ON LINEAR, SECOND ORDER DIFFERENTIAL EQUATIONS
IN THE UNIT CIRCLE

BY

PHILIP HARTMAN AND AUREL WINTNER

1. Introduction. In the differential equation

\[W'' + p(z)W' + q(z)W = 0 \quad (\'= d/dz), \]

let \(z \) be a real or complex variable, \(q(z) \) a continuous and \(p(z) \) a continuously differentiable function on the domain under consideration. The function

\[I(z) = q(z) - (1/4)p(z) - (1/2)p'(z) \]

is called the invariant of (1). If \(W_1(z), W_2(z) \) are linearly independent solutions of (1) and if \(u = W_1/W_2 \), then

\[2I = \{u, z\}, \]

where \(\{u, z\} \) is the Schwarzian parameter

\[\{u, z\} = (u''/u')' - (1/2)(u''/u')^2. \]

The change of dependent variables \(W \rightarrow w = W \exp ((1/2)\int p dz) \) transforms (1) into the normal form

\[w'' + I(z)w = 0. \]

Hence, in considering zeros of solutions of (1), it can be assumed that (1) has the form (5). The term “solution” will always mean a non-trivial \((\neq 0)\) solution.

This note will be concerned principally with solutions \(w = w(z) \) of the differential equation (5) under the assumption that \(I(z) \) is analytic on the circle \(|z| < 1 \). (Unless the contrary is stated below, it will be supposed that \(I(z) \) satisfies this assumption.)

The following terminology will be used: If no solution of a differential equation has two zeros (on a given \(z \)-set), then the differential equation will be said to be disconjugate (on that set) [11]. Similarly, if no solution has an infinite set of zeros, the differential equation will be called non-oscillatory. (In contrast to the situation on the real field, where Sturm’s separation theorem is valid, it is possible that a solution of (5) can have a finite number of zeros on \(|z| < 1 \) and that another solution has an infinite number of zeros there.)

2. Reduction to a real independent variable. The results on the zeros of solutions of (5) in the case that \(z \) is a complex variable will be deduced from cases where \(I(z) \) is a complex-valued function of a real variable (for example, \(z = x + iy \) for fixed \(y \)). The transfer of these results from the real case will be possible because of the following “comparison” theorem (cf., e.g., [9, p. 319]):

Received by the editors April 14, 1954.
(*) Let \(I(z) \) be a continuous, complex-valued function of a real variable \(z \) on some interval. If
\[
 v'' + \Re(I(z))v = 0
\]
is disconjugate on the given interval, then (5) is disconjugate on that interval.

In this assertion, (6) can of course be replaced by any Sturm majorant, for example, by
\[
 v'' + |I(z)|v = 0.
\]
The comparison theorem (*) is a particular case of the following trivial fact: If \(A_1 \) and \(A_2 \) are self-adjoint (bounded or unbounded) operators in Hilbert space and \(A_1 \geq \text{const.} > 0 \), then \(\lambda = 0 \) is not in the point spectrum of \(A_1 + iA_2 \). Theorem (*) follows by choosing \(A_1f \) to be the differential operator \(f'' + \Re(I(z))f \) associated with boundary conditions \(f = 0 \) at the end points of the interval and \(A_2f \) to be \(\Im(I(z))f \).

The transformation rule
\[
\{u, Z\} = \{u, z\}(dz/dZ)^2 + \{z, Z\}
\]
for the Schwarzian derivative under the change of (real or complex) independent variables \(z \rightarrow Z \) supplies, by (3), the transformation rule for the invariant of (1) or (5). In particular, (8) reduces to
\[
\{u, Z\} = \{u, z\}(dz/dZ)^2 \quad \text{if} \quad Z = (\alpha z + \beta)/(\gamma z + \delta),
\]
\(\alpha \delta - \beta \gamma \neq 0 \), since \(w = \alpha z + \beta, \gamma z + \delta \) are linearly independent solutions of the equation \(w'' = 0 \) which has the invariant \(I(z) = 0 \).

Assertion (*) immediately implies two results of Nehari [7], which state that if \(u = u(z) \) is an analytic function on the unit circle \(|z| < 1 \), then \(u(z) \) is schlicht on \(|z| < 1 \) whenever \(I(z) \), defined by (3), satisfies either of the inequalities
\[
(10_1) \quad |I(z)| \leq \pi^2/4,
(10_2) \quad |I(z)| \leq 1/(1 - |z|^2)^2
\]
[7, p. 549 and p. 545]. In fact, \(u(z) \) is schlicht on \(|z| < 1 \) whenever (5) is disconjugate there. That either (10_1) or (10_2) implies that (5) is disconjugate on \(|z| < 1 \) can be deduced from (*) as follows:

Ad (10_1). Suppose that some solution \(w = w(z) \) of (5) has two zeros in \(|z| < 1 \), then the remark concerning (9) (in fact, the case \(Z = e^{i\theta}z \)) shows that there is no loss of generality in supposing that these zeros are on the same horizontal segment \(z = x + iy \), with \(y = \text{const.} \) and \(x^2 < 1 - y^2 \). Since the length of the \(x \)-interval joining the two zeros is less than 2, the inequality (10_1) shows that no solution of (7) (hence, by (*), no solution of (5)) can have two zeros on such an interval.
Ad (10a). As verified by direct computation by Nehari [7, p. 547], the
inequality (10a) for the invariant of (5) is unchanged by conformal mappings
$z \mapsto Z$ of the unit circle $|z| < 1$ onto $|Z| < 1$. In fact, if
\begin{equation}
(11)
\begin{aligned}
d_s &= \left| \frac{dz}{dz'} \right| / (1 - |z|^2)
\end{aligned}
\end{equation}
denotes the non-euclidean arc length, which is invariant under the mapping
$z \mapsto Z$, then (9) can be written as
\begin{equation}
(12)
\begin{aligned}
(1 - |Z|^2)^2 \left\{ u, Z \right\} ds = (1 - |z|^2)^2 \left\{ u, z \right\} ds.
\end{aligned}
\end{equation}
Thus the invariance of (10a) follows from (3).

If the assertion concerning (10a) is false, then some solution $w = w(z)$ of
(5) has at least two zeros on $|z| < 1$. In view of the invariance of (10a), it
can be supposed that these zeros are real. Either one of the following two
equivalent arguments shows, by (*), that this leads to a contradiction. First,
for real z, (7) has the Sturm majorant
\begin{equation}
(13)
\begin{aligned}
d^2v/dx^2 + v/(1 - x^2)^2 = 0, \quad -1 < x < 1,
\end{aligned}
\end{equation}
which is disconjugate since it possesses the solution $v = (1 - x^2)^{1/2}$ having no
zeros on $-1 < x < 1$; cf. [6]. Second, the change of variables
\begin{equation}
(14)
\begin{aligned}
s = \frac{1}{2} \log \left(\frac{1 + z}{1 - z} \right)
\end{aligned}
\end{equation}
satisfying (11) for real $z = x$ transforms the invariant $|I(z)|$ of (7), according
to (3) and (8), into the non-positive function $|I(z)| (1 - |z|^2)^2 - 1$ for $z = z(s),$
$-\infty < s < \infty$. Hence, in the case (10a), (5) is disconjugate on $|z| < 1$.

The constants $\pi^2/4$ and 1 are the best possible in (10a) and (10b), respec-
tively; [7, p. 549] and [6, p. 552].

3. A criterion for disconjugateness. The condition (10a) can be replaced
by a somewhat different criterion:

(i) If C is a circular arc in $|z| < 1$ orthogonal to the boundary $|z| = 1$, then the inequality
\begin{equation}
(13)
\begin{aligned}
\int_C (1 - |z|^2) |I(z)| dz \leq 2
\end{aligned}
\end{equation}
implies that (5) is disconjugate on C.

If $z = x$ in (7) is a real variable on some interval $a < x < b$ and $I(z)$ is con-
tinuous on this interval, then, according to [4], (7) is disconjugate on this
interval if
\begin{equation}
(14)
\begin{aligned}
\int_a^b (b - x)(x - a) |I(x)| dx \leq b - a
\end{aligned}
\end{equation}
(cf. [8] for a generalization to complex variables). Hence, if C is the real
interval $-1 < x < 1$, (13) and (*) imply that no solution of (5) has two zeros
on the real axis. If C is any circular arc orthogonal to $|z| = 1$, there exists a transformation $z \to Z$ of the type in (9) of the circle $|z| < 1$ onto $|Z| < 1$ such that the image of C is the real segment $-1 < X < 1$, where $Z = X + iY$. It follows from (9) that no solution of (5) has two zeros on C if

$$
\int_{-1}^{1} (1 - |Z|^2) | I(z)(dz/dZ)^2 dZ | \leq 2, \quad Z = X.
$$

Note that (11) and (12) imply that

$$
(1 - |Z|^2) \{u, Z\} dZ = (1 - |z|^2) \{u, z\} dz.
$$

Consequently, the integrals in (13) and (15) are equal, and so (15) follows from (13). Thus (13) assures that no solution of (5) has two zeros on C.

4. Disconjugateness and $\mu(1)$. If C is a line segment contained in $|z| < 1$, a sufficient criterion for (7) (hence for (5)) to be disconjugate on C is

$$
\int_C | I(z) dz | \leq 4/L, \quad \text{where } L \text{ is the length of } C
$$

(Liapounoff; cf., e.g., [4]). If C is a chord of $|z| = 1$, this can be improved to

$$
\int_C (1 - |z|^2) | I(z) dz | \leq L
$$

by the criterion (14); see [4].

An inequality of Fejér and Riesz [3] states that

$$
\int_C | I(z) dz | \leq (1/2) \mu(1),
$$

if C is the real line segment $-1 < x < 1$,

$$
\mu(1) = \lim_{r \to 1} \mu(r),
$$

and

$$
\mu(r) = \int_{|z| = r} | I(z) dz |.
$$

According to a remark of Nehari [8, p. 695], (19) is valid if C is any circular arc in $|z| < 1$ orthogonal to $|z| = 1$. Hence, the inequality

$$
\int_C (1 - |z|^2) | I(z) dz | \leq \int_C | I(z) dz |
$$

and (i) give the following:

(ii) The differential equation (5) is disconjugate on $|z| < 1$ whenever
The weakened form \(\mu(1) \leq 2 \) of this condition follows from Nehari’s inequality (21) in [8] and his remark following it. The above use of the inequality (19) is similar to the procedure of Nehari.

The constant 4 in (22) is the ratio of the constants 2 in (13) and 1/2 in (19). Although the inequalities (13) and (19) cannot be improved, it remains undecided whether or not (22) is the “best” possible.

Nehari’s inequality leading to the weakened form \(\mu(1) \leq 2 \) of (22) has the following consequence: The inequality

\[
\mu(r) \leq 4/L
\]

implies that no solution of (5) has two zeros \(z = z_1, z_2 \) in the circle \(|z| < r \) satisfying \(|z_1 - z_2| \leq L \).

5. Solutions satisfying \(w(0) = 0 \). The inequality (23) can be considerably sharpened for \(r \) near 1 in dealing with a particular solution of (5).

(iii) If \(w = w(z) \) is a solution of (5) satisfying \(w(0) = 0 \), then \(w(z) \) has no zero different from \(z = 0 \) in \(|z| < 1 \) if

\[
\mu(r) \leq 1/2r(1 - r) \quad \text{for} \quad 1/2 \leq r < 1.
\]

In order to prove this, grant, for a moment, the fact that no solution of (7) (hence no solution of (5)) can have two zeros on a radius \(z = te^{i\theta} \), where \(0 \leq t < 1 \), if

\[
\int_0^r t^2 |I(te^{i\theta})| dt \leq r/4(1 - r) \quad \text{for} \quad 0 < r < 1.
\]

The inequality of Fejér and Riesz implies the second of the inequalities

\[
\int_0^r t^2 |I(te^{i\theta})| dt \leq r^2 \int_{-\pi}^{\pi} |I(te^{i\theta})| dt \leq (1/2)r^2\mu(r)
\]

and so (24) implies (25). Thus, in order to prove (iii), it is sufficient to prove the statement concerning (25).

Let \(q_1(s), q_2(s) \) be real-valued, continuous functions on \(0 < s < \infty \) such that

\[
q_1(s) \geq 0 \quad \text{and} \quad \int_0^\infty q_1(s) ds < \infty.
\]

If the first of the differential equations

\[
d^2v/ds^2 + q_k(s)v = 0 \quad \text{for} \quad k = 1, 2
\]

is disconjugate on \(0 < s < \infty \) and if

\[
\int_0^\infty |q_k(s)| ds \leq \int_0^\infty q_1(s) ds \quad \text{for} \quad 0 < s < \infty,
\]
then (26) is disconjugate on $0 < s < \infty$ (cf. [5, p. 245] and [11]). The choice $q_1(s) = 1/4s^2$ (Kneser) gives the sufficient condition

$$
\int_0^\infty |q_2(s)| \, ds \leq 1/4s \quad (0 < s < \infty)
$$

for (26) to be disconjugate on $0 < s < \infty$.

If $q(t)$ is continuous in the differential equation

$$
d^2v/dt^2 + q(t)v = 0 \quad (0 < t < 1),
$$

the change of independent variables $s = (1-t)/t$ (which maps $0 < t < 1$ onto $\infty > s > 0$) alters the invariant $q(t)$ of (29) to $q_2(s) = q(t)(dt/ds)^2$, by (9). Since (28) is transformed into

$$
\int_0^t t^2 |q(t)| \, dt \leq 1/4(1 - t) \quad (0 < t < 1),
$$

the statement concerning (25) follows.

By using functions other than $q_1(s) = 1/4s^2$, for example,

$$
q_1(s) = (1/4s^2)(1 + 1/\log^2 s),
$$

it is possible to refine (24) somewhat. It is also possible to refine (iii) in the following direction: Let $0 \leq \alpha < 1$. There exists a constant $K = K$ (independent of α and $I(z)$) such that if

$$
\mu(r) \leq K(1 - \alpha)^2/(1 - r) \quad \text{for} \quad 1/2 \leq r < 1,
$$

then no solution of (5) which has a zero in the circle $|z| \leq \alpha$ has another zero on $|z| < 1$.

6. The solutions in the case $\mu(1) < \infty$. If the condition (22) for (5) to be disconjugate on $|z| < 1$ is weakened to

$$
\mu(1) < \infty,
$$

then, according to Nehari [8], (5) is non-oscillatory on $|z| < 1$. Actually, (31) implies a great deal more about the solutions $w(z)$ of (5) than the fact that $w(z)$ has only a finite number of zeros on $|z| < 1$.

Let (31) hold. Then there exists a function $\psi(\theta)$ of bounded variation on $|\theta| \leq \pi$ such that

$$
\psi(\theta) = \lim_{r \to 1} \int_0^\theta |I(re^{i\phi})| \, d\phi
$$

holds at every continuity point of $\psi(\theta)$.

The properties of the solutions $w(z)$ of (5) under the assumption (31) can be described as follows:
w(z) is uniformly continuous on |z| < 1; in fact, the derivative w'(z) is bounded on |z| < 1. In addition, the radial limits w'(e^{i\theta})=\lim_{r\to 1} w'(re^{i\theta}), as r\to 1, exist for all \theta. The function w'(z) on \{|z| \leq 1\} (defined to be w'(e^{i\theta}) at z=e^{i\theta}) is continuous on \{|z| \leq 1\} except possibly at the points e^{i\theta} where \theta is a discontinuity point of \psi(\theta). The point z=e^{i\theta} is a continuity point of w'(z) if w(e^{i\theta})=0. Finally, there exists one and only one solution w=w(z) of (5) for which w and w' have preassigned radial limits w(e^{i\theta}), w'(e^{i\theta}) at a given point z=e^{i\theta} of |z| =1.

In order to verify these properties, note that if, on a fixed radius, one has

\[\int_0^1 (1-t) |I(t e^{i\theta})| \, dt < \infty, \]

then the radial limits w(e^{i\theta}), w'(e^{i\theta}) belonging to a solution w(z) of (5) exist ([1]; cf. [2, pp. 368–370] and [10, pp. 261–268]). Furthermore, there exists one and only one solution having preassigned radial limits w(e^{i\theta}), w'(e^{i\theta}) for a fixed \theta; cf. [10]. Clearly, (19) and (31) imply (33) for every \theta.

Every solution w=w(z) of (5) satisfies

\[w(z) = w(0) + zw'(0) - \int_0^z (z-\xi)I(\xi)w(\xi)\,d\xi. \]

Hence

\[|w(re^{i\theta})| \leq A + \int_0^r |I(t e^{i\theta})w(te^{i\theta})| \, dt \quad (A = |w(0)| + |w'(0)|). \]

Consequently, a standard inequality gives

\[|w(re^{i\theta})| \leq A \exp r \int_0^r |I(te^{i\theta})| \, dt, \]

and so, by the inequality of Fejér and Riesz,

\[|w(re^{i\theta})| \leq A \exp (1/2)r\mu(r) \leq A \exp (1/2)\mu(1). \]

This proves that w is bounded on |z| < 1. By (34),

\[w'(z) = w'(0) - \int_0^z I(\xi)w(\xi)\,d\xi. \]

Consequently,

\[|w'(re^{i\theta})| \leq |w'(0)| + \text{Const.} \int_0^r |I(te^{i\theta})| \, dt \leq |w'(0)| + \text{Const.} \mu(1), \]

so that w'(z) is bounded on |z| < 1.

The relation (35) shows that w'(z) is continuous at z=e^{i\theta} if
\[\int_{0}^{\theta + h} | I(re^{i\phi})w(re^{i\phi}) | d\phi \to 0, \quad \text{as} \quad (h, r) \to (0, 1). \]

In view of the continuity of \(w(z) \), this is the case when \(\theta \) is a continuity point of \(\psi(\theta) \) or when \(w(e^{i\theta}) = 0 \). This completes the proof of the properties of \(w(z) \) enumerated above.

It is clear that these properties imply that \(w(z) \) has a finite number of zeros on \(|z| \leq 1 \). For otherwise there is a point \(z = e^{i\theta} \) which is a cluster point of zeros of \(w(z) \). Then \(w(e^{i\theta}) = 0 \) and so \(w'(z) \) is continuous at \(z = e^{i\theta} \). Consequently \(w'(e^{i\theta}) = 0 \). But the only solution \(w(z) \) belonging to the (radial) limits \(w(e^{i\theta}) = 0, w'(e^{i\theta}) = 0 \) is the trivial solution \(w(z) = 0 \).

7. An upper estimate for the number of zeros in \(|z| < r \). The inequality (23) furnishes an upper estimate for the number \(N(r) = N(r; w(z)) \) of zeros of a solution \(w(z) \) in the circle \(|z| < r \) \((<1)\):

(iv) Let there exist on \(0 < r < 1 \) a positive, continuously differentiable, non-decreasing function \(\lambda = \lambda(r) \) satisfying

\[\mu(r) \leq \lambda(r) \]

and

\[d\lambda/dr = O(\lambda^2(r)), \quad \text{as} \quad r \to 1. \]

Then

\[N(r) = O \left(\int_{0}^{r} \lambda^2(r)dr \right), \quad \text{as} \quad r \to 1. \]

(iv) shows that if \(z_1, z_2, \ldots \) are the zeros of a solution \(w(z) \) of (5), then

\[\sum (1 - |z_k|) = \int (1 - r)dN(r) < \infty \]

is implied by

\[\int_{1}^{1} (1 - r)\lambda^2(r)dr < \infty. \]

Simple examples seem to indicate that (38) can be improved to the corresponding relation in which \(\lambda^2(r) \) is replaced by \(\lambda(r) \). But this possibility will remain undecided.

In order to prove (iv), note that, according to the inequalities (23) and (36), the distance \(L \) between any pair of zeros of a solution \(w(z) \) on \(|z| \leq r \) satisfies \(L \geq 4/\lambda(r) \). In the proof of (38), it can therefore be supposed that \(\lambda(r) \to \infty \), as \(r \to 1 \).

If \(r \) is sufficiently near 1, the ring \(r - 2/\lambda(r) \leq |z| \leq r \) can be divided into \(2(2\pi r)/(2/\lambda(r)) = 2\pi r \lambda(r) \) sets (curvilinear quadrilaterals) such that the dis-
tance between any pair of points in any of the sets is less than $4/\lambda(r)$. Consequently, the ring contains at most $2\pi r \lambda(r)$ zeros of a solution $w = w(z)$. The width of the ring is $\Delta r = 2/\lambda(r)$. Hence, the number of zeros is at most $2\pi r \lambda(r) \leq \text{Const.} \lambda^2(r) \Delta r$. On the other hand, the monotony of λ implies

$$\int_{\Delta r}^{r} \lambda^2(r) dr \geq \sum \lambda^2(r - \Delta r) \Delta r,$$

if the interval $(0, r)$ is divided into a finite number of pieces. Hence, it is clear that (38) follows if it is verified that

$$\lambda(r) = O(\lambda(r - 2/\lambda(r))), \quad \text{as } r \to 1.$$

But this is a consequence of (37), which implies that

$$\log \left[\frac{\lambda(r)}{\lambda(r - 2/\lambda(r))} \right] = \int \lambda^{-1} d\lambda = O\left(\int \lambda dr\right) = O(1),$$

as $r \to 1$, where the limits of integration are $r - 2/\lambda(r)$ and r.

References

The Johns Hopkins University,
Baltimore, Md.