NORMAL AUTOMORPHISMS AND THEIR FIXED POINTS

BY

FRANKLIN HAIMO(1)

1. Introduction. The elements of the centralizer T of the group of inner automorphisms J of a group G (in the group A of automorphisms of G) are called the normal automorphisms of G. The center Z of G is the set of all elements of G which are fixed by each mapping from J. Likewise, let B be the set of fixed points held in common by the mappings from T. G/B is abelian, and the elements of T which induce either the identity or the involution on G/B form a subgroup W of T. We shall investigate the ascending central series of W. Just as the ascending central series \{\text{Z}_i\} is formed over $Z=Z_1$, so an ascending series is formed over B. Elements of G lying in members of this B-series turn out to be fixed points for high powers of normal automorphisms. For automorphisms which induce the identity on G/Z_n, we show that the common fixed points lie in the centralizer of Z_n in G.

The notation is both obvious and conventional. G denotes a group with automorphism group A and inner automorphism group J. The members of the ascending central series of G are the Z_i, and the higher commutator subgroups are the $G^{(i)}$ [3]. If, say, the inner automorphism group of a group H, different from G, is to be denoted, we employ the symbols $J(H)$, and similarly for other groups or subgroups, such as $Z_n(H)$, associated with H. For a subgroup H of G, the centralizer of H in G will be denoted by $C(H; G)$. If x, $y\in G$, then $(x, y) = x^{-1}y^{-1}xy$. For normal subgroups S and T of a group G, $S \triangleleft T$ (following R. Baer) will be the commutator quotient of S by T, the set of all $x \in G$ such that $(x, t) \in S$ for every $t \in T$. $S \triangleleft T$ is a normal subgroup of G. The identity map on a group is indicated by e, and the identity element of a group is to be e. For a homomorphism f on G, the kernel will be written $\text{kern } f$. \oplus denotes direct summation of groups. A periodic group is one in which each element is of finite order, and an abelian periodic group will be called a torsion group. If a periodic group G has a uniform order on its elements, then G is said to be uniform torsion (u.t.), and the least positive uniform order will be called [3] the exponent of G. A group is said to be torsion-free if it has no nontrivial elements of finite order. A complete group is one in which the x^n form a set of generators of G for each positive integer n. The group of integers is to be I; the group of rationals, R; the multiplicative group of nonzero rationals, R^*; and I_n is to be the group of integers modulo n.

Presented to the Society, September 2, 1952; received by the editors September 3, 1953.

(1) This research was supported in part by The United States Airforce under contract No. AF18(600)-568 monitored by the Office of Scientific Research, Air Research and Development Command.

150
Occasionally, we shall give \(I_n \) its usual representation as the group of integral residue classes, modulo \(n \), so that \(j_n \) will be the residue class, modulo \(n \), in which the integer \(j \) lies.

2. Normal automorphisms. Let \(G \) be a group, and let \(H \) be a normal subgroup of \(G \). Let \(\alpha \) be an automorphism of \(G \) such that \(H \) is admissible under both \(\alpha \) and \(\alpha^{-1} \). That is, \(\alpha(H) \subseteq H \) and \(\alpha^{-1}(H) \subseteq H \). Then \(\alpha \) induces an automorphism \(\alpha' \) on \(G/H \) given by \(\alpha'(xH) = \alpha(x)H \). In particular, if \(H \) is a characteristic subgroup of \(G \), then every automorphism \(\alpha \) of \(G \) induces an automorphism \(\alpha' \) on \(G/H \). If \(\alpha \) induces the identity automorphism \(i \) on \(G/Z_1 \), \(\alpha \) is called a normal automorphism (sometimes center \([3]\) or central \([1]\) automorphism) of \(G \), and \(\alpha(x) \equiv x \mod Z_1 \) for every \(x \in G \). It is easy to see that \(\alpha \in A \) is normal if, and only if, \((x, \alpha(y)) = (x, y) \) for every \(x, y \in G \). Let \(T_1 \) be the set of all normal automorphisms of \(G \). If automorphism composition is interpreted as a multiplication, \(T_1 \) becomes a subgroup of the automorphism group \(A \) of \(G \) with \(i \) as its identity, and \(T_1 \) is normal in \(A \). It is well known that \(T_1 = C(J; A) \) \([3]\). An endomorphism \(\gamma \) of \(G \) for which \(\gamma(G) \subseteq Z_1 \) is called a central endomorphism. If \(\alpha \in T_1 \), \(\alpha(x) = x\gamma(x) \) for every \(x \in G \), where \(\gamma \) is a central endomorphism of \(G \) with the further property (A) that to each \(y \in G \), there exists a unique \(g = g(y; \gamma) \in G \) with \(\gamma(g) = g^{-1}y \). We might write \(\alpha = \iota + \gamma \).

If, conversely, \(\gamma \) is a central endomorphism with (A), then the mapping \(\alpha \), defined by \(\alpha = \iota + \gamma \), is in \(T_1 \).

Let \(G \) be a group for which \(Z_2 \neq Z_1 \). If \(u \in Z_2 \), then the mapping \(\gamma_u \) given by \(\gamma_u(x) = (x, u) \) is readily seen to be a central endomorphism of \(G \). These \(\gamma_u \) will be called the Grün endomorphisms of \(G \). If \(y \in G \), then \(\gamma_u(uyu^{-1}) = (uyu^{-1})^{-1}y \) so that \(\gamma_u(x) = x^{-1}y \) has the solution \(x = uy^{-1}u \). If, conversely, \(x \) is any solution of \(\gamma_u(x) = x^{-1}y \), then \(uy^{-1}u = y \) so that \(x = uy^{-1}u \); and the solution is unique, establishing (A). Hence \(\alpha_u \), a mapping defined by \(\alpha_u(x) = x\gamma_u(x) = u^{-1}uy = \tau_u(x) \), is in \(T_1 \). Suppose, conversely, that \(\alpha \in T_1 \cap J \). Let \(\alpha = \tau_u \).

Then \(u^{-1}uy = x \mod Z_1 \) for every \(x \in G \), so that \(u \in Z_2 \) and \(\alpha = \alpha_u \). We state

Lemma 1. \(T_1 \cap J \cong Z_1(J) \), and the elements of the former are in one-to-one correspondence with the Grün endomorphisms of \(G \).

For endomorphisms \(\gamma_a \) and \(\gamma_b \) satisfying (A), note that \(\gamma_a(G) \subseteq \gamma_b(G) \) implies \(\gamma_a(G) \subseteq \gamma_b(G) \), so that \(\gamma_a(G) \subseteq \gamma_b(G) \) \((n = 1, 2, 3 \ldots)\). \(\gamma_i \) is the trivial endomorphism \((\gamma_i(x) = e \) for every \(x \in G \)), and \(\gamma_i(G) \subseteq \gamma_a(G) \) for every \(\alpha \in T_1 \).

Lemma 2. For \(\alpha \in T_1 \), \(\alpha(\gamma_a(G)) = \gamma_a(G) = \alpha(\gamma_a^{-1}(G)) \).

Proof. For \(x \in G \), \(\alpha(\alpha(x)) = \alpha(x) \alpha(\alpha(x)) \), so that \(\alpha(\gamma_a(x)) \in \gamma_a(G) \). Hence \(\alpha(\gamma_a(G)) \subseteq \gamma_a(G) \). \(\alpha^{-1}(x) = x\gamma_a^{-1}(x) \) implies that \(x = \alpha(x) \alpha(\gamma_a^{-1}(x)) = \gamma_a(x) \alpha(\gamma_a^{-1}(x)) \), whence \(\gamma_a(x) = \alpha(\gamma_a^{-1}(x^{-1})) \); and \(\gamma_a(G) \subseteq \alpha(\gamma_a^{-1}(G)) \). Replacing \(x \) by \(x^{-1} \), we have \(\gamma_a(x^{-1}) = \alpha(\gamma_a^{-1}(x^{-1})) \). There exists \(y \in G \) such that \(\alpha(y) = \gamma_a(x^{-1}) = y\gamma_a(y) \). Since \(\gamma_a(G) \) is a subgroup of \(G \), \(y \in \gamma_a(G) \). Thus,
\[\alpha(\gamma^{-1}(x)) = \alpha(y) \text{ where } y \in \gamma_{\alpha}(G), \text{ so that } \alpha(\gamma^{-1}(G)) \subseteq \alpha(\gamma_{\alpha}(G)). \]

3. **The common fixed points.** The subgroup \(Z_1 \), the center of \(G \), is the set of all elements of \(G \) which are fixed by each inner automorphism \(\tau_v \) of \(G \). For \(T_1 = C(J; A) \), the set analogous to \(Z_1 \) is \(B_1 \), where \(x \in B_1 \) if, and only if, \(\alpha(x) = x \) for every \(\alpha \in T_1 \). If \(F(\alpha) \) is the set of the fixed points of \(\alpha \in T_1 \), then \(F(\alpha) \) is a normal subgroup of \(G \). Since \(B_1 = \bigcap F(\alpha) \), where the cross-cut is taken over all \(\alpha \in T_1 \), \(B_1 \) is likewise a normal subgroup of \(G \). Now \(F(\alpha) = \ker \gamma_{\alpha} \), and \(\gamma_{\alpha}(G) \) is abelian. Thus \(F(\alpha) \supseteq G' \), the derivative of \(G \), for every \(\alpha \in T_1 \), and \(B_1 \supseteq G' \). This shows that \(G/B_1 \) is abelian and that if \(B_1 = (e) \), then \(G \) is abelian.

Lemma 3. \(G' \subseteq B_1 \subseteq C(Z_2; G) \).

Proof. If \(x \in B_1 \), \(\gamma_u(x) = e \) for every Grün endomorphism \(\gamma_u \), \(u \in Z_2 \). Consequently \(x \) commutes with every such \(u \).

Corollary. If \(C(Z_2; G) = Z_1 \), then \(G \) is of class 2.

Suppose that \(H \) is a characteristic subgroup of \(G \), that \(J(H; G) \) is the set of all inner automorphisms \(\tau_v \) of \(G \) where \(v \in H \) (where \(\tau_v(x) = v^{-1}xv \)), and that \(Q(H; G) = Q(H) \) is the set of all automorphisms of \(G \) such that \(\alpha \in Q(H) \) induces the identity automorphism on \(G/H \). For instance, \(J(G; G) = J \), and \(Q(Z_1; G) = T_1 \). \(J(H; G) \) is a normal subgroup of \(Q(H; G) \). Let \(F = F(Q(H; G)) \) be the fixed points common to all mappings in \(Q(H; G) \), and let \(F^* = F(J(H; G)) \) be the fixed points common to all mappings in \(J(H; G) \). \(F^* \supseteq F \). But \(F^* = C(H; G) \), so that \(F(Q(H; G)) \subseteq C(H; G) \). This general result will be used later to establish a variation of Lemma 3.

\(G = B_1 \) if, and only if, \(G \) has no proper normal automorphisms. By Lemma 3, \(G = B_1 \) implies \(G = C(Z_2; G) \) so that every element of \(G \) commutes with every element of \(Z_2 \), and \(Z_2 \subseteq Z_1 \). Hence the ascending central series of \(G \) breaks off with \(Z_1 \) if \(G = B_1 \). Likewise, Lemma 3 has the following obvious

Corollary. \(G \) is of class 2 if, and only if, \(B_1 \subseteq Z_1 \).

In particular, \(G' \subseteq Z_1 \) if, and only if, \(B_1 \subseteq Z_1 \).

Lemma 4. (a) If \(T_1 \) is finite and if \(Z_1 \) is a torsion group, then \(G/B_1 \) is a torsion group. (b) If \(Z_1 \) is u.t., then \(G/B_1 \) is u.t. and \(\exp G/B_1 | \exp Z_1 \). (c) If \(Z_1 \) is torsion-free, then so is \(G/B_1 \).

Proof. (a) For \(x \in G \) and \(\alpha \in T_1 \), \(\alpha(x) = xy_{\alpha}(x) \), where \(y_{\alpha}(x) \in Z_1 \). There exists a least positive integer \(n = n(x; \alpha) \) such that \(y_{\alpha}(x^n) = e \), since \(Z_1 \) is a torsion group. Since \(T_1 \) is finite, we can form \(n(x) \), the least common multiple of all such \(n(x; \alpha) \). For \(\alpha \in T_1 \), \(\alpha(x^{n(x)}) = x^{n(x)} \) so that \(x^{n(x)} \in B_1 \), and \(G/B_1 \) is a torsion group. (b) has a proof which is an obvious modification of the proof of (a). (c) Suppose that \(Z_1 \) is torsion-free and that \(x^n \in B_1 \). Then for \(\alpha \in T_1 \), \(\alpha(x^n) = x^n \). But \(\alpha(x) = x_{\alpha}(x) \), so that \(y_{\alpha}(x^n) = e \). Since \(y_{\alpha}(x) \) is not a periodic
element, \(\gamma_a(x) = e \) and \(x \in B_1 \). Hence \(G/B_1 \) is torsion-free.

Lemma 5. If \(G/B_1 \) is complete, then each \(\gamma_a(G) \) is complete; and if, in addition, \(Z_1 \) is torsion-free, \(G/B_1 \) and each \(\gamma_a(G) \) are direct sums of copies of \(R \), the additive group of the rationals.

Proof. For \(z \in \gamma_a(G) \), there exist \(x \in G \) and \(\alpha \in T_1 \) with \(\alpha(x) = xz \). Since \(G/B_1 \) is complete, for each positive integer \(n \) there exists \(y \in G \) with \(x \equiv y^n \) mod \(B_1 \). \(\alpha(y^n x^{-1}) = y^n x^{-1} = y^n \gamma_a(y^n) x^{-1} = y^n x^{-1} \gamma_a(y^n) z^{-1} \). Hence \(\gamma_a(y^n) = z \), and \([\gamma_a(y)]^n = z \). Since \(\gamma_a(G) \) is abelian, this is enough to show that it is complete. If, in addition, \(Z_1 \) is torsion-free, then Lemma 4(c) shows that \(G/B_1 \) is torsion-free. Also each \(\gamma_a(G) \) is torsion-free. But torsion-free, complete abelian groups are direct sums of copies of \(R \).

4. Automorphisms induced on \(G/B_1 \). Since \(B_1 \) is admissible under each normal automorphism of \(G \), each such automorphism induces an automorphism on \(G/B_1 \). (See, however, [1] where \(G/G' \) for finite \(G \) is discussed instead.) If \(\alpha \in T_1 \) induces the identity on \(G/B_1 \), then \(\alpha(x) = x \gamma_a(x) \equiv x \mod B_1 \) so that \(\gamma_a(G) \subseteq B_1 \). Conversely, if \(\alpha \in T_1 \) and if \(\gamma_a(G) \subseteq B_1 \), then the induced automorphism \(\alpha' \) has the property \(\alpha'(xB_1) = \alpha(x)B_1 = x \gamma_a(x)B_1 = xB_1 \) for every \(xB_1 \in G/B_1 \). Thus, a necessary and sufficient condition that \(\alpha \in T_1 \) induce \(\iota \) on \(G/B_1 \) is that \(\gamma_a(G) \subseteq B_1 \). Let the set of all such \(\alpha \in T_1 \) be denoted by \(V_1 \). By a well known result [3, p. 78] on automorphisms which leave a normal subgroup \(H \) and the factor group \(G/H \) point-wise fixed, \(V_1 \) is an abelian group under automorphism composition. \(V_1 \) is a normal subgroup of \(T_1 \). For, if \(\alpha \in V_1 \), \(\beta \in T_1 \), then \(\beta^{-1} \alpha \beta(x) = \beta^{-1} \alpha(x \gamma_a(x)) \equiv \beta^{-1} (x \gamma_\beta(x) bc) = xbc \) where \(b, c \in B_1 \), and \(\alpha(x) = xb \), \(\alpha \gamma_a(x) = \gamma_\beta(x) c \). This makes \(V_1 \) normal in \(T_1 \). Moreover, \(\alpha^{-1} \beta^{-1} \alpha \beta(x) = xc \), and we have

Lemma 6. If \(\alpha \in V_1 \) and if \(\beta \in T_1 \), then \(\gamma_a(\alpha, \beta) = \gamma_a \gamma_\beta \).

Since \(G/B_1 \) is an abelian group, it has the automorphism \(\omega \) given by \(\omega(y) = y^{-1} \) for every \(y \in G/B_1 \). \(\omega^2 = \iota \), and \(\omega \) is called the **involution automorphism**.

Lemma 7. (a) If \(\alpha \in T_1 \) induces the involution automorphism on \(G/B_1 \), then \(\alpha \) induces the involution automorphism on \(\gamma_a(G) \). (b) \(\alpha \in T_1 \) induces \(\omega \) on \(G/B_1 \) if, and only if, \(\gamma_a(\alpha) = \gamma_a(\alpha^{-1}) \) for every \(x \in G \) and for every \(\beta \in T_1 \).

Proof. (a) For \(x \in G \), \(\alpha(x) = i \gamma_a(x) \equiv x^{-1} \mod B_1 \) so that \(x^2 \gamma_a(x) \equiv B_1 \) and \(\gamma_a(x^2) \gamma_a(\alpha(x)) = e \). Thus \(\gamma_a(x) \alpha(\gamma_a(x)) = e \), so that \(\alpha(\gamma_a(x)) = \gamma_a(x^{-1}) \), and \(\alpha \) induces \(\omega \) on \(\gamma_a(G) \). (b) \(\alpha \) induces \(\omega \) on \(G/B_1 \) if, and only if, \(x^2 \gamma_a(x) \equiv B_1 \) for every \(x \in G \). For \(\beta \in T_1 \), \(\gamma_\beta(x^2 \gamma_a(x)) = e \) so that \(\gamma_\beta \gamma_a(x) = \gamma_\beta(x^{-2}) \). Conversely, if \(\gamma_\beta \gamma_a(x) = \gamma_\beta(x^{-2}) \) for every \(\beta \in T_1 \), then \(x^2 \gamma_a(x) \equiv B_1 \).

If we let \(W_1 \) be the set of all \(\alpha \in T_1 \) which induce either \(\iota \) or \(\omega \) on \(G/B_1 \), then \(W_1 \) is a group under automorphism composition. Let the set of those elements of \(W_1 \) which are not in \(V_1 \) be denoted by \(W_1^* \). Assume, for the pres-
ent, that this set is nonvoid. It is easy to verify that the elements of W_1^* are carried into elements of W_1^* by the inner automorphisms of the group T_i, so that W_1 is a normal subgroup of T_i. The index $[W_1: V_1] = 2$, and $W_1/V_1 \cong I_2$; for, if $\alpha, \beta \in W_1^*$, then $\alpha^{-1}\beta(x) = \alpha^{-1}(x^{-1}b) = \alpha^{-1}(x^{-1})$, where $b \in B_1$. Since $\alpha(x) = x^{-1}c$ (where $c \in B_1$), $\alpha^{-1}(x^{-1}) = xc^{-1}$, and $\alpha^{-1}\beta(x) \equiv x \mod B_1$ so that $\alpha^{-1}\beta \in V_1$.

Theorem 1. (a) For a group G, W_1 is j-nilpotent for a given positive integer j, or $Z_j(W_1)$ is included properly in V_1. (b) If W_1^* is nonvoid, then $\alpha \in Z_j(W_1) \cap V_1$ if, and only if, $\gamma_\alpha(x^{2j}) = e$ for every $x \in G$ and $\alpha \in V_1$.

Proof. If W_1^* is void, then $V_1 = W_1$ and W_1 is abelian. Let us therefore assume that W_1^* is nonvoid. First suppose that $j = 1$, and consider $\alpha \in V_1 \cap Z_1(W_1)$. Choose $\beta \in W_1^*$. Then since $\alpha \in Z_1(W_1)$, $(\alpha, \beta) = 1$. Now $\gamma_{(\alpha, \beta)}(x) = \gamma_\alpha \gamma_\beta(x) = \gamma_\alpha(x^{-2})$, by Lemmas 6 and 7(b). Since $\gamma_\alpha(x) = e$ for every $x \in G$, $\gamma_\alpha(x^{-2}) = e$ for every $x \in G$. Conversely, if $\gamma_\alpha(x^{2j}) = e$ for every $x \in G$, then $\gamma_{(\alpha, \beta)}(x) = e$ for every $x \in G$ and for every $\beta \in W_1^*$, by Lemmas 6 and 7(b). But $\gamma_{(\alpha, \beta)}(x) = e$ for every $x \in G$ implies that $(\alpha, \beta) = 1$ for every $\beta \in W_1^*$. Since V_1 is abelian, and since $\alpha \in V_1$, α is in $Z_1(W_1)$. We have verified (b) in the case $j = 1$.

Suppose that there exists $\beta \in Z_1(W_1) \cap W_1^*$. Since $[W_1: V_1] = 2$, $\beta \in Z_1(W_1)$ if, and only if, $W_1^* \subset Z_1(W_1)$. If $\alpha \in V_1$, $\beta \in Z_1(W_1) \cap W_1^*$, then $(\alpha, \beta) = 1$ and $\gamma_{(\alpha, \beta)}(x) = e$ for every $x \in G$, by Lemma 6. By Lemma 7(b), $\beta \in W_1^*$ implies $\gamma_\alpha \gamma_\beta(x) = e$ for every $x \in G$. Conversely, if $\gamma_\alpha(x^{2j}) = e$ for every $x \in G$, then $\gamma_{(\alpha, \beta)}(x) = e$ for every $x \in G$ and for every $\beta \in W_1^*$, by Lemmas 6 and 7(b). But $\gamma_{(\alpha, \beta)}(x) = e$ for every $x \in G$ implies that $(\alpha, \beta) = 1$ for every $\beta \in W_1^*$. Since V_1 is abelian, and since $\alpha \in V_1$, α is in $Z_1(W_1)$. We have now established (a) for the case $j = 1$.

Now suppose that the theorem holds for the case $j - 1$. If $\beta \in W_1^*$ and if $\alpha \in V_1 \cap Z_{j-1}(W_1)$, $(\alpha, \beta) \in Z_{j-1}(W_1)$. If $x \in G$, $(\alpha, \beta)(x) = x\gamma_\alpha(\gamma_\beta(x)) = x\gamma_\alpha(x^{-2})$. Noting that $(\alpha, \beta) \in V_1$ since $\gamma_\alpha(x^{-2}) \in B_1$, (b) can be applied for the case $j - 1$, and $\gamma_\alpha[(x^{2^{j-1}})^{-2}] = e$, whence $\gamma_\alpha(x^{2^j}) = e$ for every $x \in G$. Conversely, suppose that $\alpha \in V_1$ and that $\gamma_\alpha(x^{2^j}) = e$ for every $x \in G$. Choose $\beta \in W_1^*$. $\gamma_{(\alpha, \beta)}(y) = \gamma_\alpha \gamma_\beta(y) = \gamma_\alpha(y^{-2})$ for every $y \in G$. Let $y = x^{2^{j-1}}$. Then $\gamma_\alpha(y^{-2}) = e$ by assumption, and $\gamma_{(\alpha, \beta)}(x^{2^{j-1}}) = e$ for every $x \in G$. Since $\alpha \in V_1$ implies $\gamma_\alpha(y^{-2}) \in B_1$, $\gamma_{(\alpha, \beta)}(y) \in B_1$ and $(\alpha, \beta) \in V_1$. By (b) for the case $j - 1$, $(\alpha, \beta) \in Z_{j-1}(W_1)$ for every $\beta \in W_1^*$. If $\beta \in V_1$, then the fact that V_1 is abelian allows one to conclude that $(\alpha, \beta) = 1 \in Z_{j-1}(W_1)$. Hence $(\alpha, \beta) \in Z_{j-1}(W_1)$ for every $\beta \in W_1$, and $\alpha \in Z_j(W_1)$. This establishes (b) for the case j.

Since $[W_1: V_1] = 2$, the elements of W_1^* all have the form $\beta \alpha$ where $\alpha \in V_1$. Suppose now that $\beta \in Z_j(W_1) \cap W_1^*$ and that α and δ are elements of V_1. $\beta \alpha \delta \equiv \beta \alpha \delta \equiv \beta \delta \alpha \equiv \beta \delta \alpha \equiv \beta \delta \alpha \mod Z_{j-1}(W_1)$. Likewise, $\beta \alpha \delta \equiv \delta \alpha \beta \mod Z_{j-1}(W_1)$. Hence if $Z_j(W_1) \cap W_1^*$ is nonvoid, then $W_1^* \subset Z_j(W_1)$. If $\alpha \in V_1$, $\beta \in Z_j(W_1) \cap W_1^*$, then $(\alpha, \beta) \in Z_{j-1}(W_1)$ and $\gamma_{(\alpha, \beta)}(x) = \gamma_\alpha \gamma_\beta(x) = \gamma_\alpha(x^{-2})$. As above,
\[\alpha \in V_1 \text{ implies } (\alpha, \beta) \in V_1 \text{ so that } (b) \text{ for the case } j - 1 \text{ applies, and } \gamma_\alpha [x^{(2^j - 1)}]^{-2} = e. \] This (b) for the case \(j \) established above, places \(\alpha \in Z_j(W_1) \). \(W_1 = W_1^* \cup V_1 \subset Z_j(W_1) \), and \(W_1 = Z_j(W_1) \).

If \(W_1 \neq Z_j(W_1) \), the above shows that \(Z_j(W_1) \subset V_1 \). If the inclusion is not strict, then \(Z_j(W_1) = V_1 \) and \(I_2 \cong W_1 / V_1 \cong J(W_1 / Z_{j-1}(W_1)) \), an impossibility [2]. This completes the proof of the theorem.

Corollary 1. Let \(G \) be a group for which \(W_1^* \) is nonvoid. (a) If \(Z_1 \) is u.t. with exponent dividing \(2^j \), then \(W_1 \) is nilpotent of class \(\leq j \). (b) If \(Z_1 \) is torsion-free and if \(V_1 \) is nontrivial, then \(W_1 \) is non-nilpotent.

Proof. (a) For \(\alpha, \xi \in V_1 \), \((\alpha, \xi) = 1 \) since \(V_1 \) is abelian. Choose \(\beta \in W_1^* \). Since \([W_1 : V_1] = 2\), \(W_1^* \) is the coset of \(V_1 \) in \(W_1 \) which contains \(\beta \alpha \). For \(x \in G \), \(\alpha(x) = xb \), \(\xi(x) = xd \), and \(\beta(x) = x^{-1}c \), where \(b, d \in Z_1 \cap B_1 \) and \(c \in B_1 \). \((\beta \alpha, \xi)(x) = \alpha^{-1} \beta^{-1} \xi^{-1} \beta \alpha \xi(x) = \alpha^{-1} \beta^{-1} \xi^{-1} \beta(xbd) = \alpha^{-1} \beta^{-1} \xi^{-1}(x^{-1} c bd) = \alpha^{-1} \beta^{-1} \xi^{-1}(dx^{-1} c bd) \)

\[\delta_1 \in V_1 \text{ if } \exp Z_1 2^j \text{ then } \delta_1(x^{2^j}) = x^{2^j - 1} (b^{-1} d^{2^j}) = x^{2^j - 1}, \text{ and }\gamma_\xi (x^{2^j}) = e \text{ for every } x \in G. \] By (b) of the theorem, \(\delta_1 \in Z_{j-1}(W_1) \), so that \(W_1 \subset Z_{j-1}(W_1) \), and \(W_1 \) is nilpotent of class \(\leq j \). This establishes (a) of the corollary.

(b) Now suppose that \(Z_1 \) is torsion-free. By hypothesis, we can find \(\alpha \) and \(\xi \in V_1 \) and \(y \in G \) with \(\alpha(y) \neq \xi(y) \), where \(\alpha(y) = yb \) and \(\xi(y) = yd \). Construct \(\delta_1 \) as in part (a) of the corollary. \(\delta_1(x^{2^j}) = x^{2^j - 1} (b^{-1} d^{2^j}) = x^{2^j - 1} \).

Corollary 2. Let \(Z_1 \) be torsion-free, \(V_1 \) be nontrivial, \(W_1^* \) be nonvoid and let \(G \) be complete. Then \(W_1 \) has a trivial center.

Proof. By Corollary 1(b), \(W_1 \) is not nilpotent. By (a) of the theorem, \(Z_1(W_1) \) is a proper subgroup of \(V_1 \). By (b) of the theorem, \(\alpha \in Z_1(W_1) \) implies \(x^2 \in F(\alpha) \), the set of all fixed points of \(\alpha \), for every \(x \in G \). Since \(G \) is complete, \(G = F(\alpha) \), and \(\alpha = 1 \).

It is fairly obvious that \(\alpha \) and \(\beta \in T_1 \) induce the same automorphism on \(G / B_1 \) if, and only if, \(\alpha \equiv \beta \mod V_1 \); and an equivalent condition is that \(\gamma_\alpha (x) \equiv \gamma_\beta (x) \mod B_1 \) for every \(x \in G \). It follows that if \(\alpha \equiv \beta \mod V_1 \), then there exists an endomorphism \(\lambda_{\alpha, \beta} \) on \(G \) into \(B_1 \cap Z_1 \) such that (1) the kernel of \(\lambda_{\alpha, \beta} \) is just \(F(\alpha^{-1} \beta) = F(\beta^{-1} \alpha) \); (2) \(\gamma_\alpha (x) = \gamma_\beta (x) \lambda_{\alpha, \beta}(x) \); and (3) for \(g \in G \), \(\lambda_{\alpha, \beta}(x) = \beta(x^{-1})g \) has a unique solution \(x = x(g) \in G \). Conversely, if \(\lambda \) is an endomorphism of \(G \) into \(B_1 \cap Z_1 \), if \(\beta \in T_1 \) and if \(\lambda(x) = \beta(x^{-1})g \) has a unique solution \(x = x(g) \) for every \(g \in G \), then the mapping \(\alpha \) defined by \(\alpha(x) = \beta(x) \lambda(x) \) is a normal automorphism of \(G \) such that \(\alpha \equiv \beta \mod V_1 \) and such that \(\lambda = \lambda_{\alpha, \beta} \). We restate as follows:
Lemma 8. If $\beta \in T_1$ and if λ is an endomorphism of G into $B_1 \cap Z_1$, then $\beta + \lambda \in T_1$ with $\beta + \lambda \equiv \beta \mod V_1$, if, and only if, $i + \beta - 1 \lambda \in T_1$.

Recall that $\tau_x(y) = x^{-1}yx$.

Lemma 9. (a) $\alpha \in W_1^*$ implies that $\tau_x \alpha^{-1}(x) = \alpha(x)$ for every $x \in G$. (b) $\alpha \in T_1$ and $\alpha^2 = i$ imply that α induces ω on $\gamma_\alpha(G)$. If, in addition, $\alpha \in Z_1(W_1) \cap V_1$ and if W_1^* is nonvoid, then $\gamma_\alpha(G) \subseteq \ker \gamma_\alpha$.

Proof. (a) is immediate. As for (b), $\alpha \in T_1$ implies that $\alpha(x) = x\gamma_\alpha(x)$ and $\alpha^{-1}(x) = x\alpha^{-1}(\gamma_\alpha(x)) = x\gamma_\alpha^{-1}(x)$. Hence $\alpha^{-1}(\gamma_\alpha(x^{-1})) = \gamma_\alpha^{-1}(x)$, or $\alpha(\gamma_\alpha(x)) = \gamma_\alpha(x^{-1})$, since $\alpha^{-1} = \alpha$, and α induces ω on $\gamma_\alpha(G)$. From this, $\gamma_\alpha(x)\gamma_\alpha^2(x) = \gamma_\alpha(x^{-1})$, and $\gamma_\alpha(x^2) = \gamma_\alpha^2(x)$. By Theorem 1(b), $\gamma_\alpha(x^2) = e$, so that $\gamma_\alpha^2(x) = e$ and $\gamma_\alpha(G) \subseteq \ker \gamma_\alpha$.

5. The B-series. $G/B_1(G)$ is an abelian group so that all of its automorphisms are normal. Define $B_2(G)$ as the complete inverse image in G of $B_1(G/B_1(G))$ under the natural homomorphism of G onto $G/B_1(G)$. In general, suppose that $B_j(G)$ is defined. Then $B_{j+1}/B_j \cong B_1(G/B_j)$. We let $B_0(G) = (e)$. Each B_j is a normal subgroup of G, and $i \leq j$ implies that $B_i \subseteq B_j$, so that the B-series ascends monotonically in its index. Each G/B_j is abelian ($j > 0$), and B_{j+1}/B_j is the set of elements of G/B_j which are each fixed by all automorphisms of G/B_j ($j > 0$). If $B_{j+1} = B_j$, then for all $k \geq j$, $B_k = B_j$.

Lemma 10. The B-series breaks off at B_1 if any one of the following holds: (a) G/B_1 has no elements of order 2. (b) Z_1 is torsion-free, or Z_1 has no elements of order 2 or no $\gamma_\alpha(G)$, for $\alpha \in T_1$, has elements of order 2. (c) To each xB_1 in G/B_1, there exists an automorphism $\theta = \theta_x$, such that $\theta(xB_1) \neq xB_1$. (d) To each $x \in G$, there exists $\alpha = \alpha_x \in A$ such that α induces an automorphism on G/B_1, and $\alpha(x) \neq x \mod B_1$. (e) The equation $\xi^2 = \alpha$, for $\alpha \in T_1$, always has a solution in T_1.

Proof. (a) Since G/B_1 is abelian, it has the involution automorphism ω. If $gB_1 \in B_2/B_1$, then $\omega(gB_1) = gB_1 = g^{-1}B_1$, and $g^2 \in B_1$. Since G/B_1 has no elements of order 2, $g \in B_1$ and $B_2 \subseteq B_1$. (b) For $x^2 \in B_1$ and $\alpha \in T_1$, $\alpha(x^2) = x^2 = \gamma_\alpha(x^2)$, and $\gamma_\alpha(x^2) = e$. Since $\gamma_\alpha(G)$ has no elements of order 2, $\gamma_\alpha(x) = e$ and $x \in B_1$. Hence G/B_1 has no elements of order 2, and (a) applies. (c) There is no fixed point common to all automorphisms of G/B_1, so that B_2/B_1 is trivial, and $B_2 = B_1$. (d) α induces α', an automorphism on G/B_1. $\alpha'(xB_1) \neq xB_1$ so that (c) can now be applied. (e) If $g \in B_2$, then, as we saw in the proof of (a), $g^2 \in B_1$. For $\beta \in T_1$ there exists an induced automorphism β' on G/B_1. Since $g \in B_2$, $\beta'(gB_1) = gB_1 = gB_1$. Hence $\beta(g) \equiv g \mod (Z_1 \cap B_1)$. $\beta'(g) = \beta(g\gamma_\beta(g)) = \beta(g)\gamma_\beta(g) = \gamma_\beta(g^2)$, since $\gamma_\beta(g) \in B_1 \cap Z_1$. But $g^2 \in B_1$ implies that $\gamma_\beta(g^2) = e$, so that $\beta^2(g) = g$. Since every $\alpha \in T_1$ is, by hypothesis, a square, $g \in B_1$, and $B_2 \subseteq B_1$.
6. The case $G = B_2$. It is obvious that $G = B_2$ if, and only if, $B_1(G/B_1) = G/B_1$; that is, if, and only if, the identity is the only normal automorphism of G/B_1. Since G/B_1 is abelian, we see that $G = B_2$ if, and only if, G/B_1 has no proper automorphism. But this is equivalent [2; p. 101] to

Lemma 11. $G = B_2$ if, and only if $G/B_1 \cong I_2$.

Since $G/B_1 \cong I_2$ in this case, choose $u \in B_2$, $u \in B_1$. Then to each $x \in G$, $x \in B_1$, there exists $b_x \in B_1$ with $x = ub_x$. For $\alpha \in T_1$, $\alpha(x) = x \alpha(u) = x \gamma_\alpha(u)$. Hence $\alpha(x) = x \gamma_\alpha(u)$ if $x \in B_1$, $x \neq x$ if $x \in B_1$. We note that $\gamma_\alpha(u) \in B_1 \cap Z_1$, by the proof of Lemma 10(e). Since $u^2 \in B_1$ (by the proof of Lemma 10(a)), $\gamma_\alpha(u^2) = e$. It is clear that if α, $\beta \in T_1$ then $\gamma_\alpha(u) = \gamma_\beta(u) \gamma_\alpha(u)$. $\gamma_\alpha(u) = e$, if, and only if, $\alpha = e$. Moreover, suppose that $c \in Z_1 \cap B_1$ and that $c^2 = e$. Define α by $\alpha(x) = xc$ if $x \in B_1$, $x = x$ if $x \in B_1$, $\alpha(x) = e$, if, and only if, $x = e$. If $y \in B_1$, $\alpha(y) = y$; and if $y \in G$, $y \in B_1$, then $\alpha(y^{-1}) = y^{-1}c = y$. For x, $y \in B_1$, $\alpha(xy) = \alpha(x) \alpha(y)$. If $x \in B_1$, $x = ub_x$. $\alpha(x) = ub_x c = xc$. For $y \in B_1$, $\alpha(xy) = xy = \alpha(x) \alpha(y)$. $\alpha(y) = \alpha(y)c$. $\alpha(xy) = \alpha(x) \alpha(y)$, since $c^2 = e$. It is thus seen that α is an automorphism of G and that $\alpha \in T_1 \cap V_1$ (since α induces the identity on G/Z_1 and on G/B_1). Let K_1 be the subgroup of $T_1 \cap V_1$ generated by the elements of order 2 of that group. We have proved

Theorem 2. If $G = B_2$, then T_1 is an elementary abelian group with exponent 2, and $T_1 = V_1 \cong K_1$.

Corollary. If $G = B_2$ and if $\alpha \in T_1$, $\alpha \neq e$, then $\gamma_\alpha(G) \cong I_2$.

Proof. By the proof of the theorem, $\ker \gamma_\alpha = B_1$. Apply Lemma 11.

7. Some properties of the B-series.

Lemma 12. $B_{n+1}(G)/B_1(G) \cong B_n(G/B_1(G))$.

Proof. The lemma is valid for $n = 1$. Suppose that it is true for the case $j-1$. Then $B_1((G/B_1)/B_1) \cong (B_1(G/B_1))/B_1(G/B_1)$ since $B_1(B_1(B_1(G/B_1)) = B_2(G/B_1)$, by the induction hypothesis. But $B_1((G/B_1)/B_1) = B_1(G/B_1) \cong B_{j+1}(G/B_1)/B_1(G/B_1)$. Hence $B_{j+1}(G/B_1) \cong B_{j+1}/B_1$.

We say that G is B-nilpotent of B-class n (or n-B-nilpotent) if $G = B_n$.

Corollary. Suppose that G is not n-B-nilpotent. The following are equivalent: (a) G is $(n+1)$-B-nilpotent. (b) G/B_1 is n-B-nilpotent. (c) $G/B_n \cong I_2$.

Proof. The equivalence of (a) and (b) follows from the lemma. $G/B_n \cong I_2$ if, and only if, $B_1(G/B_n) = G/B_n$. But $B_1(G/B_n) \cong B_{n+1}/B_n \cong G/B_n$ if, and only if, $G = B_{n+1}$.

Lemma 13. Let G be a group which is $(n+1)$-B-nilpotent but not n-B-nilpotent, and suppose that $Z_{k} \subseteq B_n$ and that $Z_{k-1} \nsubseteq B_n$. Then G is k-nilpotent.
Proof. $G = B_{n+1}$ implies that $G/B_n \cong I_2$, by Lemma 12, Corollary. Since $G/Z_k \cong (G/B_n)/(Z_k/B_n)$, G/Z_k must be isomorphic to I_2 or (e), the only possible homomorphic images of $G/B_n \cong I_2$. But $G/Z_k \cong J(G/Z_{k-1})$. Since the group of inner automorphisms of a group cannot be a nontrivial cyclic group, $G/Z_k \cong (e)$, and $G = Z_k$.

Lemma 14. If G is n-B-nilpotent where $n \geq 2$, then $\alpha(\gamma_a(x)) = \gamma_a(x^{-1}) \mod B_{n-2}$ for every $\alpha \in T_1$ and for every $x \in G$.

Proof. First consider the case $n = 2$. If $G = B_2$, we see, from the discussion before Theorem 2, that $\alpha \in T_1$ implies that $\gamma_a(x) = \gamma_a(u)$ if $x \in B_1$, = e if $x \in B_1$. Here, u is a representative of the non-unity coset of B_1 in G. Since $\gamma_a(u^2) = e$ and $\gamma_a(u) \in B_1$, we obtain $\gamma_a(x) \alpha(\gamma_a(x)) = \gamma_a(u) \alpha(\gamma_a(u)) = [\gamma_a(u)]^2 = e$ if $x \in B_1$. If $x \in B_1$, the calculation still gives e. Recalling that $B_0 = (e)$, we see that the lemma is established for $n = 2$.

Suppose that the lemma holds for the case $n - 1$. Since $G = B_n$, G/B_1 is $(n - 1)$-B-nilpotent, by Lemma 12. For $\alpha \in T_1$, consider the induced automorphism α' on the abelian group G/B_1. By the induction assumption, if $\alpha'(xB_1) = (xB_1)(zB_1)$, then $zB_1 \alpha'(zB_1) \in B_{n-2}(G/B_1)$. Now $\alpha(x) = x \gamma_a(x)$, so that $\alpha'(xB_1) = x \gamma_a(x) B_1$, and $xz \equiv x \gamma_a(x) \mod B_1$. Hence $z \equiv \gamma_a(x) \mod B_1$ so that $zB_1 = \gamma_a(x) B_1$. A substitution shows that $\gamma_a(x) B_1 \alpha'(\gamma_a(x) B_1) = \gamma_a(x) \cdot \alpha(\gamma_a(x)) B_1 \in B_{n-2}(G/B_1)$. But $B_{n-2}(G/B_1) \cong B_{n-2}/B_1$, by Lemma 12. From this we can conclude that $\gamma_a(x) \alpha(\gamma_a(x)) \in B_{n-2}$ for every $\alpha \in T_1$ and for every $x \in G$. The lemma is established.

Corollary 1. If $G = B_n$, $n \geq 2$, and if $\alpha \in T_1$, then $\alpha^2(x) \equiv x \mod (Z_1 \cap B_{n-2})$ for every $x \in G$.

Proof. $\alpha(x) = x \gamma_a(x)$ implies that $\alpha^2(x) = x \gamma_a(x) \alpha(\gamma_a(x))$. By the lemma, $\gamma_a(x) \alpha(\gamma_a(x)) \in B_{n-2}$.

Corollary 2. If $G = B_n$, $n \geq 2$, and if $\alpha \in T_1$ induces ω on $\gamma_a(G)$ or on G/B_1, then $\alpha^2 = \iota$.

Proof. If α induces ω on $\gamma_a(G)$, then $\alpha(\gamma_a(x)) = \gamma_a(x^{-1})$, so that, by the proof of Corollary 1, $\alpha^2(x) = x$ for every $x \in G$. By Lemma 7(a), if α induces ω on G/B_1, then α induces ω on $\gamma_a(G)$.

Corollary 3. Let $M(\alpha)$ be the largest subgroup of $\gamma_a(G)$ on which α induces the involution automorphism. If $G = B_n$, $n \geq 2$, then $\gamma_a \ker \gamma_a^2 = M(\alpha)$, and $\gamma_a^2(G)$ is an α-admissible subgroup of $\gamma_a(G) \cap B_{n-2}$.

Proof. $x \in \ker \gamma_a^2$ if, and only if, $\gamma_a^2(x) = \gamma_a(x) \alpha(\gamma_a(x)) = e$, that is, equivalently, $\gamma_a(x) = \gamma_a(x^{-1})$. But the latter is equivalent to $\gamma_a(x) \in M(\alpha)$. By Lemma 2, $\gamma_a(G)$ is α-admissible, so that, for given $x \in G$, $\alpha(\gamma_a(x)) = \gamma_a(y)$ for a suitable $y = y(x); \alpha$. Then $\gamma_a^2(x) = \gamma_a(x) \gamma_a(y)$, and $\alpha(\gamma_a^2(x)) = \alpha(\gamma_a(x)) \cdot \alpha(\gamma_a(y)) = \gamma_a(y) \alpha \gamma_a(y) = \gamma_a^2(y)$. This shows that $\gamma_a^2(G)$ is α-admissible.
Lemma 15. If \(x \in B_n, \ n \geq 2 \), then \(x^{2n-1} \in B_1 \).

Proof. The case \(n = 2 \) was treated in the proof of Lemma 10(a). Suppose that the lemma is valid for \(n = j \). If \(x \in B_{j+1}, \ xB_1 \subseteq B_{j+1}/B_1 = B_j(G/B_1) \). By the induction assumption, \(x^{2^{j-1}}B_1 \subseteq B_j(G/B_1) = B_2/B_1 \), and \(x^{2^{j-1}} \in B_2 \). The case \(n = 2 \) now shows that \([x^{2^{j-1}}]^2 = x^{2^j} \in B_1 \).

Corollary. \(B_n/B_1 \) is u.t. abelian with \(\exp (B_n/B_1) | 2^{n-1} \), so that, for an \(n \)-B-nilpotent group \(G \), \(G/B_1 \) is u.t. abelian, and an \(n \)-B-nilpotent group with periodic \(B_1 \) is itself periodic.

Theorem 3. If \(G \) is \(n \)-B-nilpotent, \(n \geq 2 \), then \(W_1 \) is \((n - 1)\)-nilpotent.

Proof. If \(W_1^* \) is void, then \(W_1 = V_1 \), an abelian group. Suppose that \(W_1^* \) is nonvoid. \(x \in B_n \) implies \(x^{2n-1} \in B_1 \), by Lemma 15. If \(\alpha \in V_1 \), then \(\gamma_\alpha(x^{2n-1}) = e \) for every \(x \in G \), since \(G = B_n \). By Theorem 1 (b), \(V_1 \subseteq Z_{n-1}(W_1) \). By Theorem 1(a), \(W_1 \) is \((n - 1)\)-nilpotent.

Corollary. If \(G \) with torsion-free \(Z_1 \) is \(n \)-B-nilpotent, then \(W_1 = V_1 \), or \(V_1 \) is trivial, and \(W_1 \) is an elementary abelian group with exponent 2.

Proof. If \(W_1^* \) is nonvoid, then Theorem 1, Corollary 1(b), and the present theorem show that \(V_1 \) is trivial. Since \(\alpha \in W_1^* \) implies that \(\alpha^2 \in V_1 \), \(W_1 \) is elementary abelian with exponent 2.

Lemma 16. Each \(B_n \) is \(T_1 \)-admissible, and, if \(n \geq 1 \), \(\gamma_\alpha(B_n) \subseteq B_{n-1} \) for every \(\alpha \in T_1 \).

Proof. \(B_1 \) is \(T_1 \)-admissible. Suppose that \(B_{n-1}(G) \) is \(T_1 \)-admissible for every group \(G \). \(g \in B_n \) implies that \(gB_{n-1} \subseteq B_1(G/B_{n-1}) \). For \(\alpha \in T_1 \), \(B_{n-1} \) is both \(\alpha \)- and \(\alpha^{-1} \)-admissible (by the induction assumption), and \(\alpha \) induces an automorphism \(\alpha' \) on the abelian group \(G/B_{n-1} \). Since \(gB_{n-1} \subseteq B_1(G/B_{n-1}) \), \(\alpha'(gB_{n-1}) = gB_{n-1} = \alpha(g)B_{n-1} \), and \(\alpha(g) \equiv g \mod B_{n-1} \). Hence \(\gamma_\alpha(B_n) \subseteq B_{n-1} \). Since \(B_{n-1} \subseteq B_n \) and \(g \in B_n, \gamma_\alpha(g) \in B_n \) so that \(B_n \) is \(\alpha \)-admissible.

8. Orbital elements. An element \(x \in G \) is said to be \(n \)-orbital if \(\alpha^n(x) = x \) for every \(\alpha \in T_1 \). Collecting these \(n \)-orbital elements together in a set \(L_n = L_n(G) \), we see that \(L_n \) is a subgroup of \(G \). Since \(T_1 = C(J; A) \), \(L_n \) is normal in \(G \). More generally, \(L_n \) is \(C(T_1; A) \)-admissible. (We shall discuss \(C(T_1; A) \) below.) \(L_1 = B_1 \), and \(m \mid n \) implies \(L_m \subseteq L_n \). Thus \(G' \subseteq B_1 = L_1 \subseteq L_n \) for every positive integer \(n \), and \(G/L_n \) is abelian. From the proof of Lemma 10(e), we see that \(x \in B_2 \) implies \(\alpha^2(x) = x \) for every \(\alpha \in T_1 \), so that \(B_2 \subseteq L_2 \).

For positive integers \(s \geq t \), let \(C(s, t) = s!/t!(s-t)! \). Consider \(C = C(2^{n-1}, r) \), where \(n \geq 2 \) and \(r \leq n - 1 \). If \(r \) is odd,

\[
C = 2^{n-1}s \prod_{k=1}^{(r-1)/2} \left(\frac{2^{n-1} - 2k}{2k} \right)
\]

where \(s \in \mathbb{R} \) is a quotient of odd integers. Let \(k = 2^sd_k \), where \(d_k \) is a non-
negative integer, and d_k is an odd integer. Since r is odd and $\leq 2^{n-1}, r \leq 2^{n-1} - 1$ and $k \leq (r-1)/2 \leq 2^{n-2} - 1$. Thus we have $c_k \leq n-3$, and $(2^{n-1} - 2k)/2k = (2^{n-2} - c_k - d_k)/d_k$, a quotient of odd integers. We have proved that r odd implies that $2^{n-1} \mid C(2^{n-1}, r)$. $C(2^{n-1}, r+1) = [(2^{n-1} - r)/(r+1)]C(2^{n-1}, r)$. For odd $r \geq 5$, the exponent of the highest power of 2 dividing into $r+1$ is $\leq r-2$, so that $2^{n-r+1} \mid C(2^{n-1}, r+1)$, and $2^{n-(r+1)} \mid C(2^{n-1}, r+1)$. If $r = 1$, then $r+1 = 2$, and $2^{n-2} = 2^{n-(r+1)} \mid C(2^{n-1}, r+1)$. If $r = 3$, then $r+1 = 4$, and $2^{n-3} = 2^n \mid C(2^{n-1}, r+1)$. We summarize in

Lemma 17. For $n \geq \max (2, r+1), 2^n \mid C(2^{n-1}, r)$.

Theorem 4. $B_n \subseteq L_m$, where $m = 2^{n-1}$.

Proof. Since the earlier cases have been treated, we assume that $n \geq 3$. Suppose that $g \in B_n$ and that $\alpha \in T_1$. $\alpha^m(g) = \alpha^{m-1}(gb_{n-1})$ where $b_{n-1} \in B_{n-1}$, by Lemma 16. Assume, inductively, that $\alpha^m(g) = \alpha^{m-k}[g \prod_{r=1}^k b_{n-r}^{C(k, r)}]$ where $b_{n-r} \in B_{n-r}$, and $\gamma_r(a) = b_{n-1}$, $\gamma_r(b_r) = b_{r-1}$ ($t = n-k+1, n-k+2, \ldots, n-1$). When $r > n-1$, we take $b_{n-r} = e$. Then

$$\alpha^m(g) = \alpha^{m-(k+1)} \left[\frac{\sum_{\gamma_r(a) = b_{n-1}}}{gb_{n-1}} \prod_{r=2}^k b_{n-r}^{C(k, r)+C(k, r-1)} \right]_{b_{n-(k+1)}}^{(k+1)}.$$

But $C(k, 1) + 1 = C(k+1, 1), C(k, r) + C(k, r-1) = C(k+1, r)$, and $C(k, k) = 1 = C(k+1, k+1)$. Thus,

$$\alpha^m(g) = \alpha^{m-(k+1)} \left[g \prod_{r=1}^{k+1} b_{n-r}^{C(k+1, r)} \right],$$

and the induction is complete. Now take $k = m = 2^{n-1}$ and note that $\alpha^0 = e$. Since b's with nonpositive subscript are e, we can write $\alpha^m(g) = g \prod_{r=1}^m b_{n-r}^{C(m, r)}$. By Lemma 15, $b_{n-r} \in \gamma_r(B_{n-r+1})$ implies that $b_{n-r} = e$. By Lemma 17, however, $2^n \mid C(m, r)$, so that $\alpha^m(g) = g$.

Corollary. If $g \in B_n$, $n \geq 2$, if $\alpha \in T_1$, and if $m = 2^{n-1}$, then $\alpha^{m/2}(g) \equiv g \mod B_1$, and $\gamma^{m/2}(g^2) = e$. In particular, if $G = B_n$, then $\alpha^{m/2} \in V_1$, and T_1/V_1 is u.t. with exponent dividing $2^n - 2$.

Proof. By Lemma 12, $gb_1 \in B_{n-1}(G/B_1)$. Let α induce α' on G/B_1. By the theorem, $\alpha'^{m/2}(gb_1) = gb_1$, and $\alpha^{m/2}(g) \equiv g \mod B_1$; that is, $\alpha^{m/2}(g) = gb$ where $b = \gamma^{m/2}(g) \in B_1$. Also by the theorem, $\alpha^m(g) = g$. But $\alpha(m)(g) = \alpha^{m/2}(\alpha^{m/2}(g)) = \alpha^{m/2}(gb) = gb^2$, and $b^2 = e$.

Lemma 18. Let n be an integer ≥ 1, and let G be a group for which each automorphism of G/B_n can be extended to a normal automorphism of G. Then if $\gamma_\alpha(g) \in B_n$ for every $\alpha \in T_1$, $g \in B_{n+1}$.

Proof. By hypothesis, $\alpha(g) \equiv g \mod B_n$ for every $\alpha \in T_1$. Let α induce α' on G/B_n. $\alpha'(g_{B_n}) = \alpha(g)B_n = gB_n$. Since the set of induced α' coincides with $A(G/B_n) = T_1(G/B_n)$, $gB_n \in B_1(G/B_n) = B_{n+1}/B_n$, and $g \in B_{n+1}$.
9. The centralizer of T_1. Since T_1 is the centralizer of J in A, $U_1 = C(T_1; A) \supseteq J$, where U_1 is a normal subgroup of A.

Lemma 19. (a) $B_1(G)$ is U_1-admissible, and if each automorphism of each G/B_i ($i = 1, 2, 3, \cdots$) can be extended to a normal automorphism of G, then each B_n, $n \geq 2$, is likewise U_1-admissible. (b) $\gamma_a(F(U_i)) \subseteq F(U_i) \subseteq Z_1$ for every $\alpha \in T_1$. (c) Each $\theta \in U_1$ induces an automorphism on each $F(\gamma_\alpha)$, $\alpha \in T_1$.

Proof. (a) For $\theta \in U_1$ and $\alpha \in T_1$, $\theta(a(x)) = \theta(x) \theta(\gamma_\alpha(x)) = \alpha \theta(x) \gamma_\alpha \theta(x)$, so that $\theta \gamma_\alpha = \gamma_\alpha \theta$ for every $\alpha \in T_1$. If $g \in B_1$, then $\gamma_\alpha \theta(g) = \theta \gamma_\alpha(g) = \theta(e) = e$ for $\alpha \in T_1$, and $\theta(g) \in B_1$. Now suppose that B_n is U_1-admissible. For $g \in B_{n+1}$, $\gamma_\alpha \theta(g) = \gamma_\alpha \gamma_\alpha(g)$. $\gamma_\alpha(g) \in B_n$, by Lemma 16. By the induction assumption, $\theta \gamma_\alpha(g) \in B_n$. Applying Lemma 18, $\theta(g) \in B_{n+1}$. (b) If $\theta(g) = g$ for every $\theta \in U_1$, then $\gamma_\alpha \theta(g) = \gamma_\alpha(g) = \theta(g)$. Hence $\gamma_\alpha(F(U_i)) \subseteq F(U_i)$ for every $\alpha \in T_1$. If $\theta(g) = g$ for every $\theta \in U_1$, then $\tau_x(g) = g$ for every $x \in G$, since $J \subseteq U_1$. But $\tau_x(g) = g$ for every $x \in G$ implies that $g \in Z_1$. (c) If $g \in F(\gamma_\alpha)$, $\gamma_\alpha(g) = g$, and $\theta \gamma_\alpha(g) = \gamma_\alpha \theta(g) = \theta(g)$, so that $\theta(g) \in F(\gamma_\alpha)$. Conversely, if $\theta(g) \in F(\gamma_\alpha)$, then $\theta \gamma_\alpha(g) = \gamma_\alpha \theta(g) = \theta(g)$. Since θ is an automorphism, $\gamma_\alpha(g) = g$, and $g \in F(\gamma_\alpha)$.

Theorem 5. Each element of $C(T_1; A)$ induces a normal automorphism on Z_2, and there exists a homomorphism on $C(T_1; A)$ into $T_1(Z_2)$ with kernel consisting of all those mappings in $C(T_1; A)$ which reduce to the identity on Z_2.

Proof. $\theta \in U_1$ implies that θ commutes with every Grün automorphism of G. If, therefore, $u \in Z_2$, then $\theta(x^{-1} u^{-1} x u) = \theta(x^{-1}) \theta(u^{-1}) \theta(x) \theta(u) = \theta(x^{-1}) u^{-1} \theta(x) u$ for every $x \in G$. $u \theta(u^{-1})$ is, consequently, in the centralizer of every $\theta(x)$, $x \in G$. Since θ is an automorphism, $u \theta(u^{-1}) \in Z_1(G) \subseteq Z_1(Z_2(G))$, and $\theta(u) \equiv u \mod Z_1(Z_2(G))$, so that θ restricted to Z_2 is normal thereon.

Corollary. If G is of class 2, then $J \subseteq C(T_1; A) \subseteq T_1$, and $C(T_1; A) = Z_1(T_1)$.

10. The higher normal automorphisms. If $\alpha \in A$ has the property $\alpha(x) \equiv x \mod Z_n$ for every $x \in G$, we say that α is an n-normal automorphism, and we have described the higher normal automorphisms of G. Let T_n be the set of n-normal automorphisms of G. Under automorphism composition, T_n is a normal subgroup of G, and $m \leq n$ implies that $T_m \subseteq T_n$.

Theorem 6. (a) T_n/T_{n-1} is isomorphic to a subgroup of $T_1(G/Z_{n-1})$. (b) T_n/T_1 is isomorphic to a subgroup of $T_n(J)$.

Proof. (a) $\alpha \in T_n$ induces an automorphism α' on G/Z_{n-1}. For every $x \in G$, $xZ_{n-1} \subseteq G/Z_{n-1}$, and $\alpha'(xZ_{n-1}) = \alpha(x)Z_{n-1} = xzZ_{n-1}$ where $z \in Z_n$. Then $zZ_{n-1} \subseteq Z_1(G/Z_{n-1})$, so that α' is normal on G/Z_{n-1}. It is not difficult to see that if $\alpha, \beta \in T_n$, then $(\alpha \beta)' = \alpha' \beta'$, so that $(\cdot)'$ is a homomorphism on T_n into $T_1(G/Z_{n-1})$. Suppose that $\alpha' = \iota$. Then $\alpha'(xZ_{n-1}) = xZ_{n-1}$ for every $x \in G$, and
\[\alpha(x) \equiv x \mod Z_{n-1}. \] Hence \(\alpha \) induces the identity on \(G/Z_{n-1} \), and \(\alpha \in T_{n-1} \). Conversely, if \(\alpha \in T_{n-1}, \ \alpha'(xZ_{n-1}) = \alpha(x)Z_{n-1} = xZ_{n-1}, \) and then \(\alpha' = \iota \) on \(G/Z_{n-1} \). Therefore, \(\text{ker} \ (') = T_{n-1} \). (b) \(\alpha \in T_{n+1} \) induces an automorphism \(\alpha'' \) on \(G/Z_i \cong J \), given by \(\alpha''(xZ_i) = \alpha(x)Z_i = x\gamma(x)Z_i \), where \(\gamma(x) \in Z_{n+1} \). Hence \(\alpha''(xZ_i) = xZ_1 \mod (Z_{n+1}/Z_1) \). Now \(Z_n(J) \cong Z_n(G/Z_1) \cong Z_{n+1}/Z_1 \), as an induction will show. Hence \(\alpha'' \) is, effectively, in \(T_n(J) \). \(\alpha \) induces \(\iota \) if, and only if, \(\alpha(x) \equiv x \mod Z_1 \) for every \(x \in G \), and \(\text{ker} \ (''') = P_i \).

Corollary 1. Let \(\alpha' \) be a nontrivial normal automorphism of \(G/Z_n \) which can be extended to a higher normal automorphism \(\alpha \) of \(G \). Then \(\alpha \in T_n \).

Corollary 2. Each \(\alpha \in T_n \) induces a homomorphism of \(G \) and an endomorphism of \(G/Z_{n-1} \) into \(Z_n/Z_{n-1} = Z_1(G/Z_{n-1}) \).

Proof. The endomorphism is \(\gamma \gamma' \), and the homomorphism is obtained by following the natural mapping \(\phi_{n-1} \) of \(G \) onto \(G/Z_{n-1} \) by \(\gamma \gamma' \). Moreover, \(\gamma \phi_{n-1}(x) = x^{-1} \gamma(x)Z_{n-1} \) for every \(x \in G \).

Let \(\mathcal{S} \) be a set of automorphisms of \(G \) and let \(N(\mathcal{S}) \) be the set of all \(g \in G \) such that \(\alpha(g) \equiv g \mod Z_1 \) for every \(\alpha \in \mathcal{S} \).

Lemma 20. If \(K \) is a subgroup of \(A \), then \(C(K; A) \cap J = J(N(K); G) \). In particular, \(Z_1(A) \cap J = J(N(A); G) \).

Proof. If \(\tau \alpha = \alpha \tau \) for every \(\alpha \in K \), then \(g^{-1} \alpha(x)g = \alpha(g^{-1})\alpha(x)\alpha(g) \) for every \(x \in G \), so that \(g\alpha(g^{-1}) \) is in the centralizer of every \(\alpha(x) \). Since \(\alpha \) is an automorphism, \(g\alpha(g^{-1}) \in Z_1 \), and \(\alpha(g) \equiv g \mod Z_1 \), so that \(g \in N(K) \) and \(\tau \in J(N(K); G) \). The proof can be read in reverse to obtain the converse.

Lemma 21. The following are equivalent: (a) \(J \subset Z_1(A) \). (b) \(A = T_1 \). Either of these conditions implies that \(G \) is of class 2.

Proof. \(A = T_1 \) if, and only if, \(G = N(A) \). But if the latter holds, \(J(N(A); G) = J \); and conversely, if \(J(N(A); G) = J \), \(x \in G \) implies the existence of \(y \in N(A) \) with \(\tau_x = \tau_y \). Then \(x \equiv y \mod Z_1 \), so that, if \(\alpha \in A, \ \alpha(x) \equiv \alpha(y) \equiv y \equiv x \mod Z_1 \). This shows that \(x \in N(A) \) and that \(N(A) = G \). By Lemma 20, \(J \cap Z_1(A) = J(N(A); G) = J \), so that \(J \subset Z_1(A) \), and (a) implies (b). A slight rearrangement of the above argument shows that (b) implies (a). Now if every automorphism of \(G \) is a normal automorphism, \(x^{-1}yx \equiv y \mod Z_1 \) for every \(x, y \in G \). This implies that \(G' \subset Z_1 \), and \(G \) is of class 2.

A similar result is contained in

Theorem 7. Let \(G \) be a group with the properties (1) \(J \subset T_n \) and (2) each \(\alpha \in A \) induces \(\iota \) on each \(Z_{j+1}/Z_j \) \((j = 1, 2, \ldots, n) \). Then \(J \subset Z_n(A) \).

Proof. First, we establish three lemmas:

(R) For a group \(G \), \(J \subset T_n \) if, and only if, \(G \) is of class \(n+1 \).

(S) For a group \(G \), \(J \cap Z_n(A) \subset J(Z_{n+1}; G) \).
A group G with property (2) has the further property that $J \cap Z_n(A) = J(Z_{n+1}; G)$ (for the n of property (2)).

To prove (R), use the proof of the last statement of Lemma 21 as a model. As for (S), take $n = 0$. Then $J \cap Z_n(A)$ consists of a single element, and the inclusion is trivially valid. Suppose that it holds for $n = k$. $\tau_\varphi \in J \cap Z_{k+1}(A)$ implies that $(\alpha, \tau_\varphi) \in Z_k(A)$ for every $\alpha \in A$. A brief computation shows that $(\alpha, \tau_\varphi) = \tau_h$, where $h = g \alpha^{-1}(g^{-1})$. By the induction assumption, $g \alpha^{-1}(g^{-1}) \in Z_{k+1}$, and this is to be valid for every $\alpha \in A$. If we take $\alpha = \tau_x$, $x \in G$, then $g x g^{-1} x^{-1} \in Z_{k+1}$ for every $x \in G$, and $g \in Z_{k+2}$. But this means that $J \cap Z_{k+1}(A) \subseteq J(Z_{k+2}; G)$.

To prove (T), let $\{\alpha_i\}$ ($i = 1, 2, \ldots, n$) be any finite set of elements of A. For a fixed $g \in G$, define $g_1 = g \alpha_1^{-1}(g^{-1})$. If g_k is defined, let $g_{k+1} = g \alpha_{k+1}^{-1}(g_k^{-1})$. A different finite set of elements of A, or even the same set in a different order, may very well lead to a different finite sequence $\{g_i\}$ on g. Let $G_i(g) = G_i$ be the set of all g_i obtained in this fashion for fixed g and fixed positive integer i. By Lemma 20, $\tau_\varphi \in Z_k(A)$ if, and only if, $g \in N(A)$. But $g \in N(A)$ if, and only if, $\alpha(g) \equiv g \mod Z_1$ for every $\alpha \in A$. The latter condition is equivalent to $G_1 \subseteq Z_1$. Now suppose that $\tau_\varphi \in Z_k(A)$ if, and only if, $g_k \subseteq Z_1$. $\tau_\varphi \in Z_{k+1}(A)$ if, and only if, $J(G_i(g); G) \subseteq Z_k(A)$. By the induction assumption, this is equivalent to $G_k(h) \subseteq Z_1$ for every $h \in G_i(g)$. Since $\cup G_i(h) = G_{k+1}(g)$, where the set union is taken over all $h \in G_i(g)$, $\tau_\varphi \in Z_{k+1}(A)$ if, and only if, $G_{k+1}(g) \subseteq Z_1$.

Now suppose that $\tau_\varphi \in J(Z_{n+1}; G)$. Then $g \in Z_{n+1}$ and $G_1(g) \subseteq Z_n$, since each $\alpha \in A$ induces the identity on Z_{n+1}/Z_n. Assume, inductively, that $G_k(g) \subseteq Z_{k+1}/Z_k$. Since each member of A induces the identity on Z_{n-k+1}/Z_{n-k}, $G_{k+1}(g) \subseteq Z_{n-k}$. In particular, $G_n(g) \subseteq Z_1$. By the above, $J(Z_{n+1}; G) \subseteq Z_n(A)$. Along with (S), this is enough to establish (T).

To prove the theorem, note that $J \subseteq T_n$ implies, by (R), that G is of class $n+1$. Therefore, in (T), replace Z_{n+1} by G. Since $J(G; G) = J$, the theorem is proved.

For a subgroup K of A, it is clear that $F(K) \subseteq N(K)$, that $Z_1 \subseteq N(K)$, and that $N(K)$ is K-admissible. We prove a preliminary result on $Q(H; G)$ for a characteristic subgroup H of G.

Lemma 22. Let H be a characteristic subgroup of G. (a) $Q(H; G) \cap J = J(H \div G; G)$. (b) α and β induce the same automorphism on G/H if, and only if, $\alpha \equiv \beta \mod Q(H; G)$. In particular, $\tau_x \equiv \tau_y$ if, and only if, $x \equiv y \mod H \div G$.

Proof. (a) $\tau_\varphi \in Q(H; G)$ if, and only if, $\tau_\varphi(x) \equiv x \mod H$ for every $x \in G$. But this latter condition is equivalent to $(g, x^{-1}) \in H$ for every $x \in G$, and this is true if, and only if, $g \in H \div G$. (b) is obvious.

Lemma 23. (a) $T_n \div J = T_{n+1}$. (b) $(T_n, J) \subseteq J(Z_n; G)$. (c) $T_n \cap J = J(Z_{n+1}; G)$.

Proof. (a) and (b) can be established by routine arguments. To verify (c),
replace H by Z_n in Lemma 22(a), and note that $Q(Z_n; G) = T_n$ and that $Z_n \div G = Z_{n+1}$.

Corollary. (a) For a subgroup K of A and for a positive integer n, $N(K) = Z_n$ if, and only if, $C(K; A) \cap J = T_{n-1} \cap J$. (b) $N(K) = Z_1$ if, and only if, $C(K; A) \cap J$ is trivial. (c) If G is n-nilpotent, and if K is a subgroup of A, then $K \subset T_1$ if, and only if, $C(K; A) \cap J = T_{n-1} \cap J$.

Proof. (a) If $N(K) = Z_n(G)$, then $J(Z_n; G) = J(N(K); G) = C(K; A) \cap J$, by Lemma 20. Since $J(Z_n; G) = T_{n-1} \cap J$ (by (c) of the lemma), half the statement is established. Conversely, suppose that $C(K; A) \cap J = T_{n-1} \cap J$. One can readily check the equivalence of the following statements: (1) $x \in Z_n$. (2) $\tau_x \alpha = \alpha \tau_x$ for every $\alpha \in K$. (3) $\tau_x \alpha \tau_x^{-1}(y) = \alpha \tau_x \alpha^{-1}(y)$ for every $y \in G$, $\alpha \in K$. (4) $x^{-1}yx = \alpha(x^{-1})y\alpha(x)$ for every $y \in G$ and every $\alpha \in K$. (5) $\alpha(x) x^{-1} \in Z_1$ for every $\alpha \in K$. (6) $x \in N(K)$. (b) follows from (a) by taking $n = 1$. (c) $K \subset T_1$ if, and only if, $N(K) = G$. Since $G = Z_n$, (a) is applicable.

Theorem 8. $G^{(n)} \subset F(T_n) \subset C(Z_n; G)$.

Proof. If $\alpha \in T_n$, then $\alpha(x^{-1}y^{-1}xy) = t^{-1}x^{-1}u^{-1}y^{-1}xtyu$ where $t, u \in Z_n$. Hence $\alpha(x^{-1}y^{-1}xy) \equiv x^{-1}y^{-1}xy \mod Z_{n-1}$, and α induces the identity on $G'(Z_{n-1} \cap G')$. Suppose, inductively, that $\alpha \in T_n$ induces the identity on $G^{(1)}/(Z_{n-1} \cap G^{(1)})$. A set of generators of $G^{(k+1)}$ is all (x, y) where $x, y \in G^{(k)}$. $\alpha(x^{-1}y^{-1}xy) = t^{-1}x^{-1}u^{-1}y^{-1}xtyu$, where $t, u \in Z_{n-k}$. Hence $\alpha(x^{-1}y^{-1}xy) \equiv x^{-1}y^{-1}xy \mod Z_{n-k}$; and our induction shows that $\alpha \in T_n$ induces the identity on each $G^{(k)}/(Z_{n-k} \cap G^{(k)})$. Now take $k = n$ so that $Z_{n-k} = (e)$. That is, each $\alpha \in T_n$ induces the identity on $G^{(n)}$, whence $G^{(n)} \subset F(T_n)$. By the discussion after Lemma 3, $F(T_n) \subset C(Z_n; G)$.

Corollary 1. $G^{(n)} \subset F(J(Z_{n+1}; G))$.

Proof. $T_n \supset J(Z_{n+1}; G)$, by Lemma 23(c).

Corollary 2. If $F(T_n) = (e)$ or if $F(J(Z_{n+1}; G)) = (e)$ for some positive integer n, then G is solvable [3].

Corollary 3. $J(G^{(n)}; G) \subset C(T_{n+1}; A)$.

Proof. $\alpha \in T_{n+1}$, and $g \in G^{(n)}$ imply that $\alpha(g) \equiv g \mod Z_1$, by the proof of the theorem. Hence $J(G^{(n)}; G) \subset J(N(T_{n+1}); G) = C(T_{n+1}; A) \cap J$, by Lemma 20.

If we let $U_n = C(T_n; A)$, then, by Lemma 20, $J(N(T_n); G) \subset U_n$. As in Lemma 19(a), $F(T_n)$ is U_n-admissible.

11. **Examples.** (A) For positive integers $n > 2$, let D_n denote the nth dihedral group, the group of isometries of a regular n-gon. D_n is the semi-direct product of I_n and of I_2 with the multiplication rules $(x_n, 0_2)(y_n, z_2) = (x_n + y_n, z_2)$ and $(x_n, 1_2)(y_n, z_2) = (x_n - y_n, 1_2 + z_2)$. For $n > 2$, there is a non-trivial element in the center if, and only if, n is even; and in this case, the
center consists of two elements, \((0_n, 0_2)\) and \((h_n, 0_2)\), where \(h\) is an integer such that \(2h = n\). Since \(D_n\) is a group with two generators, there are three non-trivial possibilities for central endomorphisms. The verification of the following results is easy: \(T_1(D_{4k})\) is isomorphic to the Klein four group, \(I_2 \oplus I_2\). Let us denote the four group by \(\mathcal{B}\). \(B_1(D_{4k})\) consists of all \((x_{4k}, 0_2)\) where \(x\) is even, so that \(B_1(D_{4k}) \cong I_{2k}\). Likewise, \(B_1(D_{4k}) = D_{4k}'\), and, in fact, \(D_{4k}/B_1(D_{4k}) \cong \mathcal{B}\). It follows that the \(B\)-series breaks off at \(B_1(D_{4k})\). \(T_1(D_{4k+2}) \cong I_2\), \(B_1(D_{4k+2})\) consists of all \((x_{4k+2}, 0_2)\), so that \(B_1(D_{4k+2}) \cong I_{2k}\). \(D_{4k+2}/B_1(D_{4k+2}) \cong I_2\) so that, by Lemma 11, \(D_{4k+2}\) is 2-B-nilpotent. If \(n = 4\), then \(D_4/Z_1(D_4)\) is isomorphic to \(\mathcal{B}\) whence \(D_4\) is of class 2. Then \(T_2(D_4) = A(D_4)\), and it can be readily verified that \(A(D_4) \cong D_4\) and that \(F(T_2(D_4)) = B_1(D_4) = Z_1(D_4)\).

(B) Let \(G\) be a group of type \((2^n)\). \(G\) is isomorphic to the additive group, modulo 1, of the rationals \(k/2^n\), where \(k\) is an odd integer or 0. Since \(G\) is abelian, \(T_1(G) = A(G)\). \(G\) has a nontrivial automorphism \(\alpha(k/2^n) = 1 - (k/2^n)\) corresponding to the conjugation automorphism on the representation of \(G\) on the unit circle. The only fixed points are 1 = 0 and 1/2. Conversely, if \(\beta\) is any automorphism of \(G\), \(2\beta(1/2) - \beta(1) = 1 = 0\), so that \(\beta(1/2) = 1/2\) or 0. Thus \(B_1 \cong I_2\). Since \(G/B_1 \cong G\), \(B_2\) consists of 0, 1/4, 1/2, and 3/4, and \(B_2 \cong I_4\). In general, \(B_n \cong I_{2^n}\). \(G = UB_n\) where the union is taken over all positive integral values of \(n\).

(C) Let \(G\) be the multiplicative group of all nonsingular 2 by 2 matrices over the field of rationals, \(R\). It is well known that \(Z_i\) consists of all
\[
\begin{pmatrix}
u & 0 \\
0 & \nu
\end{pmatrix},
\]
and that \(Z_2 = Z_1\). By Lemma 1, we have an example of a group for which \(T_1 \cap J\) is trivial. Let \(\mu\) be an endomorphism of the multiplicative group of nonzero rationals \(R^*\) where \(x\mu(x^2a) = 1\) has a unique solution \(x = \mu(a; \mu)\) for every \(a \in R^*\). Let \(d_1\) and \(d_2\) be integers with the restriction \(|d_i| = 1\). Define a mapping \(\alpha = \alpha(\mu; d_1, d_2)\) on \(G\) by
\[
\begin{align*}
\alpha \begin{pmatrix} r & 0 \\ 0 & 1 \end{pmatrix} &= \begin{pmatrix} r\mu(r) & 0 \\ 0 & \mu(r) \end{pmatrix} \quad \text{for every } r \in R^*; \\
\alpha \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} &= \begin{pmatrix} 0 & d_1 \\ d_1 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} d_2 & d_2 \\ 0 & d_2 \end{pmatrix}.
\end{align*}
\]
Then it is possible to prove that \(\alpha\) is a normal automorphism of \(G\), and each normal automorphism of \(G\) is such an \(\alpha(\mu; d_1, d_2)\). A matrix \(M \in G\) is in \(B_1\) if, and only if, it can be factored (without regard to the order of the factors) into a product of an even number of factors
\[
\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},
\]
an even number of factors

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

and a set of factors

$$\begin{pmatrix} a_i & 0 \\ 0 & 1 \end{pmatrix} \quad (i = 1, 2, \ldots, n),$$

where $a_1a_2 \cdots a_n = 1$. V_1 turns out to be the set of all $\alpha(\mu; d_1, d_2)$ with $\mu(x) = \pm 1$ for every $x \in R^*$. W_1^* consists of all α with $\mu(x) = \pm (1/x)$, and $[T_1: V_1]$ is equal to the number of normal subgroups of index 2 in G which contain

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

W_1 for this group is abelian. Now W_1^* is nonvoid, V_1 is nontrivial and Z_1 has the periodic element

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Therefore, this example shows that we cannot drop the hypothesis of aperiodicity for Z_1 in Theorem 1, Corollary 1(b). $G/B_1 \cong G \oplus R^*$ whence $B_2 = B_1$. Let μ be an endomorphism of R^* such that, to each positive prime p, there exists a positive prime q with $q|\mu(p)| = 1 = q|\mu(q)|$. Then $\alpha(\mu; d_1, d_2) \in T_1$, so that, for this group, T_1 is far from trivial and $T_1 \neq W_1$. Negatively, one can show, for instance, that if μ is an endomorphism of R^* for which $|\mu(p)|$ is always a product of k positive primes (or a product of the reciprocals of $k+1$ positive primes) for every positive prime p, then the corresponding α is not an automorphism.

(D) Let G be a group with generators a, b, and c, where $a^2 = e$, $ab = ba$, $ac = ca$, and $bc = cba$. Then every element of G can be written uniquely as a product $a^ib^jc^k$ where i is 0 or 1, and j and k range over the integers. $Z_1 \cong I_2$ and $G/Z_1 \cong R \oplus R$ so that G is nilpotent of class 2. One can verify that $T_1 \cong G$. An element is in B_1 if, and only if, j and k are both even. Under any automorphism α each center element, a^i, is fixed. There is an automorphism β which changes the sign of j in each term. Its set of fixed points is precisely all elements with $j = 0$. There is an automorphism δ which changes the sign of k in each term, and the corresponding fixed points are all elements with $k = 0$. The cross-cut of these two sets of fixed points is Z_1, so that $Z_1 = F(A) = F(T_2)$, and this latter set is included in $F(T_1) = B_1$ properly. (In the example of D_4 above, $F(T_1) = F(T_2)$ for the class 2 group D_4.)
Presumably, by extending the group of this example or by considering n by n triangular matrices with a diagonal of unities, one could exhibit groups with significant T_n, for $n > 2$.

BIBLIOGRAPHY

WASHINGTON UNIVERSITY,

SAINT LOUIS, MO.