1, $J_1^\tau = \pm AJ_1A^{-1}$ for some $A \in \mathfrak{M}_{2n}$. If we change τ by a suitable inner automorphism, we may assume that $J_1^\tau = \pm J_1$.

Therefore, every $M \in \mathfrak{P}_2n$ which commutes with J_1 goes into another such element, that is,

$$
\pm \begin{bmatrix} 1 & n'' \\ n & X \end{bmatrix}^\tau = \pm \begin{bmatrix} 1 & n'' \\ n & Y \end{bmatrix},
$$

where n denotes a column vector all of whose components are zero, and $X \in \mathfrak{M}_{2n-1}$. Thus, τ induces an automorphism on \mathfrak{M}_{2n-1}. Consequently (AUT, Theorem 4) there exists a matrix $A \in \mathfrak{M}_{2n-1}$ such that $Y = AX^*A^{-1}$ for all $X \in \mathfrak{M}_{2n-1}$, where either $X^* = X$ for all $X \in \mathfrak{M}_{2n-1}$ or $X^* = X'^{-1}$ for all $X \in \mathfrak{M}_{2n-1}$. After a further inner automorphism by a factor of $(1)^{\pm A^{-1}}$, we may assume that $J_1^\tau = \pm J_1$ and also that $X^* = Y = X^*$ for all $X \in \mathfrak{M}_{2n-1}$.

Let J_ν be obtained from $I^{(2n)}$ by replacing the νth diagonal element by -1. Then

$$(J_1J_{2n})^\tau = \pm \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}^\tau = \pm \begin{bmatrix} 1 & n' \\ \vrule & \vrule \end{bmatrix},$$

so that $\pm J_{2n}$ is invariant. Similarly, all of the matrices $\pm J_\nu (\nu = 1, \ldots, 2n)$ are invariant. Therefore for any $X \in \mathfrak{M}_{2n-1}$ we have

$$
\pm \begin{bmatrix} 1 & n'' \\ n & X \end{bmatrix} = \pm \begin{bmatrix} 1 & n' \\ n & A_1X^*A_1^{-1} \end{bmatrix}, \cdots, \pm \begin{bmatrix} X & n'' \\ n' & 1 \end{bmatrix} = \pm \begin{bmatrix} A_{2n}X^*A_{2n}^{-1} & n \\ n' & 1 \end{bmatrix},
$$

with $A_\nu \in \mathfrak{M}_{2n-1}$, and in fact $A_1 = I$.

Now suppose that $Z \in \mathfrak{M}_{2n-2}$, and consider $\pm (Z + I^{(2)})$; since it commutes with J_{2n-1} and J_{2n}, so does its image. But therefore
\[
A_{2n} \begin{pmatrix} Z & n' \\ n' & 1 \end{pmatrix} A_{2n}^{-1} = \begin{pmatrix} \bar{Z} & n' \\ n' & 1 \end{pmatrix},
\]

where \(Z\) denotes some matrix in \(M_{2n-2}\). From this one easily deduces that \(A_{2n}\) must be of the form \(B \pm (1)\), with \(B \in M_{2n-2}\). By considering the matrices commuting with \(J_v\) and \(J_{2n}\) for \(v = 1, \ldots, 2n-2\) we see that \(A_{2n}\) must be diagonal. Furthermore, it is clear that all of the \(A_v\) (\(v = 1, \ldots, 2n\)) must be diagonal, and all are sections of one diagonal matrix \(D^{(2n)}\). Using the further inner automorphism factor \(D^{-1}\), we find that \(\pm X^\tau = \pm X^*\) for every decomposable matrix \(\pm X \in \mathfrak{P}_{2n}\). Since \(\mathfrak{P}_{2n}\) is generated by the set of its decomposable matrices, the theorem is proved.

Tsing Hua University,
Peking, China.

University of Illinois,
Urbana, Ill.