Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Functions representable as differences of subharmonic functions


Author: Maynard G. Arsove
Journal: Trans. Amer. Math. Soc. 75 (1953), 327-365
MSC: Primary 31.0X
DOI: https://doi.org/10.1090/S0002-9947-1953-0059416-3
MathSciNet review: 0059416
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] C. R. Adams and J. A. Clarkson On definitions of bounded variation for functions of two variables, Trans. Amer. Math. Soc. vol. 35 (1933) pp. 824-854. MR 1501718
  • [2] -Properties of functions $ f(x,y)$ of bounded variation, Trans. Amer. Math. Soc. vol. 36 (1934) pp. 711-730. MR 1501762
  • [1] S. Banach Théorie des opérations linéaires, Warsaw, 1932.
  • [1] M. Brelot Étude des fonctions sousharmoniques au voisinage d'un point, Actualités Scientifiques et Industrielles, vol. 139, 1934, pp. 5-55.
  • [2] -Sur l'allure des fonctions harmoniques et sousharmoniques à la frontière, Mathematische Nachrichten vol. 4 (1950) pp. 248-307.
  • [3] -Sur l'intégration de $ \Delta u(M) = \phi (M)$, C. R. Acad. Sci. Paris vol. 201 (1945) pp. 1316-1318.
  • [4] -Minorantes sousharmoniques, extrémales et capacité, J. de Math. vol. 24 (1945) pp. 1-32. MR 0016186 (7:521e)
  • [5] -Sur les ensembles effilés, Bull. Sci. Math. vol. 68 (1944) pp. 12-36. MR 0012364 (7:15e)
  • [6] -Deux théorèmes généraux sur le potentiel et quelques applications, C. R. Acad. Sci. Paris, vol. 226 (1948) pp. 1499-1500. MR 0024529 (9:508d)
  • [1] H. Cartan Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels, Bull. Soc. Math. France vol. 73 (1945) pp. 74-106. MR 0015622 (7:447h)
  • [1] J. Deny Sur les infinis d'un potentiel, C. R. Acad. Sci. Paris vol. 224 (1947) pp. 524-525. MR 0019176 (8:380f)
  • [2] -Les potentiels d'énergie finie, Acta Math. vol. 82 (1950) pp. 107-183. MR 0036371 (12:98e)
  • [1] G. C. Evans Complements of potential theory, part II, Amer. J. Math. vol. 55 (1933) pp. 29-49. MR 1506942
  • [1] E. Hewitt Remarks on the inversion of Fourier-Stieltjes transforms, Ann. of Math. vol. 57 (1953) pp. 458-474. MR 0054768 (14:976g)
  • [1] R. Nevanlinna Eindeutige analytische Funktionen, Berlin, 1936.
  • [1] E. E. Privaloff A generalization of Jensen's formula, part I, Izvestia Akad. Nauk. vol. 6-7 (1935) pp. 837-847.
  • [2] -Subharmonic functions, Moscow, 1937.
  • [1] T. Radó Subharmonic functions, Berlin, 1937.
  • [1] F. Riesz Sur certains systèmes singuliers d'équations intégrales, Ann. École Norm. vol. 28 (1911) pp. 5-62.
  • [1] P. C. Rosenbloom Mass distributions and their potentials, Proceedings of the 11th Scandinavian Mathematical Congress, Trondheim, Norway, 1949, pp. 130-138. MR 0057396 (15:220b)
  • [1] W. Rudin Integral representation of continous functions, Trans. Amer. Math. Soc. vol. 68 (1950) pp. 278-286. MR 0034916 (11:663i)
  • [1] S. Saks Theory of the integral, 2d rev. ed., Warsaw-Lwów, 1937.
  • [1] L. Schwartz Théorie des distributions, vol. I, Actualités Scientifiques et Industrielles, no. 1091, 1950. MR 0032815 (11:350e)
  • [2] -Théorie des distributions, vol. II, Actualités Scientifiques et Industrielles, no. 1122, 1951.
  • [1] J. L. Walsh The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions, Bull. Amer. Math. Soc. vol. 35 (1929) pp. 499-544. MR 1561772
  • [1] N. Wiener Laplacians and continuous linear functionals, Acta Szeged vol. 3 (1927) pp. 7-16.
  • [1] S. Zaremba Contribution à la théorie d'une équation fonctionelle de la physique, Rend. Circ. Mat. Palermo vol. 19 (1905) pp. 140-150.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31.0X

Retrieve articles in all journals with MSC: 31.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1953-0059416-3
Article copyright: © Copyright 1953 American Mathematical Society

American Mathematical Society