Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Analytic functions of class $ H\sb p$


Author: Walter Rudin
Journal: Trans. Amer. Math. Soc. 78 (1955), 46-66
MSC: Primary 30.0X
DOI: https://doi.org/10.1090/S0002-9947-1955-0067993-3
MathSciNet review: 0067993
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] L. V. Ahlfors, Bounded analytic functions, Duke Math. J. vol. 14 (1947) pp. 1-11. MR 0021108 (9:24a)
  • [2] L. V. Ahlfors and Arne Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. vol. 83 (1950) pp. 101-129. MR 0036841 (12:171c)
  • [3] Stefan Bergman, The kernel function and conformal mapping, Mathematical Surveys, no. 5, 1950. MR 0038439 (12:402a)
  • [4] H. F. Bohnenblust and Andrew Sobczyk, Extension of functionals on complex linear spaces, Bull. Amer. Math. Soc. vol. 44 (1938) pp. 91-93. MR 1563688
  • [5] Marcel Brelot, Étude des fonctions sousharmoniques au voisinage d'un point, Paris, 1934.
  • [6] Constantin Carathéodory, Conformal representation, Cambridge, 1932.
  • [7] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. vol. 40 (1936) pp. 396-414. MR 1501880
  • [8] P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 1-35. MR 0032747 (11:340f)
  • [9] -, The classes $ {L_p}$ and conformal mapping, Trans. Amer. Math. Soc. vol. 69 (1950) pp. 392-415. MR 0039072 (12:492a)
  • [10] G. H. Hardy, On the mean modulus of an analytic function, Proc. London Math. Soc. vol. 14 (1915) pp. 269-277.
  • [11] A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of analytic functions, Acta Math. vol. 82 (1950) pp. 275-325. MR 0036314 (12:89e)
  • [12] Zeev Nehari, On bounded analytic functions, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 268-275. MR 0034457 (11:590b)
  • [13] Rolf Nevanlinna, Eindeutige analytische Funktionen, Berlin, 1936.
  • [14] Michel Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Annales de l'Institut Fourier vol. 3 (1951) pp. 103-197. MR 0050023 (14:263c)
  • [15] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. vol. 5 (1939) pp. 249-253. MR 1546121
  • [16] Tibor Radó, Subharmonic functions, Berlin, 1937.
  • [17] Frederic Riesz, Über die Randwerte einer analytischen Funktion, Math. Zeit. vol. 18 (1923) pp. 87-95. MR 1544621
  • [18] -, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, Acta Math. vol. 54 (1930) pp. 321-360. MR 1555311
  • [19] W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. vol. 90 (1953) pp. 287-318. MR 0059354 (15:516a)
  • [20] J. L. Walsh, The location of critical points of analytic and harmonic functions, Amer. Math. Soc. Colloquium Publications, vol. 34, 1950. MR 0037350 (12:249d)
  • [21] S. S. Walters, The space $ {H^p}$ with $ 0 < p < 1$, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 800-805. MR 0039920 (12:616g)
  • [22] Antoni Zygmund, Trigonometrical series, Warsaw, 1935.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30.0X

Retrieve articles in all journals with MSC: 30.0X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1955-0067993-3
Article copyright: © Copyright 1955 American Mathematical Society

American Mathematical Society