PROPOSITIONAL CALCULUS AND REALIZABILITY

BY

GENE F. ROSE

In [13], Kleene formulated a truth-notion called "realizability" for formulas of intuitionistic number theory\(^{(1)}\). David Nelson\(^{(2)}\) showed that every number-theoretic formula deducible in the intuitionistic predicate calculus\(^{(3)}\) (stated by means of schemata, without proposition or predicate variables) from realizable number-theoretic formulas is realizable. In particular, then, every formula in the symbolism of the predicate calculus (with proposition and predicate variables) which is provable in the intuitionistic predicate calculus has the property that every number-theoretic formula (in the number-theoretic symbolism without proposition or predicate variables) which comes from it by substitution is realizable. This property was applied by Kleene to demonstrate that certain formulas provable in the classical predicate calculus are unprovable in the intuitionistic predicate calculus\(^{(4)}\).

The question naturally arises whether the converse of Nelson's result holds. That is to say, is an arbitrary formula of the predicate calculus provable whenever every number-theoretic formula obtained from it by substitution is realizable? If this question could be answered in the affirmative, we should have a completeness theorem for the intuitionistic predicate calculus\(^{(5)}\).

Received by the editors August 14, 1952.

\(^{(1)}\) A familiarity with the fundamental results pertaining to this concept is presupposed. For this purpose, the reader is referred to the above paper or to [17, §82].

The conjecture which is disposed of in this paper was proposed by Kleene in correspondence in November 1941, and was the only one of an early group of conjectures about realizability which was not settled by 1945. It was discussed by him in a paper before the Princeton Bicentennial Conference on the Problems of Mathematics in December 1946 (unpublished). The author took up the investigation in 1947, following a suggestion by Kleene that Jaśkowski's matric treatment of the Heyting propositional calculus [10] might provide a basis for attacking that part of the problem which concerns the propositional calculus. The solution by a counter-example, presented here, was obtained in February 1951.

The material in this paper is included in Jaśkowski's truth-tables and realizability, a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the University of Wisconsin and accepted in February 1952. In the thesis, the proofs of the following lemmas and theorems are given in greater detail: 3.2, 4.5, 4.6, 4.7, 4.8, 5.1, 5.2, 5.3, 5.4, 6.1, 7.1, 7.2.

\(^{(2)}\) Cf. Nelson [23, Theorem 1] or Kleene [17, §82, Theorem 62(a)].

\(^{(3)}\) Cf. [8; 9; 2].

\(^{(4)}\) Cf. [13, §10]. Other demonstrations were given later: cf. [14; 17, §80; 22].

\(^{(5)}\) For the classical predicate calculus, there is the well known completeness theorem of Gödel [4]. For the intuitionistic predicate calculus, on the other hand, no completeness theorem was known until 1949, when one not closely connected with the logical interpretation was found by Henkin [7] as a kind of converse of a result of Mostowski [22].
The position of the intuitionists that mathematical reasoning can never be completely formalized (cf. [8]) found subsequent confirmation in Gödel's celebrated incompleteness theorem for number theory [5], which applies to both classical and intuitionistic systems. However, this does not preclude the possibility that, as in the corresponding case for classical reasoning, an (effectively) formalizable set of principles might embrace all forms of intuitionistic reasoning which entail only the subject-predicate structure (or perhaps only the propositional form) of the propositions involved. If the stated conjecture should be true, the Heyting calculus would already give such a characterization; if false, a counterexample might point the way either to finding a more explicit intuitionistic interpretation or to extending the calculus to include additional principles acceptable in the intuitionistic predicate logic. Consequently, the conjecture was investigated with no clear indication a priori as to its truth or falsity.

We now know that it is false; and a counterexample can be presented briefly (cf. Theorem 6.1 below). This counterexample, however, was discovered only after prolonged, systematic attempts to establish the conjecture for various classes of formulas, beginning with the propositional calculus, and to abstract some general principles. This paper contains, besides the decisive example, the principal results of the investigation which culminated in it. Inasmuch as the counterexample appeared within the propositional calculus, the part of the problem relating to the full predicate calculus was never reached. The fact that the completeness conjecture holds for the part of the intuitionistic propositional calculus without implication (cf. Theorem 7.5 below) emphasizes the special difficulty connected with the intuitionistic interpretation of implication.

The counterexample is established only classically(6). Hence, rather than immediately seeking an extension of the intuitionistic propositional calculus, we should examine the interpretation along the following lines.

Kleene reports(7) that his current work on realizability of formulas with function variables, as proposed in [16, end §2], may cast new light on the intuitionistic interpretation of number-theoretic formulas containing implication or negation.

Moreover, one might seek to establish completeness by allowing the substitution of formulas from the enlarged class containing function variables. A complete predicate calculus should provide for just those methods of predicate reasoning which are valid in any part of intuitionistic mathematics. One can start with a given notion of formula with an interpretation, and consider the class of all predicate formulas valid for reasoning with these formulas. Then, as the class of formulas is increased, the class of predicate formulas valid for reasoning with these formulas.

(6) All results in this paper are established intuitionistically, except those which are indicated as only having been established classically.

(7) In December 1951.
formulas does not increase. The “complete predicate calculus” can be defined (noneffectively) as the inner limiting set of the sets of valid formulas upon repeating this process for all conceivable extensions of the “formal context.” It was a major discovery of Gödel [4] that, in the case of classical logic, one already obtains the inner limiting set after including the number-theoretic formulas, as one might expect from the earlier results of Löwenheim [18] and Skolem [25]. In analogy to the classical case, it was natural that the first attempt at a completeness property for the intuitionistic predicate calculus should be by a number-theoretic interpretation; but it must be kept in mind that this is not the only possibility.

Part I

1. **Propositional calculus.** We shall refer to the variables and formulas of the number-theoretic formal system of [13, §4] as *n*-variables and *n*-formulas. We now consider the propositional calculus as a separate formal system, and refer to its variables and formulas as *p*-variables and *p*-formulas. Let us define a *p*-formula to be *realizable* if and only if every *n*-formula obtained from it by substituting *n*-formulas for its *p*-variables is realizable. The set of realizable *p*-formulas will be denoted by "$.$"

A propositional calculus will be called *consistent with respect to realizability* if its provable *p*-formulas form a subset of $; *complete with respect to realizability* if the set of its provable *p*-formulas contains $.$ In investigating the conjecture that the Heyting propositional calculus is complete with respect to realizability, we shall treat this calculus as it is set forth by *modus ponens*, the substitution rule, and the following axioms (where *a*, *b* and *c* are distinct *p*-variables):

\begin{align*}
(1a) \quad & a \supset (b \supset a). \\
(1b) \quad & (a \supset b) \supset ((a \supset (b \supset c)) \supset (a \supset c)). \\
(2) \quad & a \supset (b \supset a \& b). \\
(3a) \quad & a \supset (b \supset a \& b). \\
(3b) \quad & a \supset (b \supset a \& b). \\
(4a) \quad & a \& b \supset a. \\
(4b) \quad & a \& b \supset b. \\
(5a) \quad & a \supset (b \supset b). \\
(5b) \quad & b \supset (a \supset b). \\
(6) \quad & (a \supset (b \supset c)) \supset (a \supset (b \supset c)). \\
(7) \quad & (a \supset b) \supset ((a \supset b) \supset \supset a). \\
(8) \quad & \neg \supset (a \supset b).
\end{align*}

The set of *p*-formulas provable in the Heyting propositional calculus will be denoted by "$.$"

The postulates of the classical propositional calculus differ from those of Heyting's in that the last axiom above is replaced by $\neg \supset a \supset a$. The set of *p*-formulas provable in this calculus will be called "$.$"

2. **Matrices.** Our use of matrices (or truth-tables) for the representation of sets of *p*-formulas is based directly on [20], [10], and [21, p. 3], and ultimately on [19] and [24]. By a (*finite*) *matrix* *M*, let us understand a system consisting of a finite set of elements closed under each of three binary
operations \lor_M, \land_M, \lor_M and one unary operation \neg_M, and having a non-empty subset of designated elements. An evaluating function with respect to a matrix M is any homomorphic mapping of the p-formulas into M such that \lor, \land, \lor, \land (regarded as formal operations) correspond respectively to $\lor_M, \land_M, \lor_M, \land_M$. A p-formula fulfils M if and only if it is mapped into a designated element by every evaluating function with respect to M. A matrix M is regular if and only if, for arbitrary matrix elements e and f, f is designated whenever e and $e \lor_M f$ are designated. A matrix M is a characteristic matrix for a set \mathcal{F} of p-formulas if and only if \mathcal{F} is the set of p-formulas which fulfil M. A sequence $\{M_i\}$ ($i = 0, 1, \cdots$) of matrices is regular if and only if each M_i is regular and there is an effective process by which, for all i, M_{i+1} is defined in terms of M_i. Such a sequence is a characteristic sequence for a set \mathcal{F} of p-formulas if and only if \mathcal{F} is the set of p-formulas which fulfil every matrix in the sequence.

Gödel [6] has shown that \mathcal{F} has no regular characteristic matrix. Jaskowski [10], however, has exhibited a characteristic sequence for \mathcal{F}. In Theorem 7.6, we shall show that \mathcal{F} has no regular characteristic matrix; the existence of a characteristic sequence for \mathcal{F} remains an open question.

We shall devote the remaining sections of Part I (§§3–5) to an inessentially modified presentation of Jaskowski’s above-mentioned result, for which a detailed proof is nowhere available in the literature. The results on realizability follow in Part II.

3. Simple conjunctions and simple implications.

3.1. Definitions. We shall denote finite, possibly empty, sequences of p-formulas (of n-formulas) by capital Greek letters. For p-formulas (for n-formulas) Δ, A, “$\Delta \vdash A$” will mean that A is deducible from Δ in the Heyting propositional calculus (in the intuitionistic predicate calculus with equality and the Peano axioms). By “$A \vdash B$” we shall mean that $A \vdash B$ and $B \vdash A$. We shall use $A \sim B$ as an abbreviation for $(A \lor B) \land (B \lor A)$, saying that A is equivalent to B if $\vdash A \sim B$.

We write “$\prod_{i \leq n} A_i$” for $A_0 \land \cdots \land A_n$, and “$\sum_{i \leq n} A_i$” for $A_0 \lor \cdots \lor A_n$, where A_0, \cdots, A_n are p- or n-formulas called the members of the conjunction or disjunction respectively. For any $j \leq n$, the result of replacing A_j by B in $\prod_{i \leq n} A_i$ will be denoted by “$j(B) \prod_{i \leq n} A_i$.”

Henceforth, lower-case latin letters will be used, in connection with p-formulas, only for the designation of p-variables which, unless otherwise specified, are not necessarily distinct.

A simple conjunction is a p-formula K of the form $\prod_{i \leq n} A_i$ where each A_i has one of the following forms: (i) a, (ii) $\neg a$, (iii) $a \lor b$, (iv) $a \lor b \land c$, (v) $a \land b \\

(8) The modifications will be noted as they occur.
(9) More specifically, $\prod_{i \leq n} A_i$ is A_0 for $n = 0$, and $(\cdots ((A_0 \land A_1) \land A_2) \cdots) \land A_n$ for $n \geq 2$. Similarly for $\sum_{i \leq n} A_i$.
(10) $a \lor b \land c$ means $a \land (b \lor c)$, and $a \land b \lor c$ means $(a \land b) \lor c$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(v) \(a \land b \supset c \), (vi) \((a \supset b) \supset c \). We define the degree \(d(K) \) of \(K \) to be the number of members which have form (vi).

A simple implication is a \(p \)-formula of the form \(K \supset z \) where \(K \) is a simple conjunction and \(z \) is any \(p \)-variable\(^{(11)}\).

If \(K \) is the simple conjunction \(\prod_{i \in \mathcal{S}} A_i \), \(P \) is the simple implication \(K \supset z \) and \(A_j \) is \((a_j \supset (b_j \supset c_j)) \prod_{i \in \mathcal{S}} A_i \) by \("K^i" \) and \(K \supset b_j \) by \("P^i" \).

3.2. Lemma. If \(P \) is a \(p \)-formula of the form \(\prod_{i \in \mathcal{S}} B_i \supset z \) where each \(B_i \) is an implication or a negation, then \(P \) is interdeducible with a simple implication.

Proof. Let \(P \) fulfil the hypothesis of the lemma. For each \(B_i \), define \(p(B_i) \) to be 0 or the number of (occurrences of) \(p \)-variables and \(\neg \)'s in \(B_i \), according as \(B_i \) has one of the forms (ii)-(vi) or not. Let \(g(P) \) be \(\max_{i \in \mathcal{S}} p(B_i) \); \(m(P) \), the number of \(B_i \)'s such that \(p(B_i) = g(P) \). The proof is completed by showing that 1° the lemma holds when \(g(P) = 0 \) and 2° if \(g(P) > 0 \), then there exists a \(p \)-formula \(Q \), interdeducible with \(P \), such that either \(q(Q) < q(P) \) or else \(q(Q) = q(P) \) and \(m(Q) < m(P) \).

3.3 Theorem. Every \(p \)-formula is interdeducible with a simple implication\(^{(12)}\).

Proof. Let \(P \) be an arbitrary \(p \)-formula, \(x \) a \(p \)-variable not in \(P \). Then \(P \models \neg(P \supset x) \supset x \models \psi \) a simple implication.

4. The matrix-sequence \(\{ J_i \} \). Let us define the set \(\mathcal{X} \) thus. 1° If \(x \) is a natural number, then \(x \in \mathcal{X} \). 2° For any \(d \geq 1 \), if \(x_1, \ldots, x_d \in \mathcal{X} \), then \((x_1, \ldots, x_d) \in \mathcal{X} \). For any \(d \geq 1 \) and any \(x \in \mathcal{X} \), "\(x(d) \)" denotes the \(d \)-tuple \((x, \ldots, x)\). 3° All elements of \(\mathcal{X} \) are given by 1° and 2°.

The partial ordering relation \(< \) in \(\mathcal{X} \) is defined thus. 1° For any \(d \geq 1 \) and any \(i \) \((1 \leq i \leq d)\), \(x_i < (x_1, \ldots, x_d) \). 2° For any \(d \geq 1 \) and any \(i \) \((1 \leq i \leq d)\), if \(x < x_i \), then \(x < (x_1, \ldots, x_d) \). 3° For any \(x, y \) in \(\mathcal{X} \), \(x < y \) only as required by 1° and 2°.

Note that, for any \(x \) in \(\mathcal{X} \), \(x \) is distinct from \(x^{(0)} \), which is \((x) \).

4.1. We define an infinite set \(\{ M \} \) of matrices in such a way that, for each member, the elements are in \(\mathcal{X} \) and the designated element is unique. For any \(M \) in \(\{ M \} \), we denote the designated element by \("b_M" \) and the (possibly empty) set of undesignated elements by \("A_M" \). Thus:

4.1.1. The matrix \(L_0 \) whose sole element is 0 is in \(\{ M \} \)\(^{(13)}\).

\(^{(11)}\) The class of simple implications differs from Jaśkowski's class of regular formulas in that a member of the premise of a regular formula may have one of the additional forms \(a \lor b \supset c \), \(\neg a \supset b \), \(a \supset (b \supset c) \), \(a \supset b \land c \), \(a \supset \neg b \), but it may not be a variable.

\(^{(12)}\) Jaśkowski states without proof that any formula is interdeducible with a formula of the form \(R_0 \& \cdots \& R_n \), where each \(R_i \) is regular.

\(^{(13)}\) This matrix corresponds to Jaśkowski's \(\mathfrak{R} \).
4.1.2. If $M \in \{M\}$, then $\Gamma(M) \in \{M\}$, where $\Gamma(M)$, which for convenience we denote by “N,” is defined thus. Let $b_N = \text{def } b_M$, and $A_N = \text{def } A_M + \{a_N\}$ where a_N is the least natural number n such that for no element x of M is $n = x$ or $n < x$. Now for any x in M, let $\alpha_M(x)$ be x or a_N according as $x \in A_M$ or $x = b_M$. We define the operations of N in terms of those of M, using the following tabular form.

<table>
<thead>
<tr>
<th>$x \supset_N y$</th>
<th>$y = b_N$</th>
<th>$y = \alpha_M(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = b_N$</td>
<td>$x \supset_M y$</td>
<td>$\alpha_M(x \supset_M v)$</td>
</tr>
<tr>
<td>$x = \alpha_M(u)$</td>
<td>$u \supset_M y$</td>
<td>$u \supset_M v$</td>
</tr>
<tr>
<td>$x &_N y$</td>
<td>$y = b_N$</td>
<td>$y = \alpha_M(v)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$x \supset_N y$</th>
<th>$y = b_N$</th>
<th>$y = \alpha_M(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x = b_N$</td>
<td>$x &_M y$</td>
<td>$\alpha_M(x &_M v)$</td>
</tr>
<tr>
<td>$x = \alpha_M(u)$</td>
<td>$\alpha_M(u &_M y)$</td>
<td>$\alpha_M(u &_M v)$</td>
</tr>
<tr>
<td>$x \vee_N y$</td>
<td>$y = b_N$</td>
<td>$y = \alpha_M(v)$</td>
</tr>
</tbody>
</table>

$\neg_N x = \text{def } \begin{cases} \alpha_M(\neg_M x) & \text{if } x = b_N, \\ \neg_M x & \text{if } x = \alpha_M(u). \end{cases}$

The n-fold iteration of the operation Γ will be denoted by “Γ^n.”

4.1.3. If $d \geq 1$ and, for all i $(1 \leq i \leq d)$, $M_i \in \{M\}$, then $(M_1, \ldots, M_d) \in \{M\}$, where (M_1, \ldots, M_d), which for convenience we denote by “P,” is defined thus. The elements of P are just those ordered d-tuples (x_1, \ldots, x_d) such that, for all i $(1 \leq i \leq d)$, $x_i \in M_i$. The designated element b_P is (b_M, \ldots, b_M). The operations of P are given by

$$(x_1, \ldots, x_d) \circ_P (y_1, \ldots, y_d) = \text{def } (x_1 \circ_{M_1} y_1, \ldots, x_d \circ_{M_d} y_d),$$

$$(\neg_P (x_1, \ldots, x_d) = \text{def } (\neg_{M_1} x_1, \ldots, \neg_{M_d} x_d),$$

where “\circ” denotes \supset, $\&$, or $\vee^{(14)}$. For any $d \geq 1$ and any M in $\{M\}$, “$M^{(d)}$” denotes the d-tuple (M, \ldots, M).

Note that, for any M in $\{M\}$, M is distinct from $M^{(1)}$.

4.1.4. All matrices in $\{M\}$ are given by 4.1.1.-4.1.3.

$^{(14)}$ This operation replaces Jaśkowski’s iterated binary product. As a result, our $\{M\}$ differs from his corresponding $(\mathbb{S})_{\Pi}$. However, there is a biunique mapping of $\{M\}$ onto $(\mathbb{R})_{\Pi}$ such that corresponding matrices are isomorphic.
4.2. For all \(n > 0 \), we define \(L_n \) to be \(\Gamma^n(L_0) \). The sequence \(\{L_n\} \) \((n=0, 1, \cdots)\), which is clearly a subset of \(\{M\} \), plays an important part in our investigation. The elements of \(L_n \) are 0, \cdots, \(n \). The matrix \(L_1 \) is the usual two-valued logic; consequently (cf. [24, pp. 169–171]) it is a regular characteristic matrix for \(\mathfrak{S} \). For \(n > 0 \), the operations of \(L_n \) are given by

\[
\begin{align*}
i \lor_{L_n} j &= \begin{cases} j & \text{if } i = 0 \text{ or } i > j > 0, \\ 0 & \text{otherwise}; \end{cases} \\
i \land_{L_n} j &= \begin{cases} j & \text{if } i = 0 \text{ or } i > j > 0, \\ 0 & \text{otherwise}; \end{cases} \\
i \lor_{L_n} j &= \begin{cases} i & \text{if } i = 0 \text{ or } i > j > 0, \\ j & \text{otherwise}; \end{cases} \\
\neg_{L_n} i &= \begin{cases} 0 & \text{if } i = 1, \\ 1 & \text{otherwise}. \end{cases}
\end{align*}
\]

4.3. The sequence \(\{J_i\} \) \((i=0, 1, \cdots)\) also is a subset of \(\{M\} \). This sequence corresponds to Jaśkowski’s \(\{\mathfrak{Z}_i\} \) \((i=0, 1, \cdots)\). Its members are defined by recursion thus: \(J_0 = \text{def } L_1, J_{i+1} = \text{def } \Gamma(J_{i+1}^{i+1}) \). In §5, we shall prove that \(\{J_i\} \) is a regular characteristic sequence for \(\mathfrak{S} \). The following lemmas give some properties of \(\{M\} \) which will facilitate this proof. We shall continue to use “\(N \)” to denote \(\Gamma(M) \) and “\(P \)” to denote \((M_1, \cdots, M_d) \).

4.4. **Lemma.** For each matrix \(M \) of \(\{M\} \),

\[
\begin{align*}
x \lor_M x &= x \lor M b_M x = x \lor_M b_M x = b_M \lor_M x = b_M, \\
b_M \lor_M x &= b_M \lor_M x = b_M \land_M x = x \land_M b_M = x.
\end{align*}
\]

Corollary. Each matrix in \(\{M\} \) is regular.

4.5. **Lemma.** If \(M \in \{M\} \) and \(x, y \in M \), then \(x \lor_N y = x \lor_M y \).

4.6. **Lemma.** For any matrices \(M_1, \cdots, M_d \) in \(\{M\} \), let \(v_1, \cdots, v_d \) be arbitrary evaluating functions with respect to \(M_1, \cdots, M_d \); \(w \) be the evaluating function with respect to \(P \) such that, for any \(p \)-variable \(q \), \(w(q) = (v_1(q), \cdots, v_d(q)) \). Then for any \(p \)-formula \(P \), \(w(P) = (v_1(P), \cdots, v_d(P)) \).

4.7. **Lemma.** For any matrix \(M \) in \(\{M\} \), let \(v \) be an arbitrary evaluating function with respect to \(N \); \(w \) be the evaluating function with respect to \(\Gamma(N^{(d)}) \) such that \(w(q) = v(q)^{(d)} \). Then, for any \(p \)-formula \(P \), \(w(P) = v(P)^{(d)} \).

4.8. **Lemma.** For any matrix \(M \) in \(\{M\} \), let \(v \) be an arbitrary evaluating function with respect to \(M \); \(w \) be the evaluating function with respect to \(N \) such that \(w(q) = \alpha_N(v(q)) \). Then, for any \(p \)-formula \(A \) with one of forms (ii)-(v), \(w(A) = v(A) \).
5. Proof that \(\{J_i\} \) is a regular characteristic sequence for \(\mathcal{S} \).

5.1. Lemma. If \(P \) is an axiom of the Heyting propositional calculus and \(M \in \{M\} \), then \(P \) fulfills \(M \).

5.2. Theorem. For any matrix \(M \) in \(\{M\} \) and \(p \)-formulas \(\Delta, P \) such that \(\Delta \vdash P \): if each member of \(\Delta \) fulfills \(M \), then so does \(P \).

Proof. It can be shown that the conclusion holds under each of the following cases: 1° \(P \) is an axiom. 2° \(\Delta \vdash A, \Delta \vdash A \supset P \) and the conclusion holds for \(A \) and for \(A \supset P \). 4° \(\Delta \vdash A, P \) results from \(A \) by substitution and the conclusion holds for \(A \).

If \(M \) is a matrix, \(K \supset z \) a simple implication (cf. 3.1), then a normal (refuting) evaluation of \(K \supset z \) with respect to \(M \) is any evaluating function with respect to \(M \) which maps each member of \(K \) into \(b_M \) and \(z \) into \(A_M \).

5.3. Lemma. Let \(P \) be a simple implication \(K \supset z \). Then either \(P \) has a normal evaluation with respect to \(J_{d(K)} \), or \(\vdash P \).

Proof. Let \(K \) be \(\prod_{i \leq n} A_i \), and \(s(K) \) be the number of (occurrences of) \(p \)-variables and \(\neg \)'s in \(K \). The proof is by exhaustive cases 5.3.1–5.3.3, with the induction hypothesis that the lemma holds for all simple implications \(K' \supset z' \) such that either 1° \(d(K') = d(K) - 1 \) or 2° \(d(K') = d(K) \) and \(s(K') < s(K) \). In each case, \("d" \) denotes \(d(K) \).

5.3.1. Suppose that no member of \(K \) is a \(p \)-variable. If \(d(K) = 0 \), a normal evaluation of \(P \) with respect to \(J_0 \) can be readily constructed. If \(d(K) = d > 0 \), consider two alternatives for the \(P_i \)'s.

Suppose that a \(P_i \) fulfills \(J_{d-1} \). For such a \(j \), inasmuch as \(\vdash P_j \), \(P \) is equivalent to \(j(c_j) \prod_{i \leq n} A_i \supset z \). Now either the latter simple implication \(\in \mathcal{S} \) or it has a normal evaluation \(v \) with respect to \(J_{d-1} \). In the former case, \(\vdash P \).

In the latter case, a normal evaluation of \(P \) with respect to \(J_d \) can be constructed in terms of \(v \).

Suppose, on the other hand, that no \(P_i \) fulfills \(J_{d-1} \). Now for each \(i \) (1 ≤ \(i \) ≤ \(d \)) there is a normal evaluation \(v_i \) with respect to \(J_{d-1} \) of the \(i \)th \(P_i \). Then a normal evaluation of \(P \) with respect to \(J_d \) can be constructed by mapping each \(p \)-variable \(q \) into \(\alpha_M((v_1(q), \ldots, v_d(q))) \) where \(M \) is \(J_{d-1}(q) \).

5.3.2. Suppose that a member of \(K \) is a \(p \)-variable but no such \(p \)-variable occurs in a member of form (ii)–(vi). Then the lemma is easily established under the respective subcases that every member of \(K \) is a \(p \)-variable or a member of \(K \) is not a \(p \)-variable.

5.3.3. Suppose that \(p \) is a member of \(K \) and a member \(A_i \) contains \(p \) and is not a \(p \)-variable.

\(^{(1)}\) For the case of empty \(\Delta \), the corresponding proposition for \(\mathcal{R} \Pi \Gamma \) is stated, without proof, by Jaśkowski.

\(^{(16)}\) This lemma and proof were supplied by the author after several unsuccessful attempts to establish the "Lemma" of [10, p. 60] with the aid of Jaśkowski’s rough outline.
If A_j is $\neg p$, then $\vdash P$.

If A_j is $p \supset a$, $p \supset (b \supset p)$, $(a \supset b) \supset p$ or $a \land b \supset p$, then the lemma follows in view of its validity for $j(p) \prod_{i \leq n} A_i \supset z$.

If A_j is $p \supset a$, then the lemma follows in view of its validity for $j(a) \prod_{i \leq n} A_i \supset z$.

If A_j is $p \supset a \lor b$, then the lemma follows in view of its validity for $j(a) \prod_{i \leq n} A_i \supset z$ and for $j(b) \prod_{i \leq n} A_i \supset z$.

If A_j is $(p \supset a) \supset b$, $p \land a \supset b$ or $a \land p \supset b$, then the lemma follows in view of its validity for $j(a \supset b) \prod_{i \leq n} A_i \supset z$.

If A_j is $(a \supset p) \supset b$, then the lemma follows in view of its validity for $j(b) \prod_{i \leq n} A_i \supset z$.

5.4. Theorem. $\{J_i\}$ is a regular characteristic sequence for S.

Proof. Use Corollary 4.4, Theorem 5.2, and Lemma 5.3, the last in conjunction with Theorems 3.3 and 5.2.

In addition to being a characteristic sequence for S, $\{J_i\}$ affords a decision procedure for the Heyting propositional calculus. Thus, for an arbitrary p-formula P, an interdeducible simple implication P^* can be found by an effective procedure. By an effective procedure, it can be determined whether or not P^* fulfils J_d, where d is the degree of the premise of P^*, and consequently whether or not P^*, and therefore P, is in S. (It should be noted that the number $v(i)$ of elements in J_i is a rapidly increasing function of i.) For this reason, the latter step in the decision procedure is, in general, too long to be practical.)

PART II

6. Proof that, classically, the Heyting propositional calculus is incomplete with respect to realizability. The following intuitive symbolism will be used henceforth.

<table>
<thead>
<tr>
<th>Intuitive symbolism</th>
<th>Predicate or natural number denoted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P \to Q$</td>
<td>P (materially) implies Q</td>
</tr>
<tr>
<td>$P & Q$</td>
<td>P and Q</td>
</tr>
<tr>
<td>$P \lor Q$</td>
<td>P or Q</td>
</tr>
<tr>
<td>$P = Q$</td>
<td>$(P \to Q) & (Q \to P)$</td>
</tr>
<tr>
<td>$(x)P$</td>
<td>for all x, P</td>
</tr>
<tr>
<td>$(Ex)P$</td>
<td>there exists x such that P</td>
</tr>
<tr>
<td>μxP</td>
<td>${x$ least x such that P, if $(Ex)P$; undefined, otherwise</td>
</tr>
<tr>
<td>$(x)_RP$</td>
<td>$(x)(R \to P)$</td>
</tr>
<tr>
<td>$(Ex)_RP$</td>
<td>$(Ex)(R & P)$</td>
</tr>
</tbody>
</table>

(11) We have $v(0) = 2$, $v(i + 1) = (v(i))^{i+1} + 1$, so that J_{6} already has more than 10^{60} elements.
Intuitive symbolism	Predicate or natural number denoted
$\mu x.RP$ | $\mu x.(R \& P)$
$\lambda x_1 \cdots x_m . t$ | The function which t is of x_1, \cdots, x_m in that order
$(x)_n$ | 0 or the highest power of the $(n+1)$th prime which divides x, according as x is 0 or not

For any $m \geq 1$ and any z, x_1, \cdots, x_m, we let $\{z\}(x_1, \cdots, x_m)$ be $U(\mu y T_m(z, x_1, \cdots, x_m, y))$. This is undefined when not $(E y) T_m(z, x_1, \cdots, x_m, y)$. The notation appeared first in [11, footnote 7]. For the definitions and theory of the primitive recursive function U and the primitive recursive predicate T_m, cf. [12, §§7, 4] or [17, §§57, 58, 63, 65].

We shall have available a primitive recursive function S_m^e of $m+1$ variables (for each $m \geq 1$ and $n \geq 1$) with the following property. If e defines recursively $\phi(y_1, \cdots, y_n, x_1, \cdots, x_m)$ as a function of $m+n$ variables, and k_1, \cdots, k_n are fixed natural numbers, then $S_m^e(e, k_1, \cdots, k_n)$ defines recursively $\phi(k_1, \cdots, k_n, x_1, \cdots, x_m)$ as a function of the remaining variables x_1, \cdots, x_m.

For any natural number e and n-formula $\psi(x_1, \cdots, x_m)$, “$e \models \psi$” shall mean that e realizes ψ. For any n-formula ψ, “$\models \psi$” shall mean that ψ is realizable, i.e. that $(E e) e \models \psi$.

If “x_1,” “x_i,” “y,” \cdots represent certain natural numbers intuitively, then “$x,” “$x_i,” “$y,” \cdots$ shall represent the corresponding numerals, and conversely.

If x_1, \cdots, x_m are distinct n-variables (p-variables), and if “$\phi(x_1, \cdots, x_m)$” is explicitly introduced to stand for a certain term or n-formula (a certain p-formula), thereafter for any other appropriate set of terms (of n-formulas or p-formulas) t_1, \cdots, t_m, “$\phi(t_1, \cdots, t_m)$” shall stand for the result of substituting t_1, \cdots, t_m for the free occurrences (for the occurrences) of x_1, \cdots, x_m, respectively, throughout $\phi(x_1, \cdots, x_m)$.

As we remarked in the introduction, it follows from Nelson’s Theorem 1 that the Heyting propositional calculus is consistent with respect to realizability. On the other hand, for the intuitionist, the question as to its completeness remains open. In Theorem 6.1, however, we exhibit a p-formula not in \mathcal{S}, whose realizability follows from the law of double negation for a particular predicate of the form $(Ec)Q(b, c)$ with Q primitive recursive. Hence, classically, the Heyting propositional calculus is incomplete with respect to realizability.

(18) This notation is taken from [1]. Our use differs from that of Church, however, in that his λ was defined only for functions of one variable, and functions of m variables were obtained by iteration.

(19) The notation appeared first in [12, p. 50]. Here $(x)_n$ is used in the sense of [15] or [17, §45, #19]; it is primitive recursive.

(20) Cf. [11, p. 153] or [17, §65, Theorem XXIII].
6.1. Theorem. Classically, $\mathfrak{P} \subseteq \mathfrak{S}$.

Proof. Let $D = \text{def} \neg a_0 \lor \neg a_1$, where a_0 and a_1 are distinct p-variables, and $P(a_0, a_1) = \text{def} \neg (D \supset D) \lor (D \lor D) \lor (D \lor D) \lor (D \lor D)$. Let f_0 define recursively $\lambda b \cdot 2^0 \cdot 3^0$, f_1 define recursively $\lambda b \cdot 2^1 \cdot 3^0$, and $f = 2^{f_0} \cdot 3^{f_1}$. Define as follows the primitive recursive predicates R and S:

$$R(b, c) \equiv \text{def} (E \supset (T(b, f, c)) \lor (U(c))) = 0 \lor (c)_2 = 2^0 \cdot 3^0,$$
$$S(b, c) \equiv \text{def} (j \supset (T_1(b, f, c)) \lor (U(c))) = 1 \lor (c)_2 = 2^1 \cdot 3^0.$$

Let e define recursively $\lambda b \cdot (\mu c (R(b, c) \lor S(b, c)))$. We shall show that if

(1) $(b)(\not \not (Ec)(R(b, c) \lor S(b, c)) \rightarrow (Ec)(R(b, c) \lor S(b, c)))$,

then, for arbitrary n-formulas F_0 and F_1,

(2) $(z_0) \cdots (z_p) \in P(F_0, F_1),$

where z_0, \cdots, z_p are the distinct free n-variables of $P(F_0, F_1)$ in order of first free occurrence, and F_0^* and F_1^* result from F_0 and F_1 respectively by substituting z_0, \cdots, z_p for z_0, \cdots, z_p. Thus the realizability of $P(a_0, a_1)$ follows from the classically true proposition (1).

We note the following facts pertaining to an arbitrary closed n-formula E.

It follows directly from [13, §5] that if E is unrealizable, then $\neg E$ is realized by any natural number, in particular by 0. Thence, using also [13, p. 114 (c)], we have $\not \not \not \not E \equiv \not \not \not E$; and hence $\not \not \not \not E \equiv \not \not \not E$. For convenience, let us denote $\neg |F_0^* \lor \neg |F_1^*$ by “G.”

Now assume (1). We show that, if

(3) $b \in (\neg | G \supset G) \lor \neg | G \lor \neg | G$,

then

(4) $\{e\} (b) \in | G \lor \neg | G$;

i.e. that (2) holds. To show this, assume (3) and

(5) $\not (Ec)(R(b, c) \lor S(b, c))$.

Assume

(6) $r \in | G$,

so that $r \in | G$ but not $r \in | G$. From (6), $r \in | F_0^* \lor r \in | F_1^*$. Therefore $(2^0 \cdot 3^0 \cdot 3^0 \cdot 3^0) \lor (2^1 \cdot 3^0 \cdot 3^0 \cdot 3^0)$. Therefore either $(Ec)(T_1(b, f, c)) \lor (U(c)) = 0$ or $(Ec)(T_1(b, f, c)) \lor (U(c)) = 0$. Hence $(Ec)R(b, c)$. In view of (5), we have

(7) $\not \in | G$

with (6) discharged. Then not $r \in | G$ but $r \in | G$, so that f_0 and f_1 each realize
\[\neg \neg \neg G \supset G. \] Therefore \((Ec)(T_1(b, (f)_0, c) \& (U(c))_0 = 1) \& (Ec)(T_1(b, (f)_1, c) \& (U(c))_0 = 1)\). Hence \((Ec)S(b, c)\). In view of (5), we have not not \((Ec)(R(b, c) \lor S(b, c)) \) with (5) discharged. From (1), then, \((Ec)(R(b, c) \lor S(b, c))\). Let
\[c = \mu c(R(b, c) \lor S(b, c)). \]
Then \(R(b, c) \lor S(b, c)\). Assume
\[(8) \quad R(b, c) \]
and
\[(9) \quad \neg r G. \]

Then \(f_0\) and \(f_1\) each realize \(\neg \neg \neg G \supset G\), so that \((T_1(b, (f)_0, (c)_0) \rightarrow (U((c)_0))_0 = 1) \& (T_1(b, (f)_1, (c)_1) \rightarrow (U((c)_1))_0 = 1)\). Therefore not \(R(b, c)\). Thus not not \(r G\) with (9) discharged. It follows that \(r \neg \neg G\), so that \(c_2 \neg r \neg \neg G\).

Assume
\[(10) \quad S(b, c) \]
and
\[(11) \quad r G. \]
Then \((f_0 \neg r \neg \neg G \lor (f_1 \neg r \neg \neg G))\), so that \((T_1(b, (f)_0, (c)_0) \rightarrow (U((c)_0))_0 = 0) \lor (T_1(b, (f)_1, (c)_1) \rightarrow (U((c)_1))_0 = 0)\). Therefore not \(S(b, c)\). Thus not \(r G\) with (11) discharged. It follows that \(r \neg \neg G\), so that \(c_2 r \neg \neg G\). But \(\{e\} \{b\} = (c)_2\), so that (4) holds with (8) and (10) discharged.

Thus, classically, \(P(a_0, a_1) \in \mathcal{B}\). The proof is completed by showing that \(P(a_0, a_1)\) does not fulfil \(J_3\), so that, in view of Theorem 5.4, \(P(a_0, a_1) \in \mathcal{S}\). Let \(v(a_0)\) and \(v(a_1)\) be \(((1), (0)), ((0), (0)), ((0), (0)))\) respectively. Then it can be shown that \(v(P(a_0, a_1)) = 4\).

7. The completeness with respect to realizability of the \(\mathcal{D}\)-less part of the Heyting propositional calculus.

7.1. Theorem. Every \(\mathcal{D}\)-less \(p\)-formula not in \(\mathcal{S}\) is equivalent to a disjunction \(\sum_{i \leq n} P_i\) of \(p\)-formulas not in \(\mathcal{A}\).

Proof. A \(p\)-variable already has the required form. Assume that the theorem holds for \(\mathcal{D}\)-less \(p\)-formulas \(P\) and \(Q\); then it can be shown that the theorem holds for \(P \& Q\), \(P \lor Q\), and \(\neg \neg P\). In treating \(\neg \neg P\), note that \(\neg \neg P \in \mathcal{A} \rightarrow \neg \neg P \in \mathcal{S}\) (cf. Glivenko [3]).

7.2. Lemma. Let \(\epsilon_0, \epsilon_1, \cdots\) be the sequence of (primitive recursive) functions of one variable such that \(\epsilon_0\) is identically 0 and, for all \(m > 0\), \(\epsilon_m(e) = \epsilon_{m-1}(\epsilon_1)\) or \(m\) according as \((e)_0\) is 0 or not. If \(F\) is a closed \(n\)-formula of the form \(\sum_{i \leq n} F_i\), then for all \(e\),
\[e \in \mathcal{F} \rightarrow (Ei)_{i \leq m}(\epsilon_m(e) = i \& e \in \mathcal{F}_i). \]

Proof. Use induction on \(m\).
7.3. For Theorem 7.4, let \(x \) and \(y \) be distinct \(n \)-variables, and for each \(j \) let "\(U_j(x) \)" denote \(\exists y V_j(x, y) \), where \(V_j \) is a predicate symbol expressing the primitive recursive predicate \(T_i((x)_j, x, y) \). We are making the assumption that the predicate symbols \(V_j \) are available in the number-theoretic formal system for convenience. However, this entails no loss of generality in the results; cf. [17, §82 Lemma 47 and §49 Corollary Theorem 27] (also [13, p. 116 first paragraph and p. 119 second paragraph from below]). The same remark applies to the use of the predicate symbol \(A \) in §8.

7.4. Theorem. Let \(P(a_0, \ldots, a_n) \) be an arbitrary disjunction \(\sum_{i \leq m} P_i \) of \(p \)-formulas not in \(\mathcal{A} \), where \(a_0, \ldots, a_n \) are the distinct \(p \)-variables of \(P(a_0, \ldots, a_n) \). Then not \(r P(U_0(x), \ldots, U_n(x)) \).

Proof. There exist (cf. 4.2) evaluating functions \(v_0, \ldots, v_m \) with respect to \(L_1 \) such that \((i)_{i \leq m} v_i(P_i) = 1 \). Assume that \(r P(U_0(x), \ldots, U_n(x)) \). Then there exists a general recursive function \(\phi \) such that

\[
(x)\phi(x) \quad r \quad P(U_0(x), \ldots, U_n(x)).
\]

For each \((i, j) \) \((i \neq m, j \neq n) \), let the general recursive predicate \(R_{ij} \) be given by

\[
R_{ij}(x) \equiv \text{def} \quad \epsilon_m(\phi(x)) = i \land v_i(a_j) = 0.
\]

Then (cf. [12, Theorem 1]) there are natural numbers \(f_0, \ldots, f_n \) such that, for each \(j \leq n \),

\[
\sum_{i \leq m} R_{ij}(x) \equiv (Ey) T_i(f_j, x, y).
\]

Let \(f = p_0^{f_0} \cdots p_n^{f_n} \). In view of Lemma 7.2 and (1), there is a natural number \(i^* \leq m \) such that

\[
(4) \quad \epsilon_m(\phi(f)) = i^* \land r Q_{i^*},
\]

where \(Q_{i^*} \) results from \(P_{i^*} \) under the substitution of \(U_0(f), \ldots, U_n(f) \) for \(a_0, \ldots, a_n \). Then, using (2), for arbitrary \(j \leq n \), \(v_i(a_j) = 0 \rightarrow \sum_{i \leq m} R_{ij}(f) \); moreover \((i)(i \leq m \land R_{ij}(f) \rightarrow i = i^* \land v_i(a_j) = 0) \), so that \(\sum_{i \leq m} R_{ij}(f) \rightarrow v_i(a_j) = 0 \). Thus, using (3), \((j)_{j \leq n} ((Ey) T_i(f_j, f, y) \equiv v_i(a_j) = 0) \). It follows (cf. [13, p. 114, (a), (m)]) that \((j)_{j \leq n} (r U_j(f) \equiv v_i(a_j) = 0) \). Therefore, in obtaining \(Q_{i^*} \) from \(P_{i^*} \), the closed \(n \)-formula substituted for any \(p \)-variable \(a \) is realizable or not according as \(v_i(a) \) is 0 or 1. Consequently (cf. [17, §82 Example 3(a)]), inasmuch as \(v_i(P_{i^*}) = 0 \), not \(r Q_{i^*} \), contrary to (4). We conclude that not \(r P(U_0(x), \ldots, U_n(x)) \).

Consider an arbitrary \(\mathcal{D} \)-less \(p \)-formula \(P \) not in \(\mathcal{D} \). By Theorem 7.1, \(P \) is equivalent to a \(p \)-formula \(Q \) which is a disjunction \(\sum_{i \leq m} P_i \) of \(p \)-formulas not in \(\mathcal{A} \). Substitute \(n \)-formulas for the \(p \)-variables of \(P \) and \(Q \) in such a way that \(U_0(x), \ldots, U_n(x) \) are substituted for the distinct \(p \)-variables \(a_0, \ldots, a_n \). License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
of Q; let P^* and Q^* be the n-formulas resulting under this substitution from P and Q respectively. In view of the consistency of the Heyting propositional calculus with respect to realizability, $r P^* \supset Q^*$. By Theorem 7.4, not $r Q^*$; hence not $r P^*$. We conclude that, for every \supset-less p-formula P, $P \in \mathcal{B} \rightarrow P \in \mathfrak{B}$. Because there is a decision procedure for the Heyting propositional calculus (cf. §5, end), we can conclude (intuitionistically) that $P \in \mathcal{B} \rightarrow P \in \mathfrak{B}$. Combining this result with the consistency property, we have Theorem 7.5.

7.5. **Theorem.** For any \supset-less p-formula P, $P \in \mathcal{B} \equiv P \in \mathfrak{B}$.

7.6. **Theorem.** \mathfrak{B} has no regular characteristic matrix.

Proof. Let M be an n-valued, regular characteristic matrix of \mathfrak{B}. We exhibit a p-formula P of the form $\sum_{i \leq m} P_i$ whose members are not in \mathfrak{B} and which fulfills M. (Gödel [6] gives a stronger p-formula of this form which serves the same purpose.) Then $P \in \mathfrak{B}$, contrary to Theorem 7.4.

Let a_0, \ldots, a_n be distinct p-variables. Let $(p_0, q_0), \ldots, (p_m, q_m)$ be the distinct ordered pairs of natural numbers (p, q) such that $p < q \leq n$. For all $i \leq m$, let $P_i = \neg \neg (a_{p_i} & \neg a_{q_i})$. Then $\sum_{i \leq m} P_i$ is a p-formula P whose members are not in \mathfrak{B}. Consider an arbitrary evaluating function v with respect to M. Since there is one more p-variable in P than there are elements in M, v must map at least one pair of distinct p-variables a_{p_i}, a_{q_i} ($i \leq m$) into the same element. For such a P_i and q_i, $v(P_i) = v(\neg \neg (a_{p_i} & \neg a_{p_i}))$. In view of the consistency of the Heyting propositional calculus with respect to realizability, $\neg \neg (a_{p_i} & \neg a_{p_i})$ and $P_i \supset P$ are in \mathfrak{B}, so that $v(P_i)$ and $v(P_i \supset P)$ are designated, hence so is $v(P)$.

8. Sets which contain \mathfrak{B}.

8.1. **Lemma.** Hypothesis: a_0, \ldots, a_m are p-variables; v is an arbitrary evaluating function with respect to a matrix L_n ($n > 0$); x_0, \ldots, x_p are the distinct natural numbers, in ascending order, among $0, 1, v(a_0), \ldots, v(a_m)$; ε is the mapping, defined over $\{x_0, \ldots, x_p\}$, which carries x_i into i; v^* is any evaluating function with respect to L_{m+2} such that $v^*(a_0) = \varepsilon(v(a_0)), \ldots, v^*(a_m) = \varepsilon(v(a_m))$; P is any p-formula whose p-variables are among a_0, \ldots, a_m. Conclusion: $v^*(P) = \varepsilon(v(P))$.

Proof. We use induction corresponding to the inductive definition of P.

Basis: The lemma obviously holds if P is one of the p-variables a_0, \ldots, a_m.

Induction step: 1. Let P be $A \circ B$, where \circ is \supset, $\&$, or \lor. Now $v(P) = v(A) \circ_{L_n} v(B)$, where by the induction hypothesis $v^*(A) = \varepsilon(v(A))$ and $v^*(B) = \varepsilon(v(B))$. Then $v(A) = 0 \lor v(A) > v(B) = 0 \Rightarrow v^*(A) = 0 \lor v^*(A) > v^*(B) > 0$. By referring to 4.2, we can verify that $v^*(A) \circ_{L_{m+2}} v^*(B) = \varepsilon(v(A) \circ_{L_n} v(B))$, so that $v^*(P) = \varepsilon(v(P))$. 2. Let P be $\neg A$. Now $v(P) = \neg_{L_n} v(A)$, where by the induction hypothesis $v^*(A) = \varepsilon(v(A))$. Then $v(A) = 1 \Rightarrow v^*(A) = 1$. It follows from 4.2 that $\neg_{L_{m+2}} v^*(A) = \varepsilon(\neg_{L_n} v(A))$, so that $v^*(P) = \varepsilon(v(P))$.

Let \mathfrak{B} be the set of p-formulas for which $\{L_n\}$ is a characteristic sequence.
8.2. Theorem. Let \(P \) be an arbitrary \(p \)-formula, and \(a_0, \ldots, a_m \) be its distinct \(p \)-variables. Then \(P \in \mathfrak{S} \Rightarrow P \) fulfils \(L_{m+2} \).

Proof. Clearly, \(P \in \mathfrak{S} \Rightarrow P \) fulfils \(L_{m+2} \). Now, for any \(n \), let \(v \) be an evaluating function with respect to \(L_n \) which maps \(P \) into \(A_{L_n} \). Construct \(e \) and \(v^* \) as in the hypothesis of Lemma 8.1. Then \(e(P) = \varepsilon(v(P)) \in A_{L_{m+2}} \). Thus not \(P \) fulfils \(L_n \)—not \(P \) fulfils \(L_{m+2} \). But the predicate \(P \) fulfils \(L_n \) is effectively decidable; hence, intuitionistically, \(P \) fulfils \(L_{m+2} \Rightarrow P \) fulfils \(L_n \). We conclude that \(P \) fulfils \(L_{m+2} \Rightarrow P \in \mathfrak{S} \).

Corollary. The predicate \(P \in \mathfrak{S} \) is effectively decidable.

8.3. Definition. Let \("B(x)" \) denote \(\exists y A(x, y) \lor \exists y B(x, y) \), where \(A \) is a predicate symbol expressing the primitive recursive predicate \(T_1(x, x, y) \), and \(x \) and \(y \) are distinct \(n \)-variables (cf. 7.3). The \(n \)-formula \(B(x) \) is unrealizable (cf. [17, §82 Theorem 63 (i)]). We now define the \(n \)-formulas \(F_n(x) \) and \(G_n(x) \) (\(n = 1, 2, \ldots \)), in each of which \(x \) is the sole free \(n \)-variable:

\[
F_1(x) = \text{def} \ \neg B(x), \quad G_1(x) = \text{def} \ \forall z (z < x \supset B(z)),
\]

where \(z \) does not occur in \(B(x) \); for all \(n > 0 \),

\[
G_{n+1}(x) = \text{def} \ \forall z (z < x \supset F_n(z) \lor G_n(z)),
\]

\[
F_{n+1}(x) = \text{def} G_{n+1}(x) \supset F_n(x) \lor G_n(x),
\]

where \(z \) does not occur in \(F_n(x) \lor G_n(x) \).

We shall make frequent use of the fact that any \(n \)-formula, deducible by means of the intuitionistic predicate calculus with equality and the Peano axioms from realizable \(n \)-formulas, is realizable (cf. [23, Theorem 1] or [17, §82 Theorem 62 (a)]). For the present use of "\(\vdash \) " cf. 3.1.

8.4. Lemma. For all \(n > 0 \),

\[
\begin{align*}
(1) & \quad \vdash \neg \neg F_{n+1}(x), \\
(2) & \quad \vdash \neg \neg G_n(x), \\
(3) & \quad \text{classically, not } r F_n(x) \lor G_n(x).
\end{align*}
\]

Proof. First, we establish \(\vdash \neg \neg G_1(x) \) by formal induction. Thus \(\vdash \neg \neg G_1(0) \). Moreover, noting \(\vdash \forall x \neg \neg B(x) \), we have \(\neg \neg G_1(x) \vdash \neg \neg \forall z (z < x \supset B(z)) \land \neg \neg B(x) \vdash \neg \neg (\forall z (z < x \supset B(z)) \land B(x)) \vdash \neg \neg G_1(x') \), with \(x \) held constant. Next, note that for all \(n < 0 \),

\[
\vdash G_n(x) \supset \forall w (w \leq x \supset G_n(w));
\]

hence \(\vdash G_n(x) \supset G_{n+1}(x) \); hence \(\neg \neg G_n(x) \vdash \neg \neg G_{n+1}(x) \). So (2) holds. Furthermore, for all \(n > 0 \), \(\neg \neg G_n(x) \vdash \neg \neg F_{n+1}(x) \); hence (1) holds.

To prove (3), we use induction on \(n \).

Basis. Note that \(\vdash \neg \neg F_1(x) \) and \(\neg \neg F_1(x), F_1(x) \lor G_1(x) \vdash G_1(x) \), so that
$F_1(x) \lor G_1(x) \vdash G_1(x) \vdash B(x)$. Therefore not $r \ F_1(x) \lor G_1(x)$.

Induction step. For $n>0$, assume that

\[(5) \quad r \ F_{n+1}(x) \lor G_{n+1}(x)\]

Then there exists a general recursive function ϕ such that $(x)\phi(x) \ r \ F_{n+1}(x) \lor G_{n+1}(x)$.

Now assume also

\[(6) \quad (Ex)(y)y \geq x(\phi(y))_0 = 0.\]

For such an x, $(y)y \geq x(\phi(y))_0 \ r \ F_{n+1}(y)$. Let e define recursively $\lambda y \cdot (\phi(y))_0$. Consider any y. For all a, if $a \ r \ y \geq x$, then $y \geq x^{(2)}$, hence $\{S_1(e, y)\}_{(a)} \ r \ F_{n+1}(y)$. Thus

\[(7) \quad r \ \forall y(y \geq x \supset F_{n+1}(y)).\]

Note that

\[(8) \quad \vdash F_{n+1}(x) \land G_{n+1}(x) \supset G_{n+1}(x').\]

Now (holding x constant) $x < x$, $G_{n+1}(x) \vdash [\{4\}]G_{n+1}(x')$, and $x \geq x$, $G_{n+1}(x)$, $\forall y(y \geq x \supset F_{n+1}(y)) \vdash F_{n+1}(x) \land G_{n+1}(x) \vdash [\{8\}]G_{n+1}(x')$. Hence

\[(9) \quad G_{n+1}(x), \forall y(y \geq x \supset F_{n+1}(y)), G_{n+1}(x) \vdash G_{n+1}(x')\]

with x held constant. From (9) and $\vdash G_{n+1}(0)$ by formal induction, $G_{n+1}(x)$, $\forall y(y \geq x \supset F_{n+1}(y)) \vdash \forall xG_{n+1}(x)$. But $\forall xG_{n+1}(x) \vdash \forall x(F_n(x) \lor G_n(x))$. Hence $\forall y(y \geq x \supset F_{n+1}(y)) \vdash G_{n+1}(x) \supset \forall x(F_n(x) \lor G_n(x)) \vdash G_{n+1}(x) \supset \forall x(F_n(x) \lor G_n(x))$. Then, using (7) and (2), $r \ \forall x(F_n(x) \lor G_n(x))$, contradicting the induction hypothesis (noting $[13, p. 114 (f)]$). By *reductio ad absurdum*, not $\forall x \ y \geq x(\phi(y))_0 = 0$, with (6) discharged.

Thence classically

\[(10) \quad (x)(Ey)y \geq x(\phi(y))_0 \neq 0.\]

But then $\lambda x \cdot \mu y \geq x(\phi(y))_0 \neq 0$ is a general recursive function ψ. For arbitrary x, $\psi(x) \geq x$; hence, letting $y = \psi(x)$, we have $0 \ r \ y \geq x$ and $(\psi(x))_1 \ r \ G_{n+1}(y)$; thus $2 \exp \psi(x) \cdot (3 \exp 2^0 \cdot 3^{(\psi(x))_1}) \ r \ \exists y(y \geq x \land G_{n+1}(y))$. Therefore $r \ \exists y(y \geq x \land G_{n+1}(y)) \vdash [\text{cf. (4)}] G_{n+1}(x) \vdash F_n(x) \lor G_n(x)$, so that $r \ F_n(x) \lor G_n(x)$, contradicting the induction hypothesis. By *reductio ad absurdum* not $r \ F_{n+1}(x) \lor G_{n+1}(x)$, with (5) discharged.

This completes the induction step.

Henceforth, we shall denote $F_i(x)$ and $G_i(x)$ by "F_i" and "G_i," for all $i>0$. Also, let $F_0 = 0 = 0$.

8.5. **Lemma.** For all i and j ($i > j > 0$),

(21) Here we are assuming that $y \geq x$ is a prime n-formula, but the proof could be similarly constructed under alternative formalizations (cf. 7.3).
(11) \(\vdash F_j \supset F_i \),
(12) \(\vdash F_i \supset F_j \sim F_j \),
(13) \(\vdash F_i \land F_j \sim F_j \),
(14) \(\vdash F_i \lor F_j \sim F_i \).

Proof. (11) is immediate. To prove (12), note

(15) \(i > j > 0 \rightarrow \vdash G_j \supset F_i \),
(16) \(j > 0 \rightarrow \vdash G_j \supset F_j \sim F_i \),

(using (2) and \(\vdash \neg F_i \) and noting that \(\vdash \neg \neg B(x) \supset \neg B(x) \), in establishing (16) for \(j = 1 \). Hence if \(i > j > 0 \), \(\vdash [(15)] (F_i \supset F_j) \supset (G_j \supset F_j) \vdash [(16)] (F_i \supset F_j) \supset F_j \). We obtain (13) and (14) directly from (11).

8.6. **Definition.** For each \(n > 0 \), define as follows the set \(V_n \) of \(n \)-formulas:

1° \(F_0, \ldots, F_n \in V_n \);
2° if \(A \) and \(B \in V_n \), then \(A \circ B \) and \(\neg A \in V_n \),

where \(\circ \) is \(\supset, \land, \lor, \text{ or } \lor \); 3° all members of \(V_n \) are given by 1° and 2°. Let the mapping \(e_n \) be defined as follows over \(V_n \):

1° \(e_n(F_0) = i \) (\(i = 0, \ldots, n \));
2° \(e_n(\circ A \circ B) = e_n(A) \circ_{L_n} e_n(B) \), where \(\circ \) is \(\supset, \land, \text{ or } \lor \), and \(e_n(\neg A) = \neg_{L_n} e_n(A) \).

8.7. **Lemma.** For all \(n > 0 \), \(e_n(F) = k \rightarrow F \sim F_k \) for every \(F \in V_n \).

Proof. (We shall write "\(e \)" for \(e_n \).) The lemma obviously holds for \(F_0, \ldots, F_n \). If by the induction hypothesis the lemma holds for \(A \) and \(B \), then it holds for \(A \supset B, A \land B, A \lor B \) and \(\neg A \). Thus, let \(e(A) = i, e(B) = j \).

Note that \(\vdash F_0 \) and refer to 4.2 for the operations of \(L_n \).

If \(i = 0 \), then \(e(A \supset B) = j, e(A \land B) = j, e(A \lor B) = i \) and \(\vdash A \supset B \sim F_0 \supset F_j \sim F_j \), \(\vdash A \lor B \sim F_0 \lor F_j \sim F_0 \). Now let \(i > 0 \). If \(j = 0 \), then \(e(A \supset B) = 0, e(A \land B) = i, e(A \lor B) = 0 \) and \(\vdash A \supset B \sim A \supset F_0 \sim F_0 \), \(\vdash A \lor B \sim F_i \lor F_i \sim F_i \), \(\vdash A \land B \sim A \land F_0 \sim F_0 \); if \(i > j > 0 \), then \(e(A \supset B) = j, e(A \land B) = j, e(A \lor B) = i \) and \(\vdash A \supset B \sim F_i \supset F_j \sim [8.5] F_j, \vdash A \land B \sim F_i \land F_j \sim [8.5] F_j, \vdash A \lor B \sim F_i \lor F_j \sim [8.5] F_i \).

If \(i = 1 \), then \(e(\neg A) = 0 \) and \(\vdash \neg A \sim \neg F_i \sim [8.3] F_0 \). If \(i = 0 \), then \(e(\neg A) = 1 \) and \(\vdash \neg A \sim \neg F_i \sim [8.3] F_1 \). If \(i > 1 \), then \(e(\neg A) = 1 \) and \(\vdash \neg A \sim \neg F_i \sim [8.4, 8.3] F_i \).

8.8. **Theorem.** Classically, \(\mathcal{P} \subseteq \mathcal{Q} \).

Proof. Let \(P \) be an arbitrary \(p \)-formula not in \(\mathcal{Q} \); \(a_0, \ldots, a_m \) be its distinct \(p \)-variables; \(v \) be an evaluating function with respect to \(L_n \) such that \(v(P) > 0 \). For each \(j \leq m \), let \(E_j = \text{def } v_{(a_j)} \). Let \(P^* \) result from \(P \) under the substitution of \(E_0, \ldots, E_m \) for \(a_0, \ldots, a_m \). Then \(P^* \in V_n \), and for the mapping \(e_n \) of 8.6, \(e_n(P^*) = v(P) \). From Lemma 8.7, therefore, \(\vdash P^* \sim F_{v(P)} \).

Thus \(rP^* \rightarrow rF_{v(P)} \); hence (classically) in view of (3), Lemma 8.4, not \(rP^* \).
We conclude that \(P \subseteq \mathbb{B} \). Thus \(P \subseteq \mathbb{B} \rightarrow P \subseteq \mathbb{B} \), from which \(P \subseteq \mathbb{B} \rightarrow P \subseteq \mathbb{B} \) follows intuitionistically in view of Corollary 8.2.

8.9. **Theorem.** \(\mathbb{L} \subset \mathbb{B} \).

Proof. Let \(a_0 \) and \(a_1 \) be distinct p-variables. Referring to 4.2, we find that \((a_0 \supset a_1) \lor (a_1 \supset a_0) \in \mathbb{L} \). By Theorem 7.4, this p-formula is not in \(\mathbb{B} \).

In view of Theorems 8.8 and 8.9, \(\mathbb{B} \) is (classically) a proper subset of \(\mathbb{L} \).

Now \(\mathbb{L} \) is a proper subset of \(\mathbb{A} \) (proper because \(a \lor \neg a \) is in \(\mathbb{A} \) but not in \(\mathbb{L} \)). Hence, through §6 and Theorems 8.8 and 8.9, we have established (classically) the following chain of proper set-inclusions:

\[
\mathbb{A} \subset \mathbb{B} \subset \mathbb{L} \subset \mathbb{A}.
\]

(Note that, intuitionistically, \(\mathbb{B} \) is a proper subset of \(\mathbb{A} \). Thus, it follows from [17, §82 Example 3 (a)] that \(\mathbb{L} \subset \mathbb{A} \); moreover, we have referred in 8.3 to Kleene's example of an unrealizable n-formula obtained from \(a \lor \neg a \); hence \(\mathbb{L} \subset \mathbb{A} \).)

Bibliography

University of Wisconsin,
Madison, Wis.