A STUDY OF α-VARIATION. I.

BY
F. W. GEHRING

This paper is based on the notion of the higher variation of a function introduced by N. Wiener [9] while studying the Fourier coefficients of a function with bounded variation. L. C. Young applied this idea to derive a new existence theorem for Stieltjes integration and later collaborated with E. R. Love in publishing a number of papers on subjects related to this concept.

Preliminaries

1.1. Suppose that $f(x)$ is a real- or complex-valued function defined over $a \leq x \leq b$. For $0 < \alpha \leq 1$, we define the α-variation of $f(x)$ over this interval as the least upper bound of the sums

$$\left\{ \sum_{n=1}^{N} \left| f(x_n) - f(x_{n-1}) \right|^{1/\alpha} \right\}^\alpha$$

taken over all subdivisions $a = x_0 < \cdots < x_N = b$, and we denote this upper bound by

$$V_\alpha\{f(x); a \leq x \leq b\} \quad \text{or} \quad V_\alpha\{f(x); x \in I\},$$

where I is the interval $a \leq x \leq b$. Similarly we define the 0-variation (or oscillation) of $f(x)$ over this interval as the least upper bound of the difference $\left| f(x'') - f(x') \right|$ for $a \leq x' < x'' \leq b$, and we denote this upper bound by

$$V_0\{f(x); a \leq x \leq b\} \quad \text{or} \quad V_0\{f(x); x \in I\}.$$

It is often convenient to consider the α-variation of a function over an interval, I, which is open or half-open, and we can appropriately define the symbol

$$V_\alpha\{f(x); x \in I\}$$

for $0 \leq \alpha \leq 1$.

Suppose that $\{x_n\}$ is any set of real or complex numbers. For $0 < \alpha \leq 1$, we denote by

$$\left\{ \sum_n \left| \sum x_n \right|^{1/\alpha} \right\}^\alpha$$

the least upper bound of all sums.
A STUDY OF α-VARIATION

$$\left\{ \sum_{k} \left| x_{n_{k-1}} + \cdots + x_{n_{k-1}} \right|^{|1/\alpha|} \right\}^{\alpha},$$

where \(\{n_{k}\} \) is any appropriate finite sequence. When \(\alpha = 0 \), we let

$$\left\{ \sum_{n} \left| x_{n} \right|^{|1/\alpha|} \right\}^{\alpha} \text{ and } \left\{ \sum_{n} \sum_{n} \left| x_{n} \right|^{|1/\alpha|} \right\}^{\alpha}$$

denote the least upper bounds for \(|x_{m}| \) and \(|x_{m} + \cdots + x_{n}| \) respectively.

1.2. For \(0 \leq \alpha \leq 1 \), we say that the function \(f(x) \) is in \(W_{\alpha} \) over the interval \(0 \leq x \leq 1 \) if \(f(x) \) has bounded \(\alpha \)-variation over this interval; \(W_{0} \) is simply the class of bounded functions. The sum of two functions in \(W_{\alpha} \) is also in \(W_{\alpha} \) since, by Minkowski's inequality,

$$V_{\alpha}\{f(x) + g(x); x \in I\} \leq V_{\alpha}\{f(x); x \in I\} + V_{\alpha}\{g(x); x \in I\}.$$

Similarly, for \(0 \leq \alpha < \beta \leq 1 \), it follows from Jensen's inequality that

$$V_{\alpha}\{f(x); x \in I\} \leq V_{\beta}\{f(x); x \in I\},$$

and hence a function in \(W_{\beta} \) is also in \(W_{\alpha} \).

If, for \(0 \leq \alpha \leq 1 \), \(f(x) \) has period 1 and is in the class Lip (\(\alpha \)), i.e. if for some constant \(C \)

$$\left| f(x'') - f(x') \right| < C(x'' - x')^{\alpha}$$

for each \(x' < x'' \), \(f(x) \) is obviously in \(W_{\alpha} \) and the \(\alpha \)-variation of \(f(x) \) over any interval of length 1 is less than \(C \). The converse is not true since functions in \(W_{\alpha} \) need not be continuous. However we can prove the following result.

Theorem 1.2.1. (Cf. [11, p. 455].) Suppose that \(0 \leq \alpha \leq 1 \), that \(f(x) \) is real and continuous with period 1, and that the \(\alpha \)-variation of \(f(x) \) over any interval of length 1 is less than 1. There exists a continuous increasing function \(\phi(t) \) such that \(\phi(t+1) = \phi(t) + 1 \) and such that

$$\left| f\{\phi(t'')\} - f\{\phi(t')\} \right| < (t'' - t')^{\alpha}$$

for each \(t' < t'' \).

We can suppose that \(\alpha > 0 \) and that \(f(x) \) assumes its positive maximum at \(x = 0 \). Define the function \(\gamma(x) \) so that \(\{\gamma(x)\}^{\alpha} \) is equal to the \(\alpha \)-variation of \(f(x) \) over the interval \(0 \leq y \leq x \). \(\gamma(x) \) is continuous, \(\gamma(x+1) \geq \gamma(x) + \gamma(1) \), and \(\gamma(1) < 1 \). For each \(x > 0 \) we can select a subdivision \(0 = y_0 < \cdots < y_N = x + 1 \) such that

$$\gamma(x + 1) < \sum_{n=1}^{N} \left| f(y_n) - f(y_{n-1}) \right|^{|1/\alpha|} + \epsilon.$$

If \(y_n < 1 \leq y_{n+1} \), we see by periodicity that
and hence that \(\gamma(x+1) + \gamma(1) = \gamma(x+1) + \gamma(1) + \epsilon \). For \(x > 0 \) we conclude that \(\gamma(x+1) = \gamma(x) + \gamma(1) + \epsilon \) and we extend \(\gamma(x) \) so this holds for all \(x \).

Let \(\theta(x) = \gamma(x) + x\{1 - \gamma(1)\} \). \(\theta(x) \) is continuous and increasing for all \(x \); let \(\phi(t) \) be the inverse function. Then \(\phi(t+1) = \phi(t) + 1 \) and

\[
| f\{\phi(t')\} - f\{\phi(t'')\} |^{1/\alpha} \leq \gamma\{\phi(t')\} - \gamma\{\phi(t'')\} < \theta\{\phi(t')\} - \theta\{\phi(t'')\}
\]

for each \(t' < t'' \). This completes the proof.

We also have the following

Theorem 1.2.2. Suppose that \(0 \leq \alpha \leq 1 \) and that \(f(x) \) is in \(W_\alpha \). Then

\[
V_\alpha\{f(y); x \leq y \leq x + h\} = O(h^\alpha)
\]

almost everywhere, and similarly on the left.

Assume that \(\alpha > 0 \) and let \(E_k \) be the set of points in \(0 \leq x < 1 \) for which

\[
\limsup_{h \to 0} h^{-\alpha} V_\alpha\{f(y); x \leq y \leq x + h\} > k.
\]

For each \(x \) in \(E_k \) and each \(\epsilon > 0 \) there exists an interval, \(I(x) = x \leq y \leq x + h \), such that

\[
V_\alpha\{f(y); x \leq y \leq x + h\} \geq k h^\alpha
\]

and such that \(h < \epsilon \). By Vitali's covering theorem there exists a sequence, \(\{I(x_n)\} \), of nonoverlapping intervals which cover almost all of \(E_k \) and

\[
\text{outer meas } E_k \leq \left\{ \sum_{n=1}^{\infty} |I(x_n)| \right\}^\alpha \\
\leq \frac{1}{k} \cdot \left\{ \sum_{n=1}^{\infty} V_\alpha\{f(y); y \in I(x_n)\}^{1/\alpha} \right\}^\alpha \\
\leq \frac{1}{k} \cdot V_\alpha\{f(x); 0 \leq x \leq 1\}.
\]

The set of points in \(0 \leq x < 1 \) for which

\[
V_\alpha\{f(y); x \leq y \leq x + h\} \neq O(h^\alpha)
\]

is contained in \(E_k \) for each \(k \) and must have zero measure.

Corollary 1.2.3. Suppose that \(0 \leq \alpha \leq 1 \) and that \(f(x) \) is in \(W_\alpha \). Then

\[
| f(x + h) - f(x) | = O(h^\alpha)
\]

almost everywhere, and similarly on the left.

Hence a function in \(W_\alpha \) satisfies a Lip (\(\alpha \)) condition almost everywhere.
but of course not uniformly.

1.3. We need the following lemma in order to study the relation between \(W_\alpha \) and the Hardy-Littlewood integrated Lipschitz classes [4, p. 612].

Lemma 1.3.1. Suppose that \(0 \leq \alpha \leq 1 \), that \(f(x) \) is a real-valued function with period 1, and that the \(\alpha \)-variation of \(f(x) \) over any interval of length 1 does not exceed 1. Then the \(\alpha \)-variation of \(f(x) \) over any interval of length \(k \) does not exceed \(k^\alpha \) for each positive integer \(k \).

We need only show for \(0 < \alpha \leq 1 \) that

\[
V_\alpha \{ f(x) ; \ 0 \leq x \leq k \} \leq k^\alpha.
\]

Pick a subdivision \(\sigma = x_0 < \cdots < x_N = k \), so that the left-hand side of 1.3.2 is majorized by

\[
\left\{ \sum_\sigma | \Delta f |^{1/\alpha} \right\}^\alpha + \varepsilon = S^\alpha + \varepsilon.
\]

We can assume that \(\sigma \) contains two points, \(c \) and \(d \), where \(d = c + 1 \) and where \(f(d) = f(c) = \text{Max}_n f(x_n) \) for adding such points to \(\sigma \) does not decrease \(S \). (Cf. proof for 1.2.1.) We have

\[
S = \sum_{\sigma \setminus \{0, e, \}} | \Delta f |^{1/\alpha} + \sum_{\sigma \setminus \{c, d, \}} | \Delta f |^{1/\alpha} + \sum_{\sigma \setminus \{c, \}} | \Delta f |^{1/\alpha}
\]

\[
= S_1 + S_2 + S_3.
\]

\(S_2 \) is majorized by 1, \(\{ S_1 + S_3 \}^\alpha \) is majorized by the \(\alpha \)-variation of \(f(x) \) over \(0 \leq x \leq k - 1 \), and 1.3.2 follows by induction.

Theorem 1.3.3. (Cf. [10, p. 259].) Suppose that \(0 \leq \alpha \leq 1 \) and that \(f(x) \) is a measurable real-valued function with period 1. If the \(\alpha \)-variation of \(f(x) \) over any interval of length 1 never exceeds 1, then

\[
\left\{ \int_0^1 | f(x + h) - f(x) |^{1/\alpha} dx \right\}^\alpha \leq h^\alpha
\]

for every \(h > 0 \).

Assume that \(\alpha > 0 \) and let \(h = m/n \), where \(m \) and \(n \) are relatively prime positive integers. Then

\[
I(h) = \int_0^1 | f(x + h) - f(x) |^{1/\alpha} dx = \sum_{r=1}^n \int_{(r-1)/n}^{r/n} \left| f\left(x + \frac{m}{n}\right) - f(x) \right|^{1/\alpha} dx
\]

and, because \(f(x) \) has period 1, this last sum is equal to

\[
\int_0^{1/n} \left\{ \sum_{r=1}^n \left| f\left(x + \frac{r m}{n}\right) - f\left(x + \frac{(r-1)m}{n}\right) \right|^{1/\alpha} \right\} dx \leq \int_0^{1/n} m dx = h.
\]
Hence the theorem is true for rational h. Since $f(x)$ is bounded, $I(h)$ is continuous and the theorem holds for all h.

Corollary 1.3.4. Suppose that $0 \leq \alpha \leq 1$ and that $f(x)$ is a measurable real-valued function with period 1. Then

$$\left\{ \int_0^1 |f(x + h) - f(x)|^{1/\alpha} dx \right\}^\alpha \leq 2^n V_\alpha \{f(x); 0 \leq x \leq 1\} h^\alpha$$

for every $h > 0$.

This follows from 1.3.3 since the α-variation of $f(x)$ over any interval of length 1 is majorized by

$$V_\alpha \{f(x); 0 \leq x \leq 1\}^{1/\alpha} + V_0 \{f(x); 0 \leq x \leq 1\}^{1/\alpha}.$$

If $f(x) = e^{2\pi i x}$ and $\alpha = 1/2$, the α-variation of $f(x)$ over any interval of length 2 exceeds 2^n times the α-variation of $f(x)$ over any interval of length 1. Since 1.2.1 implies 1.3.1 when $f(x)$ is continuous, the restriction that $f(x)$ be real is essential in both of these results. The same is true for 1.3.3.

From 1.3.4 it is obvious that any measurable function with bounded α-variation over some interval, $a \leq x \leq b$, is in the Hardy-Littlewood class $\text{Lip} (\alpha, 1/\alpha)$ over that interval. The converse is not true. Hardy and Littlewood [4, p. 621] point out that if

$$f(x) = \log \frac{1}{|x|}, \quad x \neq 0,$$

then, for $h > 0$,

$$\left\{ \int_0^1 |f(x + h) - f(x)|^{1/\alpha} dx \right\}^\alpha = O(h^\alpha), \quad 0 < \alpha < 1,$$

while $f(x)$ is not even bounded in the neighborhood of $x = 0$.

1.4. The following lemma generalizes a familiar theorem on uniform continuity.

Lemma 1.4.1. Suppose that $0 \leq \alpha \leq 1$, that $f(x)$ has bounded α-variation over $0 \leq x \leq 1$, and that $f(x)$ is continuous in this interval. For $\epsilon > 0$ there exists a $\delta > 0$ such that, for $0 \leq x_0 < x_0 + \delta \leq 1$, we have

$$V_\alpha \{f(x); x_0 \leq x \leq x_0 + \delta\} < \epsilon.$$

When $0 < \alpha \leq 1$, 1.4.1 is an immediate consequence of the following elementary result.

Lemma 1.4.2. Suppose that $0 < \alpha \leq 1$ and that $f(x)$ has bounded α-variation in some right-handed neighborhood of the point $x = x_0$. Then

$$V_\alpha \{f(x); x_0 < x < x_0 + h\} = o(1)$$
as \(h \) approaches 0. A similar result holds on the left.

It follows from 1.4.2 that any function, with bounded \(\alpha \)-variation over an open interval, has right- and left-handed limits at each point of the interval.

For \(0 \leq \alpha \leq 1 \), we say that \(f(x) \) is in \(V_\alpha \) over the interval \(0 \leq x \leq 1 \) if, given \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that, for any set of disjoint intervals \(0 \leq x_1 < y_1 \leq \cdots \leq x_N < y_N \leq 1 \) for which

\[
\left\{ \sum_{n=1}^{N} |y_n - x_n|^{1/\alpha} \right\}^\alpha < \delta,
\]

we have

\[
\left\{ \sum_{n=1}^{N} |f(y_n) - f(x_n)|^{1/\alpha} \right\}^\alpha < \epsilon.
\]

\(V_0 \) is the class of functions continuous over \(0 \leq x \leq 1 \) and \(V_1 \) is the class of functions absolutely continuous over this interval.

The method of proof used in 1.2.2 gives us the following result.

Theorem 1.4.3. Suppose that \(0 \leq \alpha \leq 1 \) and that \(f(x) \) is in \(V_\alpha \). Then

\[
V_\alpha \{ f(y) : x \leq y \leq x + h \} = o(h^\alpha)
\]

almost everywhere, and similarly on the left.

Theorem 1.4.4 [6]. Suppose that \(0 \leq \alpha \leq 1 \) and that \(f(x) \) is measurable and has period 1. \(f(x) \) is in \(V_\alpha \) if and only if

\[
V_\alpha \{ f(x + h) - f(x) ; 0 \leq x \leq 1 \} = o(1)
\]
as \(h \) approaches 0.

We see that the class \(W_\alpha \) includes \(V_\alpha \) and, for \(0 < \alpha < 1 \), it is not difficult to show that the continuous function

\[
f(x) = \sum_{n=0}^{\infty} 2^{-n\alpha} \cos 2^n \pi x
\]
is in \(W_\alpha - V_\alpha \). Hence a continuous function with bounded \(\alpha \)-variation over \(0 \leq x \leq 1 \) is not necessarily in \(V_\alpha \). However, we can prove, for \(0 \leq \alpha \leq 1 \), that any continuous function in \(W_\alpha \) which possesses a finite derivative everywhere in \(0 \leq x \leq 1 \), except perhaps on an enumerable set, is in \(V_\alpha \) [2, Theorem 2.6].

1.5. Suppose that \(f(x) \) and \(g(x) \) are defined over the interval \(0 \leq x \leq 1 \) and that \(g(x) \) has at most discontinuities of the 1st kind. The Stieltjes integral

\[
\int_{0}^{1} f(x)dg(x)
\]
exists in the Young sense and is equal to \(I \) if, for \(\epsilon > 0 \), there exists a finite set
E, contained in \(0 \leq x \leq 1\), such that, for any subdivision \(0 = x_0 < \cdots < x_N = 1\) which contains \(E\), we have

\[
\left| \sum_{n=1}^{N} f(\xi_n) \{ g(x_n - 0) - g(x_{n-1} + 0) \} + \sum_{n=1}^{N-1} f(x_n) \{ g(x_n + 0) - g(x_n - 0) \}
+ f(0) \{ g(0+) - g(0) \} + f(1) \{ g(1) - g(1 - 0) \} - I \right| < \varepsilon
\]

for each set \(x_0 < \xi_1 < x_1 < \cdots < x_{N-1} < \xi_N < x_N\). L. C. Young [12] has proved the following

Theorem 1.5.2. Suppose that \(\alpha + \beta > 1\) and that \(f(x)\) and \(g(x)\) belong to \(W_\alpha\) and \(W_\beta\) respectively. If \(f(x)\) and \(g(x)\) have no common discontinuities, \(1.5.1\) exists in the Riemann-Stieltjes sense. In any case, \(1.5.1\) exists in the Young sense.

This theorem is not true in the limiting case when \(\alpha + \beta = 1\). The following result is also an immediate consequence of Young's work.

Theorem 1.5.3. Suppose that \(\alpha + \beta > 1\) and that \(f(x)\) is continuous and in \(W_\alpha\). Suppose also that \(\{ g_n(x) \} \) is a sequence of uniformly bounded functions with uniformly bounded \(\beta\)-variation over \(0 \leq x \leq 1\) which converges to \(g(x)\), a function in \(W_\beta\), on a set which includes the points \(x = 0\) and \(x = 1\) and which is dense in \(0 \leq x \leq 1\). Then

\[
\lim_{n \to \infty} \int_0^1 f(x) dg_n(x) = \int_0^1 f(x) dg(x),
\]

\[
\lim_{n \to \infty} \int_0^1 g_n(x) df(x) = \int_0^1 g(x) df(x).
\]

Moment problems

2.1. In this chapter we study \(W_\alpha\), the class of functions with bounded \(\alpha\)-variation over the interval \(0 \leq x \leq 1\), by considering a moment problem. Suppose that \(g(x)\) is any function in \(W_\alpha\) for \(0 < \alpha \leq 1\). We call the numbers

\[
\mu_n = \int_0^1 x^n dg(x), \quad n = 0, 1, \cdots ,
\]

the Stieltjes moments of \(g(x)\) and we say that \(g(x)\) is normalized if

\[
g(x) = \frac{1}{2} \{ g(x + 0) + g(x - 0) \} \quad \text{for} \quad 0 < x < 1.
\]

A uniqueness theorem follows from a known result [8, p. 60] after integration by parts.
Theorem 2.1.1. Suppose that $0 < \alpha \leq 1$, that $g(x)$ is normalized and in W_α, and that

$$\int_0^1 x^n dg(x) = 0$$

for $n = 0, 1, \ldots$. Then $g(x)$ is identically constant in $0 \leq x \leq 1$.

For an arbitrary sequence of numbers, $\{\mu_n\}$, we define a linear functional over the space of polynomials by letting

$$\mu\{p\} = \mu\left\{ \sum_{n=0}^N a_n x^n \right\} = \sum_{n=0}^N a_n \mu_n.$$

Following Hausdorff we define, for $k = 0, 1, \ldots$ and $n = 0, 1, \ldots, k$,

$$\lambda_{k,n}(x) = C_n^{k-n} x^n (1 - x)^{k-n}$$

and

$$\lambda_{k,n} = \mu\{\lambda_{k,n}(x)\},$$

where C_n^k is the binomial coefficient

$$\binom{r + s}{r} = \frac{\Gamma(r + s + 1)}{\Gamma(r + 1)\Gamma(s + 1)}.$$

Theorem 2.1.2. Suppose that $0 < \alpha \leq 1$. A necessary and sufficient condition that the set of numbers $\{\mu_n\}$ be the Stieltjes moments of a normalized function $g(x)$ in W_α, where $V_\alpha\{g(x); 0 \leq x \leq 1\} \leq 1$, is that

$$\left\{ \sum_{n=0}^k \left(\sum_{n=0}^k \lambda_{k,n} \right)^{1/\alpha} \right\} \leq 1$$

for all k.

Hausdorff [5] has proved this theorem for the case where $\alpha = 1$.

2.2. In order to prove the sufficiency we derive two simple results.

Lemma 2.2.1. If $\{\mu_n\}$ is an arbitrary sequence of numbers, then

$$\sum_{n=0}^k \left(\frac{n}{k} \right)^m \lambda_{k,n} = \mu_m + O\left(\frac{1}{k} \right)$$

for $m = 0, 1, \ldots$.

Suppose that $f(x)$ is any function defined over the interval $0 \leq x \leq 1$ and consider

$$B_k\{f; x\} = \sum_{n=0}^k f\left(\frac{n}{k} \right) \lambda_{k,n}(x),$$

the Bernstein polynomial of order k for $f(x)$. If $P_m(x)$ is a polynomial of degree m,
\[B_k \{ P_m ; x \} = P_m(x) + \sum_{r=1}^{m-1} \frac{Q_{m,r}(x)}{k^r}, \]

where the polynomials \(Q_{m,r}(x) \) do not depend on \(k \) and are identically zero when \(P_m(x) \) is a constant [7, p. 8]. Setting \(P_m(x) = x^m \), we have

\[\sum_{n=0}^{k-1} \left(\frac{n}{k} \right)^m \lambda_{k,n} = \mu \{ B_k \{ x^m ; x \} \} = \mu_m + \sum_{r=1}^{m-1} \frac{\mu \{ Q_{m,r} \}}{k^r}, \]

and 2.2.1 follows.

Lemma 2.2.2. Suppose that \(0 < \alpha \leq 1 \), that \(\{ g_k(x) \} \) is a sequence of uniformly bounded functions, and that

\[\lim \inf_{k \to \infty} V_a \{ g_k(x) ; 0 \leq x \leq 1 \} \leq 1. \]

There exists a function \(g(x) \) such that

\[V_a \{ g(x) ; 0 \leq x \leq 1 \} \leq 1, \]

and a subsequence \(\{ k_j \} \) such that \(g_{k_j}(x) \to g(x) \) for every rational \(x \) in \(0 \leq x \leq 1 \), including the end points \(x = 0 \) and \(x = 1 \).

We can use the selection principle (or diagonal process) to define \(g(x) \) on the rationals. If, for irrational \(x \), we let

\[g(x) = \lim \sup_{r \to x} g(r), \quad r \text{ rational}, \]

then \(g(x) \) satisfies the conditions of the lemma.

To prove the sufficiency part of 2.1.2, consider the step function \(g_k(x) \) where \(g_k(0) = 0 \) and

\[g_k(x) = \sum_{r=0}^{n} \lambda_{k,r} \quad \text{for} \quad \frac{n}{k+1} < x \leq \frac{n+1}{k+1}. \]

Since

\[|g_k(x)| \leq V_a \{ g_k(x) ; 0 \leq x \leq 1 \} \leq 1, \]

there exists a function \(g^*(x) \) such that

\[V_a \{ g^*(x) ; 0 \leq x \leq 1 \} \leq 1, \]

and a subsequence \(\{ k_j \} \) such that \(g_{k_j}(x) \to g^*(x) \) for each rational \(x \) in \(0 \leq x \leq 1 \). Let

\[g(0) = g^*(0), \quad g(1) = g^*(1), \]

2.2.3

\[g(x) = \frac{1}{2} \{ g^*(x + 0) + g^*(x - 0) \} \quad \text{for} \quad 0 < x < 1. \]
The function \(g(x) \) is normalized and, from 1.5.3 and 2.2.1, we conclude that

\[
\mu_m = \lim_{k \to \infty} \sum_{n=0}^{k} \left(\frac{n}{k+1} \right)^m \lambda_{k,n}
\]

\[
= \lim_{k \to \infty} \int_0^1 x^m g_k(x) \ dx
\]

\[
= \int_0^1 x^m g_k(x) = \int_0^1 x^m g(x).
\]

2.3. In order to prove the necessity we require a number of lemmas.

We say that a real function \(f(x) \) is unimax in the interval \(a \leq x \leq b \) if, for \(a < c < d < b \), \(f(x) \geq \min \{ f(c), f(d) \} \).

Lemma 2.3.1. Suppose that \(0 \leq \alpha \leq 1 \) and that \(X_n = \sum_{m=1}^{M} a_{n,m} x_m \) for \(n = 1, \cdots, N \), where \(a_{n,m} \) is a non-negative unimax function of \(m \) for each \(n \), and where \(\sum_{n=1}^{N} a_{n,m} \leq 1 \) for each \(m \). Then

\[
\left\{ \sum_{n=1}^{N} x_n^{1/\alpha} \right\}^{\alpha} \leq \left\{ \sum_{m=1}^{M} x_m^{1/\alpha} \right\}^{\alpha}.
\]

We consider 2.3.1 in a slightly different form.

Lemma 2.3.2. Suppose that \(0 \leq \alpha \leq 1 \) and that \(X_n = \sum_{m=1}^{M} a_{n,m} x_m \) for \(n = 1, \cdots, N \), where \(a_{n,m} \) is a non-negative integer and is unimax as a function of \(m \) for each \(n \), and where \(\sum_{n=1}^{N} a_{n,m} = R \) for each \(m \). Then

\[
\left\{ \sum_{n=1}^{N} x_n^{1/\alpha} \right\}^{\alpha} \leq R \left\{ \sum_{m=1}^{M} x_m^{1/\alpha} \right\}^{\alpha}.
\]

Lemma 2.3.3. With the hypotheses of 2.3.2 we can write

\[
X_n = \sum_{r=1}^{R} y_{n,r} = \sum_{r=1}^{R} \left\{ \sum_{m=1}^{M} a_{n,m,r} x_m \right\},
\]

where \(a_{n,m,r} \) is either 0 or 1 and is unimax in \(m \) for each \(n \) and \(r \), and where \(\sum_{n=1}^{N} a_{n,m,r} = 1 \) for each \(m \) and \(r \).

Now 2.3.3 is true when \(R = 1 \). Suppose it true for \(R = k - 1 \) and consider the case where \(R = k \).

A. There exists \(n_1 \) such that \(a_{n_1,1} \geq 1 \). Let \(m_1 \) be the largest \(m \) for which \(a_{n_1,m} \geq 1 \) and define

\[
a_{n_1,m,1} = \begin{cases} 1 & \text{for } 1 \leq m \leq m_1, \\ 0 & \text{everywhere else}. \end{cases}
\]

It is not difficult to see that \(a_{n_1,m} - a_{n_1,m,1} \) is a non-negative integer and is unimax as a function of \(m \).
B. If \(m_1 < M \), there exists \(n_2 \neq n_1 \) such that \(a_{n_2,m_1} < a_{n_2,m_1+1} \). Let \(m_2 \) be the largest \(m \) for which \(a_{n_2,m} \geq 1 \) and define

\[
a_{n_2,m,1} = \begin{cases}
1 & \text{for } m_1 < m \leq m_2, \\
0 & \text{everywhere else.}
\end{cases}
\]

Again \(a_{n_2,m} - a_{n_2,m,1} \) is a non-negative integer and is unimax in \(m \).

C. If \(m_2 < M \), we can find \(n_3 \neq n_2, n_1 \) such that \(a_{n_2,m_2} < a_{n_2,m_2+1} \), and we can define \(m_3 \) and the set \(\{a_{n_3,m,1}\} \) for \(m = 1, \cdots, M \). After a finite number of steps we arrive at the place where \(m_j = M \). We shall have defined a sequence of distinct integers, \(n_1, n_2, \cdots, n_j \), and a set of coefficients, \(\{a_{n,m,1}\} \), for \(n=n_1, \cdots, n_j \) and \(m=1, \cdots, M \). Let \(a_{n,m,1} = 0 \) for \(n \neq n_1, \cdots, n_j \) and \(m=1, \cdots, M \).

The set \(\{a_{n,m,1}\} \) satisfies the conditions in 2.3.3, the set \(\{a_{n,m} - a_{n,m,1}\} \) satisfies the hypotheses of 2.3.2 with \(R = k - 1 \), and 2.3.3 follows by applying the induction hypothesis to

\[
X_n' = \sum_{m=1}^{M} \{a_{n,m} - a_{n,m,1}\} x_m.
\]

For a fixed \(r \), consider the set \(\{y_{n,r}\} \). Since each element here is simply the sum of consecutive \(x_m \), we see from 2.3.3 and Minkowski's inequality that

\[
\left\{ \sum_{n=1}^{N} \left| X_n \right|^{1/a} \right\}^a \leq \sum_{r=1}^{R} \left\{ \sum_{n=1}^{N} \left| y_{n,r} \right|^{1/a} \right\}^a
\]

and

\[
\leq R \left\{ \sum_{n=1}^{N} \sum_{m=1}^{M} x_m \right\}^{1/a}.
\]

Now 2.3.2 implies 2.3.1 when all the \(a_{n,m} \) are rational and \(\sum_{n=1}^{N} a_{n,m} = \sum_{n=1}^{N} x_m = 1 \). A simple limiting process removes the restriction that the \(a_{n,m} \) be rational. When \(0 \leq c_m \leq 1 \), we can apply our results to the set of linear forms

\[
\sum_{m=1}^{M} a_{n,m} x_m, \quad n = 1, \cdots, N,
\]

\[
(1 - c_m) x_m, \quad m = 1, \cdots, M,
\]

and show that

\[
\left\{ \sum_{n=1}^{N} \left| X_n \right|^{1/a} + \sum_{m=1}^{M} (1 - c_m) x_m \right\}^{1/a} \leq \left\{ \sum_{m=1}^{M} \left| x_m \right|^{1/a} \right\}^{1/a}.
\]

This completes the proof for 2.3.1. We can assume that no \(x_m \) is zero. Hence when \(\alpha > 0 \), we get strict inequality if, for any \(m \), \(c_m < 1 \).
Lemma 2.3.4. Suppose that \(k = 0, 1, \ldots \), and that \(0 \leq m \leq n \leq k \). The function \(f(x) = \sum_{n-m}^{n} \lambda_{k,r}(x) \) is unimax in \(0 \leq x \leq 1 \).

We can assume that \(k \geq 1 \) and 2.3.4 follows immediately from the identity

\[
\frac{d}{dx} \lambda_{k,n}(x) = \begin{cases}
-k\lambda_{k-1,n}(x), & n = 0, \\
\{ k\{\lambda_{k-1,n-1}(x) - \lambda_{k-1,n}(x)\} \}, & 0 < n < k, \\
k\lambda_{k-1,n-1}(x), & n = k.
\end{cases}
\]

To complete the proof for 2.1.2, fix \(k \) and consider any finite sequence \(0 = \nu_{0} < \cdots < \nu_{N} = k + 1 \). If

\[
\theta_{n} = \sum_{r_{n-1} \leq r < r_{n}} \lambda_{k,r}, \quad \text{and} \quad \theta_{n}(x) = \sum_{r_{n-1} \leq r < r_{n}} \lambda_{k,r}(x),
\]

then

\[
\theta_{n} = \int_{0}^{1} \theta_{n}(x)dg(x)
\]

and this integral exists in the Riemann-Stieltjes sense for each \(n \). For each subdivision \(0 = y_{0} < \cdots < y_{M} = 1 \), let

\[
X_{n} = \sum_{m=1}^{M} \theta_{n}(y_{m}) \{ g(y_{m}) - g(y_{m-1}) \}.
\]

\(\theta_{n}(y_{m}) \) is a non-negative unimax function of \(m \) and

\[
\sum_{n=1}^{N} \theta_{n}(y_{m}) = \sum_{r=0}^{k} \lambda_{k,r}(y_{m}) = 1.
\]

Applying 2.3.1 we get

\[
\left\{ \sum_{n=1}^{N} X_{n} \right\}^{\alpha} \leq \left\{ \sum_{m=1}^{M} \sum_{n-m}^{n} \lambda_{k,r}(y_{m}) \right\}^{1/\alpha},
\]

which completes the argument.

2.4. We have discussed the Stieltjes moments of a function \(g(x) \), i.e. the sequence \(\{ \mu_{n} \} \) where

\[
\mu_{n} = \int_{0}^{1} x^{n}dg(x), \quad n = 0, 1, \cdots.
\]

We can also consider the moment sequence \(\mu_{n} = \int_{0}^{1} x^{n}g(x)dx, \quad n = 0, 1, \cdots \),

where the integral is interpreted in the Lebesgue sense. We call such a se-
sequence of numbers the Lebesgue moments of \(g(x) \) and we have the following

Theorem 2.4.1. Suppose that \(0 < \alpha \leq 1 \). A necessary and sufficient condition that the set of numbers \(\{\mu_n\} \) be the Lebesgue moments of a normalized function \(g(x) \) in \(W_a \), where

\[
V_a \{g(x); 0 \leq x \leq 1\} \leq 1,
\]

is that

\[
(k + 1) \left\{ \sum_{n=1}^{b} \left| \sum \lambda_{k,n} - \lambda_{k,n-1} \right|^{1/\alpha} \right\} \leq 1
\]

for all \(k \).

The necessity follows immediately from 2.1.2 since, with the help of 2.3.5, we can write

\[
(k + 1) \left\{ \lambda_{k,n} - \lambda_{k,n-1} \right\} = \int_0^1 (k + 1) \left\{ \lambda_{k,n}(x) - \lambda_{k,n-1}(x) \right\} g(x) \, dx
\]

\[
= \int_0^1 \lambda_{k+1,n}(x) \, dg(x)
\]

for \(0 < n \leq k \).

For the sufficiency, observe that

2.4.2 \quad \left| \mu_0 - (k + 1)\lambda_{k,m} \right| \leq \sum_{n=0}^{b} \left| \lambda_{k,n} - \lambda_{k,m} \right| \leq 1

for \(0 \leq m \leq k \). Consider the step function \(g_k(x) \) where \(g_k(0) = (k + 1)\lambda_{k,0} \) and

\[
g_k(x) = (k + 1)\lambda_{k,n} \quad \text{for } \frac{n}{k + 1} < x \leq \frac{n + 1}{k + 1}.
\]

From 2.4.2 and 2.2.2 it follows that there exists a function \(g^*(x) \) such that

\[
V_a \{g^*(x); 0 \leq x \leq 1\} \leq 1,
\]

and a subsequence \(\{k_f\} \) such that \(g_{k_f}(x) \to g^*(x) \) for each rational \(x \) in \(0 \leq x \leq 1 \). Define \(g(x) \) as in 2.2.3. From 1.5.3, 2.2.1, and 2.4.2 we can conclude that

\[
\mu_m = \lim_{k \to \infty} \sum_{n=0}^{b} \left(\frac{n}{k + 1} \right)^m \lambda_{k,n}
\]

\[
= \lim_{k \to \infty} \int_0^1 x^m g_k(x) \, dx
\]

\[
= \int_0^1 x^m g^*(x) \, dx = \int_0^1 x^m g(x) \, dx.
\]
2.5. Turning back to 2.3.1, we deduce two alternative forms for this inequality which are useful in later work.

Lemma 2.5.1. Suppose that \(0 \leq \alpha \leq 1 \) and that \(Y_n = \sum_{m=0}^{M} b_{n,m} (y_m - y_0) \) for \(n = 0, \ldots, N \), where \(b_{n,m} \) is non-negative for all \(m \) and \(n \), where \(\sum_{m=1}^{M} b_{n,m} \) is nondecreasing in \(n \) and bounded by 1, and where, for each \(0 \leq n' < n'' \leq N \), \(b_{n'',m} - b_{n',m} \) is at first nonpositive and then non-negative as \(m \) increases from 1 to \(M \). Then

\[
\left\{ \sum_{n=1}^{N} \left| Y_n - Y_{n-1} \right|^{1/\alpha} \right\}^\alpha \leq \left\{ \sum_{m=1}^{M} \left| y_m - y_{m-1} \right|^{1/\alpha} \right\}^\alpha.
\]

Lemma 2.5.2. Suppose that \(0 \leq \alpha \leq 1 \) and that \(Y_n = \sum_{m=0}^{M} b_{n,m} y_m \) for \(n = 0, \ldots, N \), where \(b_{n,m} \) is non-negative for all \(m \) and \(n \), where \(\sum_{m=0}^{M} b_{n,m} = 1 \), and where, for each \(0 \leq n' < n'' \leq N \), \(b_{n'',m} - b_{n',m} \) is at first nonpositive and then non-negative as \(m \) increases from 0 to \(M \). Then

\[
\left\{ \sum_{n=1}^{N} \left| Y_n - Y_{n-1} \right|^{1/\alpha} \right\}^\alpha \leq \left\{ \sum_{m=1}^{M} \left| y_m - y_{m-1} \right|^{1/\alpha} \right\}^\alpha.
\]

For 2.5.1, let \(x_m = y_m - y_{m-1} \) and pick any sequence of integers, \(0 = k_0 < \cdots < k_{N'} = N \). If

\[
X_n = Y_{k_n} - Y_{k_{n-1}} = \sum_{m=1}^{M} a_{n,m} x_m,
\]

then

\[
a_{n,m} = \sum_{\mu=m}^{M} \{ b_{k_n,\mu} - b_{k_{n-1},\mu} \}.
\]

The difference \(a_{n,m+1} - a_{n,m} = - \{ b_{k_n,m} - b_{k_{n-1},m} \} \) is at first non-negative and then nonpositive as \(m \) increases; hence \(a_{n,m} \) is unimax in \(m \). We see that

\[
a_{n,1} = \sum_{m=1}^{M} b_{k_n,m} - \sum_{m=1}^{M} b_{k_{n-1},m} \geq 0,
\]

\[
a_{n,M} = b_{k_n,M} - b_{k_{n-1},M} \geq 0,
\]

and the unimax property ensures that \(a_{n,m} \) is non-negative for all \(m \) and \(n \). Finally

\[
\sum_{n=1}^{N'} a_{n,m} = \sum_{\mu=m}^{M} \{ b_{N',\mu} - b_{0,\mu} \} \leq 1,
\]

and we can apply 2.3.1.

For 2.5.2 observe that the set \(\{ b_{n,m} \} \), for \(n = 0, \cdots, N \) and \(m = 0, \cdots, M \), satisfies the hypotheses of 2.5.1. Since the sums

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[
\sum_{m=0}^{M} b_{n,m}(y_m - y_0) \quad \text{and} \quad \sum_{m=0}^{M} b_{n,m}y_m
\]

differ by a constant which is independent of \(n \), the conclusion follows immediately.

From 2.5.2 we can deduce the following result concerning Bernstein polynomials.

Theorem 2.5.3. If \(0 \leq \alpha \leq 1 \),
\[
V_\alpha \{ B_k \{ f; x \}; 0 \leq x \leq 1 \} \leq \left\{ \sum_{m=1}^{k} \left| \sum f \left(\frac{m}{k} \right) - f \left(\frac{m - 1}{k} \right) \right|^{1/\alpha} \right\}^\alpha .
\]

Let \(0 < x_0 < \cdots < x_N < 1 \) be any subdivision of the interval \(0 < x < 1 \). We see that
\[
B_k \{ f; x_n \} = \sum_{m=0}^{k} f \left(\frac{m}{k} \right) \lambda_{k,m}(x_n)
\]
where \(\lambda_{k,m}(x_n) \) is non-negative for all \(m \) and \(n \), and where \(\sum_{m=0}^{k} \lambda_{k,m}(x_n) = 1 \). For \(0 \leq n' < n'' \leq N \),
\[
\lambda_{k,m}(x_{n''}) - \lambda_{k,m}(x_{n'}) = \lambda_{k,m}(x_{n''}) \left\{ 1 - \left(\frac{x_{n'}}{x_{n''}} \right)^m \left(1 - \frac{x_{n'}}{x_{n''}} \right)^{m-k} \right\} .
\]
Since \(0 < x_{n'} < x_{n''} < 1 \), the bracketed quantity is negative for \(m = 0 \), positive for \(m = k \), and strictly increasing in \(m \). Applying 2.5.2 completes the proof.

In conclusion we add that 2.3.1, 2.5.1, and 2.5.2 are valid when \(M \) and/or \(N = \infty \).

A FALTUNG THEOREM

3.1. In one of his papers [11], L. C. Young considered a Stieltjes Faltung of the form
\[
s(x) = \int_{0}^{1} f(x, y) dg(y).
\]

We present here a theorem suggested by Young's results.

Suppose that \(f(x, y) \) and \(g(y) \) have period 1 in \(y \) and define \(F(x, y) \) as the integral \(\int_{0}^{1} f(x, y+t)g(t)dt \) which we assume exists in the Lebesgue sense for all \(0 \leq x, y \leq 1 \). Let
\[
s_n(x) = 2^n \{ F(x, 0) - F(x, 2^{-n}) \} \]
\[
= 2^n \int_{0}^{1} f(x, t) \{ g(t) - g(t - 2^{-n}) \} dt
\]
for \(n = 0, 1, \cdots \). Then \(s_0(x) = 0 \) and the following is easily verified.
Lemma 3.1.3. Suppose that \(g(y) \) is continuous and that the integral 3.1.1 exists in the Riemann-Stieltjes sense for \(x = x_0 \). Then \(s(x_0) = \lim_{n \to \infty} s_n(x_0) \) and, for \(n \geq 1 \), we have
\[
 s_n(x) - s_{n-1}(x) = 2^{-n-1} \int_0^1 \{ f(x, t) - f(x, t + 2^{-n}) \} \{ g(t) - g(t - 2^{-n}) \} dt.
\]

Our principal result is as follows.

Theorem 3.2. (Cf. [11, Theorem 6.1].) Suppose that \(0 < \alpha, \beta, \gamma \leq 1, 0 < \lambda = \beta + \gamma - 1, \) and \(\mu = \alpha \lambda / \beta \). Suppose also that \(f(x, y) \) and \(g(y) \) have period 1 in \(y \), that \(g(y) \) is continuous, and that
\[
\begin{align*}
3.2.1 & \quad V_\alpha \{ f(x, y); 0 \leq x \leq 1 \} \leq A \\
3.2.2 & \quad V_\beta \{ f(x, y); 0 \leq y \leq 1 \} \leq B \\
3.2.3 & \quad V_\gamma \{ g(y); 0 \leq y \leq 1 \} \leq C.
\end{align*}
\]

If \(s(x) \) is the Stieltjes Faltung 3.1.1, then
\[
3.2.4 \quad V_\mu \{ s(x); 0 \leq x \leq 1 \} \leq k(\lambda) A^{1/\beta} B^{1-\lambda/\beta} C,
\]
where \(k(\lambda) \) is a finite constant.

If \(B = 0 \) and/or \(C = 0 \), \(s(x) \equiv 0 \) and 3.2.4 follows immediately. Hence we can assume that \(B = C = 1 \).

Obviously we can suppose that \(f(x, y) \) and \(g(y) \) are real. By an argument similar to that used in 1.2.1, we can find a strictly increasing continuous function \(\phi(t) \) such that
\[
\phi(0) = 0 \quad \text{and} \quad \phi(t+1) = \phi(t) + 1
\]
for all \(t \), and such that
\[
| g\{ \phi(t'') \} - g\{ \phi(t') \} | < 2(t'' - t')^\alpha
\]
for each \(t' < t'' \). Furthermore, for each \(0 \leq x \leq 1 \),
\[
V_\beta \{ f(x, \phi(t)); 0 \leq t \leq 1 \} = V_\beta \{ f(x, y); 0 \leq y \leq 1 \},
\]
\[
\int_0^1 f\{ x, \phi(t) \} dg\{ \phi(t) \} = \int_0^1 f(x, y) dg(y),
\]
and, by performing a change of variable, we replace condition 3.2.3 by the condition
\[
3.2.5 \quad | g(y'') - g(y') | < 2(y'' - y')^\alpha
\]
for each \(y' < y'' \).

Since \(g(y) \) is continuous and \(\beta + \gamma > 1 \), the Faltung \(s(x) \) exists in the Riemann-Stieltjes sense for each \(x \) and is equal to \(\lim_{n \to \infty} s_n(x) \). Using 3.1.3, 3.2.5, Jensen's inequality, 3.2.2, and 1.3.4 we have
\[|s_n(x) - s_{n-1}(x)| \leq 2^{n-1} \int_0^1 |f(x, t + 2^{-n}) - f(x, t)| \left| g(t) - g(t - 2^{-n}) \right| \, dt \]

\[\leq 2^n (1 - \gamma) \left\{ \int_0^1 |f(x, t + 2^{-n}) - f(x, t)|^{1/\beta} \, dt \right\}^\beta \]

\[\leq 2^\beta \cdot 2^{-n\lambda}, \]

and summing on \(n \) we get

\[3.2.6 \quad |s(x) - s_n(x)| \leq 2^\beta \sum_{n=n+1}^{\infty} 2^{-n\lambda} = o(\lambda)2^{-n\lambda} \]

for \(n = 0, 1, \cdots \). Fix \(n \) and consider \(0 \leq x' < x'' \leq 1 \). From 3.1.2, 3.2.5, and Jensen's inequality we have

\[|s_n(x'') - s_n(x')| \leq 2^n \int_0^1 |f(x'', t) - f(x', t)| \left| g(t) - g(t - 2^{-n}) \right| \, dt \]

\[\leq 2^n (1 - \gamma) \cdot 2^\Delta \]

where

\[\Delta = \left\{ \int_0^1 |f(x'', t) - f(x', t)|^{1/\alpha} \, dt \right\}^\alpha. \]

By considering three different cases we prove that

\[3.2.8 \quad |s(x'') - s(x')| \leq k(\lambda)A^{1/\alpha}, \]

where \(k(\lambda) \) is a finite constant.

A. Suppose that \(1 < \Delta < \infty \). Setting \(n = 0 \) in 3.2.6 gives us 3.2.8 if we choose \(k(\lambda) \geq 2c(\lambda) \).

B. Suppose that \(0 < \Delta \leq 1 \). Choose \(n \geq 1 \) so that \(2^{-n\beta} < \Delta \leq 2^{-(n-1)\beta} \), and with 3.2.6 we have

\[|s(x) - s_n(x)| < c(\lambda)\Delta^{1/\alpha} \]

for \(0 \leq x \leq 1 \). From 3.2.7 we get

\[|s_n(x'') - s_n(x')| \leq 4\Delta^{1/\alpha}, \]

and 3.2.8 follows if we choose \(k(\lambda) \geq 2(\lambda) + 4 \).

C. Suppose that \(\Delta = 0 \). We see from 3.1.3 and 3.2.7 that

\[|s(x'') - s(x')| = \lim_{n \to \infty} |s_n(x'') - s_n(x')| = 0, \]

and 3.2.8 follows if we choose \(k(\lambda) \geq 0 \).

To complete the proof for 3.2, take any subdivision \(0 = x_0 < \cdots < x_N = 1 \). From 3.2.8 we have
The proof introduces unnecessary restrictions. For example, Young's argument \[11, p. 459\] allows us to consider the case where \(g(y) \) is not continuous. We conclude this chapter by simply stating the following generalization of 3.2.

Theorem 3.3. Suppose that \(0 < \alpha, \beta, \gamma \leq 1, 0 < \lambda = \beta + \gamma - 1, \) and \(u = \alpha \lambda / \beta. \) Suppose also that 3.2.1, 3.2.2, and 3.2.3 hold. If \(s(x) \) is the Stieltjes Faltung 3.1.1, then

\[
\left\{ \frac{\sum_{n=1}^{N} | s(x_n) - s(x_{n-1}) |^{1/\mu}}{N} \right\}^\mu \leq k(\lambda) \left\{ \int_{0}^{1} \sum_{n=1}^{N} | f(x_n, t) - f(x_{n-1}, t) |^{1/\alpha} dt \right\}^\mu
\]

\[
\leq k(\lambda) A^{\lambda/\beta}.
\]

Applications to infinite series

4.1. In this chapter we apply the notion of \(\alpha \)-variation to the study of infinite series. We say that the series

\[
\sum_{n=0}^{\infty} a_n
\]

is \(\alpha \)-convergent if, given \(\varepsilon > 0 \), there exists \(N(\varepsilon) \) such that

\[
\left\{ \sum_{r=m}^{n} | a_r |^{1/\alpha} \right\}^{\alpha} < \varepsilon
\]

for \(N(\varepsilon) \leq m < n. \) 0-convergence is ordinary convergence and 1-convergence is absolute convergence. If \(0 \leq \alpha < \beta \leq 1, \) we have by Jensen's inequality

\[
\left\{ \sum_{r=m}^{n} | a_r |^{1/\alpha} \right\}^{\alpha} \leq \left\{ \sum_{r=m}^{n} | a_r |^{1/\beta} \right\}^{\beta},
\]

and thus a \(\beta \)-convergent series is always \(\alpha \)-convergent.

We can extend the notion of \(\alpha \)-convergence to sequences. We call \(\{ S_n \} \) an \(\alpha \)-convergent sequence if \(S_n \) is the \(n \)th partial sum of an \(\alpha \)-convergent series. From Minkowski's inequality we see that any finite linear combination of \(\alpha \)-convergent series (sequences) is itself an \(\alpha \)-convergent series (sequence). We also have the following result.

Lemma 4.1.2. (Cf. Lemma 1.4.2.) Suppose that \(0 < \alpha \leq 1. \) The series 4.1.1 is \(\alpha \)-convergent if and only if

\[
\left\{ \sum_{n=0}^{\infty} | a_n |^{1/\alpha} \right\}^{\alpha} < \infty.
\]
The same type of result is true for sequences.

Any series derived from a 1-convergent series by a rearrangement of terms is convergent to the sum of the original series. However, when \(\alpha < 1 \), an \(\alpha \)-convergent series is "conditionally convergent" and little can be said about rearrangement.

A second important property of 1-convergent series is found in multiplication theorems. For example, it is well known that the Cauchy product of a 1-convergent series by a 0-convergent series is 0-convergent to the product of the sums of the series. We have the following extension of this result.

Theorem 4.1.3. Suppose that \(0 < \alpha, \beta \leq 1 \), and that \(0 < \gamma = \alpha + \beta - 1 \). Then the Cauchy product of an \(\alpha \)-convergent series by a \(\beta \)-convergent series is \(\gamma \)-convergent to the product of the sums.

This theorem follows easily from the following specialization of 3.3.

Theorem 4.1.4. Suppose that \(0 < \alpha, \beta \leq 1 \), and that \(0 < \gamma = \alpha + \beta - 1 \). If \(f(x) \) has bounded \(\alpha \)-variation over \(0 \leq x < \infty \) and if \(g(x) \) has bounded \(\beta \)-variation over \(0 \leq x < \infty \), then the Stieltjes Faltung

\[
s(x) = \int_0^x f(x - y)dg(y)
\]

exists in the Young sense for each \(x \) and has bounded \(\gamma \)-variation over \(0 \leq x < \infty \).

Theorem 4.1.3 holds in the limiting case where \(\alpha + \beta = 1 \) if and only if \(\alpha = 0 \) or 1; 4.1.3 is also true when one considers the more general Dirichlet product [3, p. 239] instead of the Cauchy product.

4.2. We can apply our scale to the study of Cesaro and Abel summability. Suppose that \(S_n^\alpha \) is the \(n \)th Cesaro mean of order \(\alpha \) for the series 4.1.1. We say that 4.1.1 is summable \((C, k; \alpha) \) to \(S \) if the sequence \(\{ S_n^\alpha \} \) is \(\alpha \)-convergent to \(S \). Thus \((C, k; 0) \) summability is ordinary Cesaro summability and \((C, k; 1) \) summability is absolute Cesaro summability. Consider the function

\[
f(x) = \sum_{n=0}^\infty a_n x^n
\]

and assume that this series converges for \(0 \leq x < 1 \). We say that 4.1.1 is summable \((A; \alpha) \) to \(S \) if \(f(x) \) has bounded \(\alpha \)-variation over \(0 \leq x < 1 \) and if \(\lim_{x \to 1^-} f(x) = S \). \((A; 0) \) summability is ordinary Abel summability and \((A; 1) \) summability is absolute Abel summability. (See [1, p. 11] for references on absolute summability.) A linear combination of series, summable \((C, k; \alpha) \) for some \(k \) and \(0 \leq \alpha \leq 1 \), is itself a series summable \((C, k; \alpha) \) and similarly for the \((A; \alpha)\) method.

When \(0 \leq \alpha < \beta \leq 1 \), a series summable \((C, k; \beta) \) to \(S \) is summable \((C, k; \alpha) \) to \(S \) and a series summable \((A; \beta) \) to some limit is summable \((A; \alpha) \) to the
same limit. We can also establish the following consistency result.

Theorem 4.2.1. Suppose that $0 \leq \alpha \leq 1$ and that $k > j > -1$. A series summable $(C, j; \alpha)$ to S is summable $(C, k; \alpha)$ and $(A; \alpha)$ to S. If S_n^j and S_n^k are the nth Cesaro means of order j and k respectively for 4.1.1, we have

$$
\left\{ \sum_{n=1}^{\infty} \left| \sum_{n=1}^{k} S_n^k - S_{n-1}^k \right|^{1/\alpha} \right\} \leq \left\{ \sum_{n=1}^{\infty} \left| \sum_{n=1}^{j} S_n^j - S_{n-1}^j \right|^{1/\alpha} \right\}^{\alpha},
$$

$$
V_{n} \left\{ \sum_{n=0}^{\infty} a_n x^n; 0 \leq x \leq 1 \right\} \leq \left\{ \sum_{n=1}^{\infty} \left| \sum_{n=1}^{k} S_n^k - S_{n-1}^k \right|^{1/\alpha} \right\}^{\alpha}.
$$

For the first of these inequalities let $k - j = i > 0$ and write

$$
S_n^k = \sum_{m=0}^{n} \frac{C_{n-m}^{i-1} C_m^i}{C_n^k} S_m^i = \sum_{m=0}^{\infty} b_{n,m} S_m^i,
$$

where C_r^s is the binomial coefficient

$$
\binom{r + s}{r}.
$$

$b_{n,m}$ is non-negative for all m and n and

$$
\sum_{m=0}^{\infty} b_{n,m} = \frac{1}{C_n^k} \sum_{m=0}^{n} C_{n-m}^{i-1} C_m^i = 1.
$$

When $0 \leq n' < n'' < \infty$,

$$
b_{n'',m} - b_{n',m} = b_{n',m} \left\{ \frac{(n'' - m + i - 1) \cdots (n' - m + i)}{(n'' - m) \cdots (n' - m + 1)} \frac{n'' \cdots (n' + 1)}{(n'' + k) \cdots (n' + k + 1)} - 1 \right\}
$$

for $0 \leq m \leq n'$. If $0 < i < 1$, the bracketed quantity is negative for $0 \leq m \leq n'$ and, since $b_{n',m} = 0$ for $m > n'$, we can apply 2.5.2.

For any subdivision $0 < x_0 \cdots < x_N < 1$ let

$$
\sum_{m=0}^{\infty} a_m(x_n)^m = \sum_{m=0}^{\infty} C_m^k (1 - x_n)^{k+1} (x_n)^m S_m^k = \sum_{m=0}^{\infty} b_{n,m} S_m^k.
$$

Again $b_{n,m}$ is non-negative for all m and n,

$$
\sum_{m=0}^{\infty} b_{n,m} = (1 - x_n)^{k+1} \sum_{m=0}^{\infty} C_m^k (x_n)^m = 1,
$$

and, for $0 \leq n' < n'' \leq N$,
The bracketed factor here is an increasing function of \(m \) and 4.2.3 follows from 2.5.2.

The rest of the theorem follows from these two inequalities and a classical result.

4.3. The direct converse of 4.2.1 is not true. The coefficients in the power series expansion for

\[
f(x) = e^{1/(1+x)}
\]

constitute a series which is summable \((A; 1)\) but which is not summable \((C, k; 0)\) for any finite \(k \). However, we can prove some "corrected converses" and the following theorems extend two results due to A. Tauber.

Lemma 4.3.1.
1. \(\alpha_n = \sum_{m=1}^{n-1} (1 - (1-1/n)^m)/m \) is a positive, increasing sequence bounded by \(1 \) for \(n \geq 2 \).
2. \(\beta_n = (1-(1-1/n)^n)/n \) is a positive, decreasing sequence bounded by \(1 \) for \(n \geq 1 \).
3. \(\gamma_n = \sum_{m=n+1}^{n} ((1-1/n)^m)/m \) is a positive, increasing sequence bounded by \(1 \) for \(n \geq 1 \).

Consider the first sequence. If \(r > 1 \), \(x^
u - y^
u > ry^{r-1}(x-y) \) for any two positive and unequal \(x \) and \(y \). Hence for \(n \geq 2 \) we have

\[
\alpha_{n+1} - \alpha_n = \sum_{m=1}^{n-1} \frac{(1 - 1/n)^m - (1 - 1/(n + 1))^m}{m} + \frac{1 - (1 - 1/(n + 1))^n}{n} \\
\geq \frac{1}{n(n + 1)} \sum_{m=0}^{n-2} \left(\frac{1 - 1}{n + 1} \right)^m + \frac{1 - (1 - 1/(n + 1))^n}{n} \\
\geq \frac{1}{n} \left\{ \left(\frac{1 - 1}{n + 1} \right)^{n-1} - \left(\frac{1 - 1}{n + 1} \right)^n \right\} > 0.
\]

For the boundedness we see that

\[
\alpha_n = \sum_{m=1}^{n-1} \frac{1 - (1 - 1/n)^m}{m} \leq \frac{n - 1}{n} < 1.
\]

The proofs of 4.3.1.2 and 4.3.1.3 follow along similar lines.

We can now generalize Tauber's first theorem.

Theorem 4.3.2. Suppose that \(0 \leq \alpha \leq 1 \) and that 4.1.1 is summable \((A; \alpha)\) to \(S \). If the sequence \(\{ na_n \} \) is \(\alpha \)-convergent to 0, 4.1.1 is \(\alpha \)-convergent to \(S \).

We can assume that \(0 < \alpha \leq 1 \). For \(0 \leq x < 1 \) let
and let S_n be the nth partial sum for 4.1.1, i.e.

$$S_n = \sum_{r=0}^{n} a_r.$$

For $n \geq 2$ we can write

$$S_n - f\left(1 - \frac{1}{n}\right) = A_n + B_n - C_n,$$

where

$$A_n = \sum_{m=1}^{n-1} \frac{1 - (1 - 1/n)^m}{m} (ma_m) = \sum_{m=1}^{\infty} \alpha_{n,m}(ma_m),$$

$$B_n = \frac{1 - (1 - 1/n)^n}{n} (na_n) = \beta_n(na_n),$$

$$C_n = \sum_{m=n+1}^{\infty} \frac{(1 - 1/n)^m}{m} (ma_m) = \sum_{m=1}^{\infty} \gamma_{n,m}(ma_m).$$

$\alpha_{n,m}$ and $\gamma_{n,m}$ are non-negative for all m and n and, by 4.3.1, both $\sum_{m=1}^{\infty} \alpha_{n,m}$ and $\sum_{m=1}^{\infty} \gamma_{n,m}$ are increasing in n and bounded by 1. These two sets of coefficients satisfy the hypotheses of 2.5.1. Hence

$$\left\{ \sum_{n=3}^{\infty} \left| \sum A_n - A_{n-1}\right|^{1/\alpha} \right\}^\alpha$$

and

$$\left\{ \sum_{n=3}^{\infty} \left| \sum C_n - C_{n-1}\right|^{1/\alpha} \right\}^\alpha$$

are majorized by

$$\left\{ \sum_{m=1}^{\infty} \left| \sum ma_m - (m-1)a_{m-1}\right|^{1/\alpha} \right\}^\alpha,$$

and $\{A_n\}$ and $\{C_n\}$ are α-convergent sequences. The sequence $\{B_n\}$ is also α-convergent since $\{\beta_n\}$ is 1-convergent to 0. Because 4.1.1 is $(A; \alpha)$ summable, the sequence $\{f(1-1/n)\}$ is α-convergent, and we conclude that $\{S_n\}$ is α-convergent to S.

Theorem 4.3.3. Suppose that $0 \leq \alpha \leq 1$ and that the series 4.1.1 is summable $(A; \alpha)$ to S. 4.1.1 is α-convergent to S if and only if the sequence

$$\left\{ \sum_{n=1}^{\infty} a_1 + \cdots + na_n \right\}$$

is α-convergent to 0.
For the necessity let S_n^1 be the nth Cesaro mean of order 1 for 4.1.1 and we see from 4.2.1 that the sequence

$$S_n - S_{n-1}^1 = \frac{a_1 + \cdots + na_n}{n}$$

is α-convergent to 0.

For the sufficiency set $b_0 = 0$ and let

$$\sum_{m=0}^{n} b_m = \frac{a_1 + \cdots + na_n}{n}$$

for $n \geq 1$. If $a_n = b_n + c_n$ for all n, then

$$c_n = \frac{a_1 + \cdots + (n - 1)a_{n-1}}{n(n - 1)}$$

for $n \geq 2$. $\sum_{n=0}^{\infty} a_n$ is $(A; \alpha)$ summable to S, $\sum_{n=0}^{\infty} b_n$ is α-convergent to 0, and hence the series $\sum_{n=0}^{\infty} c_n$ is also $(A; \alpha)$ summable to S. By 4.3.2 we see that this series is then α-convergent to S and this completes the proof.

We saw in 4.3.2 how the Tauberian condition

$\{na_n\}$ is α-convergent to 0

allowed us to pass from summability $(A; \alpha)$ to summability $(C, 0; \alpha)$ or α-convergence. Actually more is true and we have the following result.

Theorem 4.3.4. Suppose that $0 \leq \alpha \leq 1$ and that 4.1.1 is α-convergent. If the sequence $\{na_n\}$ is α-convergent to 0, 4.1.1 is summable $(C, k; \alpha)$ to its sum for every $k > -1$.

Pick $\delta > 0$. Let S_n^δ and S_{n-1}^δ be the nth Cesaro means of order δ and $\delta - 1$ respectively for 4.1.1, and let T_n^δ be the nth Cesaro mean of order δ for the series whose nth partial sum is na_n. From the identity $(n + \delta)C_{n-\delta} - \delta C_{n-\delta} = \nu C_{n-\delta}$, we see that

$$S_n^{\delta - 1} - S_n^\delta = \frac{1}{\delta} T_n^\delta.$$

By 4.2.1, $\{S_n^\delta\}$ and $\{T_n^\delta\}$ are α-convergent to S and 0 respectively and thus $\{S_n^{\delta - 1}\}$ is α-convergent to S.

In conclusion we construct, for $0 \leq \alpha < 1$, a series which is summable $(C, k; \alpha)$ for every $k > -1$ and which is not summable $(A; \beta)$ for any $\beta > \alpha$.

Let $\{b_k\}$ be any positive decreasing sequence of numbers which approach zero such that

$$\left\{ \sum_{k=1}^{\infty} b_k^{1/\alpha} \right\}^\alpha < \infty \quad \text{and} \quad \left\{ \sum_{k=1}^{\infty} b_k^{1/\beta} \right\}^\beta = \infty.$$
for each $\beta > \alpha$. Define a sequence of integers, $1 = n_0 < n_1 < \cdots$, and a set of positive numbers, $\{c_k\}$, such that

$$\sum_{n_{k-1} \leq n < n_k} \frac{1}{n} \geq 2^k b_k = c_k \sum_{n_{k-1} \leq n < n_k} \frac{1}{n}$$

for $k = 1, 2, \cdots$. Set $a_0 = 0$ and $a_n = ((-1)^k / n)2^{-k}c_k$ for $n_{k-1} \leq n < n_k$. Then

$$\left\{ \sum_{n=n_k}^{\infty} |a_n|^{1/p} \right\}^p = \left\{ \sum_{j=k+1}^{\infty} b_j^{1/p} \right\}^p$$

for each $0 \leq \alpha \leq 1$, and the series is α-convergent but not β-convergent for any $\beta > \alpha$. Since

$$\sum_{n=1}^{\infty} |na_n - (n - 1)a_n| = 2 \sum_{k=1}^{\infty} 2^{-k}c_k < 2,$$

the sequence $\{na_n\}$ is 1-convergent to 0, and we see from 4.3.2 and 4.3.4 that this series has the desired properties.

REFERENCES

2. J. C. Burkill and F. W. Gehring, A scale of integrals from Lebesgue’s to Denjoy’s, Quarterly Journal vol. 4 (1953) pp. 210-220.