Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Additive polynomials. II


Authors: T. H. M. Crampton and G. Whaples
Journal: Trans. Amer. Math. Soc. 78 (1955), 239-252
MSC: Primary 10.2X
DOI: https://doi.org/10.1090/S0002-9947-1955-0073648-1
MathSciNet review: 0073648
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] E. Artin, Linear mappings and existence of a normal basis, Studies and Essays presented to R. Courant, New York, 1948, pp. 1-5. MR 0022837 (9:266b)
  • [2] H. T. Engstrom, Polynomial substitutions, Amer. J. Math. vol. 63 (1941) pp. 249-255. MR 0003599 (2:242f)
  • [3] K. Hensel, Zahlentheorie, Berlin and Leipzig, Goeschen, 1913.
  • [4] I. Kaplansky, Rings with a polynomial identity, Bull. Amer. Math. Soc. vol. 54 (1948) pp. 575-580. MR 0025451 (10:7a)
  • [5] H. Levi, Composite polynomials with coefficients in an arbitrary field of characteristic zero, Amer. J. Math. vol. 64 (1942) pp. 389-400. MR 0006162 (3:264e)
  • [6] O. Ore, On a special class of polynomials, Trans. Amer. Math. Soc. vol. 35 (1933) pp. 559-584. MR 1501703
  • [7] J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. vol. 23 (1922) pp. 51-66. MR 1501189
  • [8] G. Whaples, Additive polynomials, Duke Math. J. vol. 21 (1954) pp. 55-65. MR 0073647 (17:465b)
  • [9] -, Generalized local class field theory. I. Reciprocity law, Duke Math. J. vol. 19 (1952) pp. 505-517. MR 0049236 (14:140b)
  • [10] -, Generalized local class field theory. II. Existence theorem, Duke Math. J. vol. 21 (1954) pp. 247-255. MR 0073644 (17:464d)
  • [11] -, Existence of generalized local class fields, Proc. Nat. Acad. Sci. U.S.A. vol. 39 (1953) pp. 1100-1103. MR 0059961 (15:606a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.2X

Retrieve articles in all journals with MSC: 10.2X


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1955-0073648-1
Article copyright: © Copyright 1955 American Mathematical Society

American Mathematical Society