ON BURNSIDE'S PROBLEM

BY

R. C. LYNDON

1. Introduction. Let B be the group on q generators defined by setting the pth power of every element, for some prime p, equal to the identity1. A method, based on the free differential calculus of R. H. Fox, will be applied to study the quotients $Q_n = B_n/B_{n+1}$ of the lower central series of B, for $n \leq p+2$2. Our main results were obtained earlier by Philip Hall, using a different method3.

To state these results, let $\psi(n)$ be the rank of the free abelian quotient F_n/F_{n+1}, where F is the free group on q generators. (Witt1 has shown that $\psi(n) = n^{-1} \sum_{d|n} \mu(n/d)q^d$.) Then Q_n will be the direct product of a certain number $\kappa(n)$ of cyclic groups of order p, where $\kappa(n) \leq \psi(n)$. We show that:

(I) $\kappa(n) = \psi(n)$ for $n < p$;

(II) $\kappa(p) = \psi(p) - \binom{p + q - 1}{p} + q$;

(III) $\kappa(p + 1) = \psi(p + 1) - \binom{q}{2} \binom{p + q - 2}{p - 1}$ for $p > 2$;

(IV) $\kappa(p + 2) = \psi(p + 2) - 3p + 1$ for $p > 3$ and $q = 2$.

2. The Magnus series and Fox derivatives. In this section we summarize, without proof, those known results that will be needed later.

Magnus has defined an isomorphic representation of a free group by power series. Let F be the free group on generators x_1, \cdots, x_q. Let Ω be the ring of all formal power series, with integer coefficients, in q noncommuting indeterminates denoted by $\Delta x_1, \cdots, \Delta x_q$. The Magnus representation $w \rightarrow 1 + \Delta w$...
may be characterized as the unique multiplicative extension, F into Ω, of
the correspondence $x_k \to 1 + \Delta x_k$.

We write $w \to 1 + \Delta w = 1 + \omega_1 + \omega_2 + \cdots$ where ω_n is the sum of all terms of
total degree n in the Δx_k. It is known that $\omega_1 = \omega_2 = \cdots = \omega_{n-1} = 0$ if and
only if w lies in the lower central group F_n. In this case ω_n is a Lie element in
the Δx_k, of degree n, and it is known that the correspondence $w \to \omega_n$ defines
an isomorphism of the abelian quotient F_n/F_{n+1} onto the module of all Lie
elements of degree n contained in Ω. If $\rho \zeta$ is a Lie element, where ρ is an
integer, then ζ is a Lie element.

The coefficients in the Magnus series are given by the Fox calculus. Let
Γ be the group ring of F, with integer coefficients. For each generator x_k de-
fine $\partial/\partial x_k$ from F into Γ by the conditions

$$\frac{\partial x_j}{\partial x_k} = \delta_{jk}, \quad \frac{\partial (uv)}{\partial x_k} = \frac{\partial u}{\partial x_k} + u \frac{\partial v}{\partial x_k}.$$

By extending $\partial/\partial x_k$ linearly to a derivation from Γ into Γ, one defines the
iterated derivatives $\partial^n/\partial x_{c_1} \cdots \partial x_{c_n}$. The coefficient sum $D_{c_1, \ldots, c_n}(w)$ of
$\partial^n w/\partial x_{c_1} \cdots \partial x_{c_n}$ is then the coefficient of $\Delta x_{c_1} \cdots \Delta x_{c_n}$ in Δw:

$$\Delta w = \sum D_{c}(w) \cdot \Delta x_{c_1} \cdots \Delta x_{c_n},$$

summed over all nonempty finite sequences $c = c_1 \cdots c_n$ of integers $c_k = 1, 2, \cdots, q$.

Let C_n be the set of all sequences c of length n, and define S_n to be the
subset of those "standard" c that have the property of preceding lexicographically
all of their own proper terminal segments $c_k c_{k+1} \cdots c_n$, $1 < k \leq n$.
The operators D_c for c in C_n define homomorphisms of F_n/F_{n+1} into the additive
group Z of integers, and the D_c for c in S_n form a basis for the group of all homomorphisms of F_n/F_{n+1} into Z. The operators D_c are homogeneous in
the sense that $D_{c}(w) = 0$ for w in F_n unless for each k the degree of w (as a commutator form) in x_k is equal to the number of occurrences of the symbol
k in the sequence c.

The operators D_c, applied to the general element of F, are not inde-
dependent, but are subject to certain "shuffle relations.” Define a shuffle of two
sequences a and b to be a pair of order-preserving one-to-one mappings em-
bedding them as subsequences in a new sequence c; we require that c be precisely the union of the two subsequences, but not that they be disjoint.
In these terms one has, for all w in F, the relations

$$D_{a}(w) \cdot D_{b}(w) = \sum D_{c}(w),$$

summed over all shuffles of a and b. All relations involving only a finite
number of the operators D_c are consequences of these. In particular, by means
of these relations it is possible to express the general operator D_c as a poly-
nomial with rational coefficients in the D_c for c in S_n.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
3. Preliminary constructions. $B = F/R$, where F is free on q generators, and R is generated by all p^th powers of elements from F. Then $Q_n = B_n/B_{n+1}$ is a quotient group of F_n/F_{n+1}. Let V_n be the quotient of F_n/F_{n+1} by the p^th powers of its own elements. Since F_n/F_{n+1} is free abelian of rank $\psi(n)$, V_n may be taken, in additive notation, as a vector space of dimension $\psi(n)$ over the field of integers modulo p. Since Q_n is abelian of exponent p, it may be identified with a quotient space of V_n:

$$Q_n = V_n/M_n.$$

The dimension of Q_n is $\kappa(n) = \psi(n) - \mu(n)$, where $\mu(n)$ is the dimension of M_n.

Given a set of elements r whose cosets span $F_n \cap R/F_{n+1} \cap R$, and a set of elements c of C_n that includes the set S_n, the matrix $M_n = [D_c(r)]$, with elements taken modulo p, is a relation matrix for $Q_n = V_n/M_n$. Hence $\mu(n)$ is the rank of M_n.

We are thus led to consider the Magnus series $1 + \Delta w$ for $w = \prod u_i^p$ in R, and the behavior of its coefficients reduced modulo p. From the equation

$$1 + \Delta(u_1 \cdots u_m) = (1 + \Delta u_1) \cdots (1 + \Delta u_m),$$

for elements u_1, \ldots, u_m in F, one has the "Leibniz rule"

Proposition 3.1.

$$D_c(u_1 \cdots u_m) = \sum D_c(u_1) \cdots D_c(u_m),$$

summation over all "partitions" of the sequence $c = c_1 \cdots c_n$ into m segments $c^k : c = c_1 \cdots c^m$. In this context only we admit the possibility of empty sequences c^k, with the understanding that $D_c(u_k) = 1$.

Let the terms in (3.1) be grouped according to the number r of non-empty segments in the corresponding partition of c. Setting all $u_k = u$ and collecting identical terms then gives

Proposition 3.2. If $c = c_1 \cdots c_n$ is of length n, then

$$D_c(u^n) = \sum_{1 \leq r \leq n, n} \binom{m}{r} \sum D_c(u) \cdots D_c(u),$$

with summation now confined to partitions of c into nonempty parts: $c = c^1 \cdots c^r$.

Proposition 3.3. If c is of length n, and p is a prime, then

(3.31) $D_c(u^p) \equiv 0 \pmod{p}$ for $n < p$;

(3.32) $D_c(u^p) \equiv \prod_{1 \leq k \leq p} D_c(u) \pmod{p}$ for $n \geq p$.

Corollaries 3.4. For c of length n and p prime:

(3.41) If u is in F_m and $pm > n$, then

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[D_c(u^p) \equiv 0. \]

(3.42) If \(u \equiv v \pmod{F_{n-p+2}} \), then
\[D_c(u^p) \equiv D_c(v^p). \]

(3.43) If \(n < 2p \), then
\[D_c(u^p v^p) \equiv D_c(u^p) + D_c(v^p). \]

To prove (3.41), note that if \(pm > n \) then every partition of \(c \) into \(p \) (non-empty) parts must contain some part \(c_k \) of length less than \(m \); hence every term in (3.32) contains a factor \(D_{c_k}(u) = 0 \). To prove (3.42), note that in every partition of \(c \) into \(p \) (nonempty) parts, all parts must be of length less than \(n - p + 2 \); hence each \(D_{c_k}(u) = D_{c_k}(v) \). To prove (3.43), apply (3.1) to \(D_c(u^p v^p) \) with \(m = 2 \), and observe that by (3.31) every term containing a factor for \(c_k \) nonempty and of length less than \(p \) must vanish; hence only those terms corresponding to \(c = c_1 c_2^* \) with one part empty and the other equal to \(c \) remain.

If, in \(\Delta w = \omega_1 + \omega_2 + \cdots \), all \(\omega_k = 0 \) for \(k < n \), then \(w \) lies in \(F_n \). What does it signify if all \(\omega_k \equiv 0 \) for \(k < n \)?

Proposition 3.5. For \(w \) in \(F_h \), and \(h \leq k \), suppose that
\[\Delta w = \omega_1 + \omega_2 + \cdots; \]
then, provided that \(2 \leq h \leq k < 2p \), there exists \(w' = wr \) in \(F_k \), where \(r \) is in \(R \), such that
\[\Delta w' = \omega'_1 + \omega'_{k+1} + \cdots, \]
with \(\omega'_k \equiv \omega_k, \cdots, \omega'_{2p-1} \equiv \omega_k \).

The case \(h = k \) is trivial, while the general case follows by iteration of the case \(k = h + 1 \). Since \(w \) is in \(F_h \), \(\omega_h \) is a Lie element; and \(\omega_h \equiv 0 \) implies that \(\omega_h = -p \xi \) where \(\xi \) is again a Lie element of degree \(h \). Then \(\xi \) is the leading term of \(\Delta z \) for some \(z \) in \(F_k \). Taking \(r = 2p \), \(w' = wr \) is in \(F_{k+1} \), with \(\omega'_k = 0 \). And since, by (3.41), \(D_c(r) \equiv 0 \) for \(c \) of length \(n < 2p \), \(\Delta r \equiv \rho_{2p} + \rho_{2p+1} + \cdots \) and \(\omega'_k \equiv \omega_k \) for \(n < 2p \).

(Remark: The same argument can be applied in the general situation \(a \leq h \leq k \leq a p \).)

A special application of the above is to the case of \(w = (uv)^p u^{-p} v^{-p} \), for \(u \) in \(F \) and \(v \) in \(F_h \), \(h \leq p \). Clearly \(w \) lies in \(F_{h+1} \subset F_2 \). By (3.43), \(D_c(w) \equiv D_c((uv)^p - D_c(u^p) - D_c(v^p) \) for \(n < 2p \), hence for \(n < h + p \). By (3.42), since \(u v \equiv u, v \equiv 1 \pmod{F_h} \), \(D_c((uv)^p) \equiv D_c(u^p) \) and \(D_c(v^p) \equiv 0 \) for \(h \geq n - p + 2 \), hence for \(n < h + p - 1 \). Therefore \(D_c(w) \equiv 0 \) for \(n < h + p - 1 \), and \(\Delta w \equiv \omega_{h+p} + \omega_{h+p-1} + \cdots \). Applying now (3.5) and noting that \(w \) in \(R \) implies \(w' = wr \) is in \(R \), one has
Proposition 3.6. Let \(w = (uv)^p u^{-pv} \) where \(u \) is in \(F \) and \(v \) in \(F_h \), \(h \leq p \). Then \(\Delta w = \omega_{h+p-1} + \omega_{h+p} + \cdots \) and there exists \(w' \) in \(R \) such that \(\Delta w' = \omega_{h+p-1} + \omega_{h+p} + \cdots \) where \(\omega_{h+p-1} = \omega_{h+k-1} \).

4. The quotient \(Q_n \) for \(n < p \). The dimension \(\mu(n) \) of \(M_n \) is the rank of the matrix \(M_n = [D_c(r)] \) with columns indexed by \(c \) in \(C_n \), rows by \(r \) in \(F_n \cap R \), and elements taken modulo \(p \). Define \(N_n = [D_c(r)] \) in the same way, but with rows for all \(r = u^p \) in \(R \). Every \(r \) in \(R \) can be written as \(r = \prod u_i^{p_i} \), whence by (3.43), provided \(n < 2p \), \(D_c(r) = \sum \lambda_i D_c(u_i^p) \). It follows that the rows of \(M_n \) are certain linear combinations of the rows of \(N_n \).

For \(n < p \), all \(D_c(u_i^p) = 0 \) by (3.31), whence \(N_n \), and so \(M_n \), is a 0-matrix. Thus

Theorem 1. \(\mu(n) = 0 \) for \(n < p \).

5. The quotient \(Q_p \). If \(c \) is of length \(p \), it follows by (3.42) that \(D_c(u^p) \), modulo \(p \), depends upon \(u \) only modulo \(F_2 \), hence only upon the \(D_k(u) = \alpha_k \) modulo \(p \), for \(k = 1, 2, \cdots, q \). Therefore we may write \([u] = [\alpha_1, \cdots, \alpha_q] \) for the row of \(N_p \) with elements \(D_c(u^p) \).

Lemma 5.1. The linear combination \(L = \sum \lambda_i [u(t)] = \sum \lambda_i [\alpha(t)_1, \cdots, \alpha(t)_q] \) belongs to the row space of \(M_p \) if and only if

\[
\sum \lambda_i \alpha(t)_k \equiv 0 \quad \text{for} \quad k = 1, 2, \cdots, q.
\]

To prove this, first remark that \(L \) belongs to (the row space of) \(M_p \) if and only if there exists some \(r = \prod u_i^{p_i} \) (order of factors immaterial) in \(R \cap F_p \) for which \([u(t)] = [\alpha(t)_1, \cdots, \alpha(t)_q] \). If such \(r \) exists, a fortiori

\[
r \equiv \prod \prod k \ x_{k}^{\alpha(t)_k p_i} = \left[\prod k \ x_{k}^{\alpha(t)_k} \right]^{p} \equiv 1 \pmod{F_2},
\]

and, since \(F/F_2 \) is torsion-free, \(\sum \lambda_i \alpha(t)_k = 0 \) for all \(k \). For the converse, any given solution of (5.1) modulo \(p \) corresponds to a solution of the equations \(\sum \lambda_i \alpha(t)_k = 0 \) in rational integers. Set \(u(t) = \prod x_{k}^{\alpha(t)_k} \) and \(w = \prod u(t)^p \). Then the \(D_c(w) \) for \(c \) in \(C_p \) yield the entries in the row \(L \). But \(w \) is in \(R \cap F_p \), whence, by (3.43) and (3.41), \(\Delta w = \omega_p + \omega_{p+1} + \cdots \). By (3.5) there exists \(w' \) in \(R \cap F_p \) with \(\Delta w' = \omega_p' + \omega_{p+1} + \cdots \) where \(\omega_p' = \omega_p \). Thus \(D_c(w') = D_c(w) \), and \(L \) is the row of \(M_p \) indexed by \(w' \) in \(R \cap F_p \).

Next consider the columns of \(N_p \). For \(c = c_1 \cdots c_p \) of length \(p \), (3.32) yields \(D_c(u^p) = D_{c_1}(u) \cdots D_{c_p}(u) = \alpha_{c_1}^h \cdots \alpha_{c_p}^h \) where \(h_1, \cdots, h_q \) are the frequencies of the symbols 1, \(\cdots, q \) in the sequence \(c \). Write \(\phi_c(u) = \alpha_{c_1}^h \cdots \alpha_{c_p}^h \), and, for \(L = \sum \lambda_i [u(t)] \), write \(\phi_c(L) = \sum \lambda_i \phi_c(u(t)) \). The column space of \(N_p \), hence of \(M_p \), is thus spanned by columns given by the \(\phi_c \) for all distinct \((h) = (h_1, \cdots, h_q) \) belonging to some \(c \) in \(S_p \). Now \(S_p \) contains none of the \(q \) sequences consisting of \(p \) repetitions of the same symbol; while for any other solution of the conditions \(\sum h_k = p \), 0 \(\leq h_k \leq p \), the sequence \(c \)
obtained by arranging the prescribed number of symbols 1, ⋅ ⋅ ⋅ , q in non-descending order belongs to S_p. The number of distinct ϕ_e is therefore

$$\binom{p + q - 1}{p} - q.$$

That the ϕ_e, clearly independent over \mathcal{N}_p, are independent over \mathcal{M}_p follows from homogeneity considerations (§6). Or, directly, if any combination $\sum \nu_e \phi_e$ vanished on all the rows

$$[\alpha_1, \cdots, \alpha_k + 1, \cdots, \alpha_q] - [\alpha_1, \cdots, \alpha_k, \cdots, \alpha_q] - [0, \cdots, 1, \cdots, 0]$$

of \mathcal{M}_p, it would have to be independent of $\alpha_1, \cdots, \alpha_q$, whence all the $\nu_e \equiv 0$.

Theorem II.

$$\mu(p) = \binom{p + q - 1}{p} - q.$$

Remark. For $p = 2$, this gives $\kappa(2) = \psi(2) - \mu(2) = 0$, hence $Q_2 = 1$; in fact, $B_2 = 1^{(*)}$. Since it follows that, for $p = 2$, $Q_n = 1$ for all $n \geq 2$, we may henceforth assume that $p > 2$.

6. Homogeneity of M_n. The elements of V_n, regarded as commutator forms in F_n/F_{n+1} reduced modulo p (or as Lie elements), have well-defined degrees in each of the generators x_1, \cdots, x_q. For each solution $(h) = (h_1, \cdots, h_q)$ of $\sum h_k = n$, $0 \leq h_k < n$, define $V(h)$ to be the subspace of all elements that are homogeneous of degree h_k in x_k for each $k = 1, \cdots, q$. Clearly V is the direct sum of the $V(h)$.

Define $M(h) = M_n \cap V(h)$.

Lemma 6.1. For $n = p$, for $n = p + 1$, and for $p = 2$ and $n = p + 2$, M_n is the direct sum of its subspaces $M(h)$.

The case $n = p$ is in fact implicit in the proof of Theorem II, but also falls out of a more general argument. If $L(x_1, \cdots, x_q)$ is a homogeneous form in $V(h)$, then “linear” substitution gives $L(x_1^{e_1}, \cdots, x_q^{e_q}) = e_1^{h_1} \cdots e_q^{h_q} \cdot L(x_1, \cdots, x_q)$. Since R is a characteristic (“word”) subgroup of F, the subspace M_n is closed in V_n under substitution. It follows by standard reasoning that M_n has a basis of forms with the property that one of them will contain terms in different $V(h)$ and $V(h')$ only if $e_1^{h_1} \cdots e_q^{h_q} \equiv e_1^{h_1'} \cdots e_q^{h_q'} \pmod{p}$ for all e_1, \cdots, e_q. This requires that $h_k = 0$ if and only if $h_k' = 0$, and that, for each k, $h_k \equiv h_k' \pmod{p - 1}$.

If $n = p$, there exist no distinct (h) and (h') so related, whence M_n has a basis of elements lying in the various $M(h)$, and therefore is a direct sum.

For $n = p + 1$, the pairs of (h) and (h') of this sort are all of the type

(*) Elementary; see Burnside [2].
$(h) = (1, p, 0, \cdots, 0), \ (h') = (p, 1, 0, \cdots, 0).$ For $n = p + 2$, provided $g = 2$, they are of type $(h) = (1, p + 1)$ and $(h') = (p, 2)$. Now, for $(h) = (1, n - 1, 0, \cdots, 0), S(h)$ contains only $c = 122 \cdots 2$, and $V(h)$ is of dimension 1, with basis element $\xi_n = (x_1, x_2, \cdots, x_n)$ ($n - 1$ symbols x_2). The proof of Theorem II shows that, for $n = p$, $M(h)$ has dimension 1, hence $M(h) = V(h)$, and ξ_p lies in $R \cap F_{p+1}$. Since $\xi_{n+1} = (\xi_n, x_2)$, it follows inductively that ξ_n lies in $R \cap F_{n+1}$ for all $n \geq p$, that $M(h)$ has dimension 1, hence that $M(h) = V(h)$. In particular, this gives $M(1, p, 0, \cdots, 0) = V(1, p, 0, \cdots, 0)$ and $M(1, p + 1) = V(1, p + 1)$, whence $M_n \cap (V(h) + V(h')) = M(h) + M(h')$, direct sum, in the two cases under consideration.

For each (h), let $C(h)$ consist of all sequences c in C that contain exactly h_k symbols k, for $k = 1, \cdots, q$; and define $S(h) = S \cap C(h)$. Let $N(h), M(h)$ be the submatrices of S_n, S_n consisting of those columns indexed by c in $C(h)$, and let $\mu(h)$ be the rank of $N(h)$. From the homogeneity of the operators D_c, as applied to F_n/F_{n+1}, one deduces

Lemma 6.2. For $n = p$, for $n = p + 1$, and for $q = 2$ and $n = p + 2$, one has $\mu(n) = \sum \mu(h)$.

7. The quotient Q_{p+1}. If c is of length $p + 1$, it follows by (3.42) that $D_c(u^p)$, modulo p, depends upon u only modulo F_q, and hence only upon the numbers, taken modulo p, $D_c(u) = \gamma_{ij}$ for $1 \leq i < j \leq q$. Therefore we write $[u] = [\alpha_1, \cdots, \alpha_q; \gamma_{12}, \cdots, \gamma_{q-1,q}]$ for the row of N_{p+1} whose entries are $D_c(u^p)$.

Lemma 7.1. The linear combination $L = \sum \lambda(t) \alpha(t)$ belongs to the row space of M_{p+1} if and only if $\eta(L) = 0$ for every form $\eta(\alpha_1, \cdots, \alpha_q)$ homogeneous of total degree p in the α_k.

If L corresponds to some $r = \prod u(t)^{\alpha_k}$ in $R \cap F_{p+1}$, then, since r is in $R \cap F_p$, all $\lambda(t) \in C_p$, whence $D_c(r) = \sum \lambda(t) \alpha(t)^{h_k} \equiv 0$ for all solutions of $\sum h_k = p, 0 \leq h_k < p$. In the excluded cases, where some $h_k = p$, with the remaining $h_i = 0$, one has $\sum \lambda(t)^p \equiv 0$. Hence $\eta(L) = 0$ for all η.

For the converse, given an L such that $\eta(L) = 0$ for all η, proceeding in the same manner as for Lemma 5.1 we can use the given λ_i and $\alpha(t)_k$ to construct an element $r = \prod u(t)^{\alpha_k}$ in $R \cap F_{p+1}$ giving rise to a row L' in M_{p+1} with the same numbers $\alpha(t)_k$ as L. Since this construction provides no control over the γ_{ij}, to prove that L belongs to M_{p+1} we must show that M_{p+1} contains all rows of the form

$$K = [\alpha_k; \gamma_{ij}] - [\alpha_k; \gamma_{ij}].$$

For this, let $\gamma'_u = \gamma_{uv} + \gamma''_u$ and choose u and v such that $[u] = [\alpha_u; \gamma_{uv}]$ and $[v] = [0; \gamma'_u]$; more precisely, $v = \prod_{i < j} (x_i, x_j)^{\gamma''_u}$. Then u is in F and v
in F_2, whence, taking $w = (uv)^p u^{-p} v^{-p}$, by (3.6) with $h = 2$ there exists w' in $R \cap F_{p+1}$ such that $D_c(w') = D_c(w)$ for all c in C_{p+1}. Thus w' gives rise to a row $[uv] - [u] - [v]$ in \mathcal{M}_{p+1}. Since v is in F_2, $D_c(wp) = 0$ for all c in C_{p+1}, by (3.41), and $[v] = 0$. Therefore $[uv] - [u] = [\alpha_k; \gamma_{ij}] - [\alpha_k; \gamma_{ij}]$ and K belongs to \mathcal{M}_{p+1}, as required.

Next we shall examine the columns of $N(h)$ and $\mathcal{M}(h)$, for fixed (h). For $c = c_1 \cdots c_{p+1}$, (3.32) gives

$$D_c(wp) = \sum_{k=1}^{p} D_{c_1}(u) \cdots D_{c_{k-1}}(u) D_{c_k}(v) D_{c_{k+1}}(u) \cdots D_{c_{p+1}}(u)$$

$$= A \sum D_{c_1 c_{k+1}}(u)/\alpha_k \alpha_{k+1}$$

where $A = \alpha_1^{h_1} \cdots \alpha_q^{h_q}$. For $i < j$, we defined $\gamma_{ij} = D_{ij}(u)$. The shuffle relations $D_i : D_j = D_{ij} + D_{ji}$ ($i \neq j$) and $D_i : D_i = 2 D_{ii} + D_{ii}$ give

$$D_{ij} = \alpha_i \alpha_j - \gamma_{ij}, \quad D_{ii} = \alpha_i/2 - \alpha_i/2.$$

For greater symmetry, define, for $i < j$,

$$\theta_{ij} = \frac{\gamma_{ij}}{\alpha_i \alpha_j} - \frac{1}{2}, \quad \theta_{ii} = - \theta_{ii}, \quad \theta_{ii} = 0.$$

Then, for $i < j$,

$$D_{ij}(u) = \gamma_{ij} = \alpha_i \alpha_j \theta_{ij} + \alpha_i \alpha_j/2,$$

$$D_{ji}(u) = \alpha_i \alpha_j - \gamma_{ij} = - \alpha_i \alpha_j \theta_{ij} + \alpha_i \alpha_j/2 = \alpha_j \alpha_i \theta_{ji} + \alpha_j \alpha_i/2,$$

$$D_{ii}(u) = \alpha_i/2 - \alpha_i/2 = \alpha_i \alpha_i \theta_{ii} + \alpha_i \alpha_i/2 - \alpha_i/2.$$

In this notation,

$$D_c(wp) = A \sum_{1 \leq k \leq p} \left(\theta_{c_k c_{k+1}} + \frac{1}{2} \right) + \eta(\alpha_1, \cdots, \alpha_q)$$

where η is a form of total degree p in the α_k, and by (7.1) may be neglected in investigating the columns of \mathcal{M}_{p+1}. If, for $1 \leq i, j \leq q$, we let h_{ij} be the number of consecutive pairs $c_k c_{k+1} = ij$ in the sequence c, the entries in the column indexed with c are given by

$$\phi_c(\alpha_k; \gamma_{ij}) = A \sum_{i,j} h_{ij} \theta_{ij} + \frac{1}{2} p A$$

$$= A \sum h_{ij} \theta_{ij}.$$

To find a basis for these columns, first observe that if $h_i \neq 0$, $h_j \neq 0$, then $C(h)$ will contain, for some k, c_2, \cdots, c_{p-1}, sequences $c = kc_2 \cdots c_{p-1}ij$ and $c' = jkc_2 \cdots c_{p-1}i$. Comparing the h_{ij} and $h'_{j'i}$ gives
\[\psi_{ijk} = \phi_o - \phi_{i'} \equiv A(\theta_{ij} - \theta_{jk}). \]

Using \(\theta_{jk} = -\theta_{kj} \), and choosing \(k' \) from the \(c_2, \ldots, c_{p-1} \),

\[\psi_{ij} = \psi_{ijk} + \psi_{ijk'} - \psi_{kjk} \]

\[\equiv A(\theta_{ij} - \theta_{jk} + \theta_{ij} - \theta_{jk} + \theta_{kj}) \]

\[\equiv 2A\theta_{ij}. \]

From this it follows that the columns given by the \(\psi_{ij} \), for \(i < j \), span the column space of \(N(h) \) and so that of \(M(h) \). We shall show that the \(\psi_{ij} \) give independent columns of \(M(h) \). For \(s < t \), choose \(u_{st} \) with all \(\alpha_k = 1 \), and with all \(\gamma_{ij} = 0 \) except \(\gamma_{st} = 1 \). Choose \(u_0 \) with all \(\alpha_k = 1 \) and all \(\gamma_{ij} = 0 \). Evidently \(L_{st} = [u_{st}] - [u_0] \) belongs to the row space of \(M_{p+1} \), by Lemma 7.1. But \(\psi_{st}(L_{st}) = +1 \), while all other \(\psi_{ij}(L_{st}) = -1 \).

It follows that the rank of \(M_{p+1} \), \(\mu(p+1) = \sum \mu(h) \), is the sum, over all \((h) \), of the number of pairs \(i < j \) for which \(h_i \neq 0, h_j \neq 0 \). Evidently, this is the sum over all \(i < j \), of the number of \((h) \) with \(h_i \neq 0, h_j \neq 0 \), which is evidently

\[\binom{q}{2} \binom{p + q - 2}{p - 1}. \]

Theorem III.

\[\mu(p + 1) = \binom{q}{2} \binom{p + q - 2}{p - 1} \]

for \(p > 2 \).

Remark. For \(p = 3 \), this gives \(\kappa(4) = \psi(4) - \mu(4) = 0 \), hence \(Q_4 = 1 \); in fact, \(B_4 = 1 \). Since it follows that, for \(p = 3 \), all \(Q_n = 1, n \geq 4 \), we henceforth assume \(p > 3 \).

8. **The quotient** \(Q_{p+2} \) **for** \(q = 2 \). It is assumed henceforth that \(B \) is defined by two generators \(x_1, x_2 \), and that \(p \geq 5 \). To avoid subscripts, we introduce the alternate notation \(x = x_1, \ y = x_2, \ \alpha = \alpha_1 = D_1(u), \ \beta = \alpha_2 = D_2(u), \ \gamma = \gamma_{12} = D_{12}(u) \). If \(c \) is of length \(p+2 \), it follows by (3.42) that \(D_c(uv) \) modulo \(p \) depends upon \(u \) only through the numbers \(\alpha, \beta, \gamma \) and \(\sigma = D_{112}(u), \ \tau = D_{122}(u) \). We write \([u] = [\alpha, \beta, \gamma, \sigma, \tau] \) for the row of \(N_{p+2} \) given by the \(D_c(uv) \).

Lemma 8.1. The combination \(L = \sum \lambda_i [u_i] \) belongs to the row space of \(M_{p+2} \) if and only if

\begin{align*}
(8.1) & \quad \eta(L) = 0 \text{ for all forms } \eta(\alpha, \beta) \text{ of total degree } p, \\
(8.2) & \quad \sum \lambda_i \alpha_i^h \beta_i^k = 2 \sum \lambda_i \alpha_i^{h-1} \beta_i^{k-1} \gamma_i \end{align*}

for all \(1 \leq h \leq p, \ k = p+1-h \).

(*) See Burnside [2], Levi-van der Waerden [7].
Observing that, for $q = 2$, the columns of M_{p+1} are all given by polynomials
\[
\psi_{12} = 2A\theta_{12} = 2\alpha^h\beta^k \left(\frac{\gamma}{\alpha \beta} - \frac{1}{2} \right),
\]
the proof runs exactly parallel to that of Lemma 7.1.

Next we shall examine the columns of $N(h)$ and $M(h)$, for a fixed $(h) = (h, k)$, $0 < h < p+2$, $k = p+2-h$. For the right member of (3.32), the partitions of $c = c_1 \cdots c_{p+2}$ into p parts are clearly of two kinds:

(i) one segment $c_i c_{i+1} c_{i+2}$, the rest c_r;

(ii) two segments $c_i c_{i+1}$ and $c_j c_{j+1}$, the rest c_r. According as the c_i, c_j, etc., are 1 or 2, we classify these partitions in the obvious fashion into types

\[111, \cdots, 222, 11/11, \cdots, 22/22.\]

Define the integers $(111), \cdots, (22/22)$ to be the number of partitions of c falling into each of these types. Then, by (3.32),

\[
D_c(u^\nu) = A \sum (ijk)D_{ijk}(u)/\alpha_i \alpha_j \alpha_k
+ A \sum (ij/\nu)D_{ij}(u)D_{\nu}(u)/\alpha_i \alpha_j \alpha_k
\]

with summation over all distinct partition types.

By means of the shuffle relations, the $D_{ijk}(u)$ and $D_{ij}(u)D_{\nu}(u)$ are all expressible as polynomials in the α, β, γ, σ, τ. For example, from the shuffle relation $D_1 D_1 = D_{12} + D_{12} + D_{12} + D_{12}$ we find that

\[
(8.3) \quad \frac{D_{121}(u)}{\alpha^2 \beta} = -2 \frac{\sigma}{\alpha^2 \beta} + \frac{\gamma}{\alpha \beta} - \frac{1}{\alpha^2 \beta}.
\]

Without entering into further details at this point, it follows that the $D_c(u^\nu)$ will all be given by polynomials, with certain coefficients K_s, \cdots, H_β depending on c, of the general form

\[
A \left\{ K_s \frac{\sigma}{\alpha^2 \beta} + K_\tau \frac{\tau}{\alpha \beta^2} + K_\gamma \frac{\gamma^2}{\alpha^2 \beta^2} + K_{\gamma \gamma} \frac{\gamma}{\alpha \beta} + K_1 \right.
+ H_\alpha \frac{\gamma}{\alpha^2 \beta} + H_\beta \frac{\gamma}{\alpha \beta^2} + H' \frac{1}{\alpha} + H' \frac{1}{\beta} \right\} + \eta(\alpha, \beta),
\]

where η is a form of total degree p and may be ignored. Further, if $L = \sum \lambda_i [u_i]$ belongs to M_{p+2}, then by (8.1), since $(h-1)+k = p+1$, we have

\[
\sum \lambda_i (H_\alpha^{h-2} \beta_1 \gamma_i + H'_1 \alpha^{h-1} \beta_1) \equiv \sum \lambda_i (H_\alpha + 2H'_1)\alpha_i \beta_1 \gamma_i,
\]

and it follows that, for the purpose of investigating M_{p+2}, we may describe $D_c(u^\nu)$ by the polynomial
\[\phi_c = A \left\{ K_\sigma \frac{\sigma}{\alpha^2 \beta} + K_\tau \frac{\tau}{\alpha \beta^2} + K_{\gamma \gamma} \frac{\gamma^2}{\alpha^2 \beta^2} + K_\gamma \frac{\gamma}{\alpha \beta} \right. \\
+ K_1 + K_\sigma \frac{\gamma}{\alpha^2 \beta} + K_\beta \frac{\gamma}{\alpha \beta^2} \right\}, \]

where \(K_\alpha = H_\alpha + 2H_\alpha' \) and \(K_\beta = H_\beta + 2H_\beta' \).

Although we shall have later to prove only a small part of this fact, it may be noted that routine calculation shows that the monomials \(A\sigma/\alpha^2 \beta, \cdots, A\gamma/\alpha \beta^2 \) define linearly independent functions over the row space of \(M_{p+2} \).

9. Continuation. We next examine how the coefficients \(K \) in (8.4) depend upon the numbers (111), \(\cdots, (22/22) \). From equation (8.3), for example, it appears that each partition of \(c \) of the type 121 contributes \(-2\) to \(K_\sigma \), \(+1\) to \(K_\gamma \), \(-1\) to \(H_\alpha \) (and thus to \(K_\alpha \)), and nothing to the remaining coefficients. We tabulate the result of analogous computations for the other types of partitions in Table 1.

<table>
<thead>
<tr>
<th>(K_\sigma)</th>
<th>(K_\tau)</th>
<th>(K_{\gamma \gamma})</th>
<th>(K_\gamma)</th>
<th>(K_1)</th>
<th>(H_\alpha)</th>
<th>(H_\alpha')</th>
<th>(H_\beta)</th>
<th>(H_\beta')</th>
<th>(K_\alpha)</th>
<th>(K_\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(111)</td>
<td>1/6</td>
<td>1/6</td>
<td>-1/2</td>
<td>-1/2</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(222)</td>
<td></td>
</tr>
<tr>
<td>(112)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(121)</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(211)</td>
<td>1</td>
<td>-1</td>
<td>1/2</td>
<td>1</td>
<td>-1/2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(222)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(122)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(212)</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(221)</td>
<td>1</td>
<td>-1</td>
<td>1/2</td>
<td>1</td>
<td>-1/2</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11/11)</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11/22)</td>
<td>1/4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22/22)</td>
<td></td>
<td>1/4</td>
<td></td>
<td></td>
<td>-1/2</td>
<td>-1/2</td>
<td>-1/2</td>
<td>-1/2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11/12)</td>
<td>1/2</td>
<td>-1/2</td>
<td>1/2</td>
<td>-1/2</td>
<td>-1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(11/21)</td>
<td></td>
<td></td>
<td>1/2</td>
<td>-1/2</td>
<td>-1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22/12)</td>
<td>1/2</td>
<td>-1/2</td>
<td>1/2</td>
<td></td>
<td>-1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(22/21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1/2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12/12)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(12/21)</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(21/21)</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The question now arises of what values of the partition numbers (111), \(\cdots, (22/22) \) correspond to elements \(c \) in \(S(h) \). Since these numbers are not independent, we first express them in terms of independent parameters. Every sequence \(c \) in \(S(h) \) contains \(h \) symbols 1 and \(p + 2 - h \) symbols 2; moreover, \(c \) must begin with a 1 and end with a 2. We define
$d=0$ or 1 according as c begins with 11 or with 12,
$e=0$ or 1 according as c ends with 22 or with 12,
a = the number of couples $c,c+i=12$ in c.

Then all the partition numbers for c are expressible in terms of d, e, a, $b = (112)$, and $f = (122)$. The specific equations are listed in Table 2. We illustrate the method by evaluating $(11/21)$. First, $(11/21) = (11)(21) - (211)$, the number of pairs of segments 11 and 21, minus the number that overlap. Since every 1 begins a pair, $h = (11) + (12)$, and $(11) = h - a$. Since c begins with a 1 and ends with a 2, $(12) = (21) + 1$, and $(21) = a - 1$. Finally, (11) is equal to the number of triples 111 or 112, and also is equal to the number of triples 111 or 211, plus 1 if $d = 0$; hence $(111) + (112) = (111)
+ (211) + (1 - d)$, and $(211) = (112) + d - 1 = b + d - 1$. Combining these gives $(11/21) = (h-a)(a-1) - (b+d-1)$.

\begin{table}[h]
\begin{center}
\begin{tabular}{l}
$(111) = h-a-b$
\hline
$(222) = 2-h-a-f$
\hline
$(112) = b$
\hline
$(121) = a-f-e$
\hline
$(211) = b-d-1$
\hline
$(11/21) = h-a-b$
\hline
$(22/22) = 2-h-a-f$
\hline
$(11/21) = h-a-b$
\hline
$(22/12) = 2-h-a-f$
\hline
$(12/12) = a-(a-1)-(a-b-d)$
\hline
\end{tabular}
\end{center}
\end{table}

The results listed in Tables 1 and 2 can now be combined to express the coefficients K in terms of the parameters h, d, e, a, b, c. Straightforward computation gives

$$K_x = 2g + 2e + d - 1,$$
$$K_y = 2g + e + 2d - 1,$$
$$K_{yy} = -g - e - d + 1,$$
$$K_y = -g - e/2 - d/2,$$
$$K_1 = g/12 + 1/12,$$
$$K_a = K_x/2, \quad K_b = K_y/2,$$

where $g = -a+b+f$.

We are now in a position to determine what polynomials ϕ_c correspond to columns in the matrix M_{p+2}. For this purpose we may restrict attention to c in $S(h)$. The cases $(h) = (1, p+1)$ and $(h) = (p+1, 1)$, where $\mu(h) = 1$, may be dismissed. Since $7 \leq p+2 = h+k$, odd, by symmetry we may suppose that $h > k \geq 2$ and that $h \geq 4$. Then c must begin with 11, and we may henceforth suppose that $d=0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
First, let \(h > 4 \), and \(k > 2 \). Then \(S(h) \) contains the three sequences listed below, with \(g \) and \(e \) as shown:

\[
\begin{align*}
c &= 11 \cdots 122 \cdots 22 &| & 1 & 1 & 1 & 1 & 0 \\
c' &= 11 \cdots 122 \cdots 212 &| & 2 & 1 & 1 & 0 & 1 \\
c'' &= 11 \cdots 122 \cdots 2112 &| & 2 & 2 & 1 & 1 & 1
\end{align*}
\]

If the corresponding polynomials are \(\phi, \phi', \phi'' \), evidently \(\phi_1 = \phi'' - \phi - \phi' \) has coefficients corresponding to setting \(g = \epsilon = d = 0 \) in (9.1); \(\phi_2 = \phi - \phi_1 \) to retaining only the coefficient of \(g \) in (9.1); and \(\phi_3 = \phi' - \phi_1 \) to retaining that of \(e \). Explicitly, the first three coefficients of these polynomials are

\[
\begin{align*}
\phi_1 & \quad \phi_2 & \quad \phi_3 \\
K_\sigma & -1 & +2 & +2 \\
K_\tau & -1 & +2 & +1 \\
K_{\gamma \gamma} & +1 & -1 & -1
\end{align*}
\]

(9.2)

If \(h = 4 \), \(k \geq 3 \), and a similar argument applies with \(c'' \) replaced by

\[
c'' = 1122 \cdots 21212
\]

\[
\begin{cases}
3 & 1 & 1 \\
3 & 1 & 0
\end{cases}
\begin{cases}
-1 & 1 \\
-2 & 1
\end{cases}
\]

(for \(k > 3 \))

If \(k = 2 \), then \(h \geq 5 \), and one uses

\[
\begin{align*}
c &= 11 \cdots 122 &| & 1 & 1 & 1 & -1 & 0 \\
c' &= 11 \cdots 1212 &| & 2 & 1 & 0 & -1 & 1 \\
c'' &= 11 \cdots 12112 &| & 2 & 2 & 0 & 0 & 1
\end{align*}
\]

In all cases, the same \(\phi_2, \phi_3, \phi_3 \) define columns spanning \(\mathcal{M}(h) \), and it remains to show that these columns are independent.

Define three rows \(L = \sum \lambda_i [u_i] = \sum \lambda_i [\alpha, \beta, \gamma, \sigma, \tau] \) of \(\mathcal{N}_{p+2} \) as follows:

\[
\begin{align*}
L_1 &= [1, 1, 0, 1, 0] - [1, 1, 0, 0, 0], \\
L_2 &= [1, 1, 0, 0, 1] - [1, 1, 0, 0, 0], \\
L_3 &= [1, 1, 2, 0, 0] + [1, 1, 0, 0, 0] - 2[1, 1, 1, 0, 0].
\end{align*}
\]

It is easily seen, in accordance with Lemma 8.1, that these lie in the row space of \(\mathcal{M}_{p+2} \). Applying \(\phi_c \), as given by (8.4), to \(L_1 \), one sees that all terms not containing \(\sigma \) cancel, hence that \(\phi_c(L_1) \sim K_\sigma \). Similarly, \(\phi_c(L_2) \sim K_\tau \). To evaluate \(\phi_c(L_3) \), define \(\Omega_\tau = [1, 1, \nu, 0, 0] - \nu [1, 1, 1, 0, 0] \); then \(\phi_c(\Omega_\tau) \) contains only terms in \(\gamma \):

\[
\phi_c(\Omega_\tau) \sim \nu K_\gamma + \nu^2 K_{\gamma \gamma} + \nu H_\alpha + \nu H_\beta.
\]
Since $L_3 = \Omega_2 - 2\Omega_1$, in $\phi_3(L_3)$ those terms that are linear in ν cancel out, leaving

$$\phi_3(L_3) \sim 2^2 \cdot K_{\gamma\gamma} - 2 \cdot 1^2 \cdot K_{\gamma\gamma} = 2K_{\gamma\gamma}.$$

Applying ϕ_1, ϕ_2, ϕ_3 to L_1, L_2, L_3 yields essentially the matrix (9.2) as a submatrix of $\mathcal{M}(h)$; and since this matrix is clearly nonsingular, $\mu(h) = 3$.

Combining this result, for $h = 2, \ldots, p$, with the values $\mu(1, p+1) = \mu(p+1, 1) = 1$ gives $\mu(p+1) = 3(p-1) + 2 = 3p - 1$.

Theorem IV. $\mu(p+2) = 3p - 1$ for $p > 3$.

References

Princeton University, Princeton, N. J.