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1. Introduction. If A is a finite-dimensional central simple algebra, any

derivation of a semisimple subalgebra C into A may be extended to an inner

derivation of A [4, p. 102]. Nakayama [7, Theorem 2] has generalized this

result to the situation where A and C are simple rings with minimum condi-

tion containing the same unit, and the derivation annihilates a simple weakly

Galois (cf. definition below) subring C0 of C. In this paper we extend Naka-

yama's theorem to the case where A is a continuous transformation ring

(i.e. the ring of all continuous linear transformations on a pair of dual spaces),

C is a primitive ring with nonzero socle(2) satisfying certain reducibility

conditions, and Co is an arbitrary weakly Galois subring of C. Under similar

hypotheses we prove one further extension theorem where now we do not as-

sume the existence of a weakly Galois subring but instead suppose only that

C is a subalgebra over the center of A satisfying a certain finiteness hypoth-

esis.

We are indebted to Professor N. Jacobson for letting us see a manuscript

of a book on the theory of rings to be published in the Colloquium series of

the American Mathematical Society.

2. Completely primitive rings. Throughout this paper we are concerned

with an additive abelian group M and certain rings of endomorphisms on it

—i.e. our rings are all subrings of the ring E of all endomorphisms of M.

By a derivation 5 of a ring R into a ring S containing E we mean an addi-

tive mapping of R into S, such that for any a, b in R, (ab)8 = (ad)b+a(bo).

It is well known that the mapping a—>[a, s] =as — sa for some 5 in 5 is such a

derivation. When R = S this is called the inner derivation by s.

In the book on ring theory referred to above Jacobson proves the follow-

ing lemma by exhibiting the connection between derivations and module ex-

tensions. The proof below is a direct one.

Lemma 1. Let C be a primitive subring of E with nonzero socle S, such that(3)

MS = M. Then any derivation 8 of C into E can be extended to an inner one on E.

Presented to the Society, September 3, 1954; received by the editors September 11, 1954.

(') This paper was written while the authors held a grant from the National Science Foun-

dation.

(2) For a discussion of continuous transformation rings and primitive rings with nonzero

socles (P.M.I, rings) see [ll, §§1, 2].

(>) This condition is equivalent to the complete reducibility of Mas a C-module [2, p. 158]

and [11, (2.7)].
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Proof. Let e be any primitive idempotent of C, i.e. eC is a minimal right

ideal of C. As in the proofs of [3, Theorem 4.1 ] [6, Theorem 9] we subtract an

inner derivation of E from 5 to obtain a derivation 5i of C into E which van-

ishes on e: since e2 = e, (ed)e + e(eS) =c5 and so e(eS)e = 0. If ax = (eb)e — e(eb)

then [e, ax] = — e(eo) — (eh)e= — eh. Thus cbx = c8+[c, ax] is a derivation

vanishing on e.

Since MS=M, M is a completely reducible C-module(3), M = 2^©Afa

where the Af„ are faithful irreducible C-modules. Since MaeC^0 we may write

Ma=xaeC for a certain element xa in ikfa. Since eC is a minimal right ideal,

xaec = 0 only if ec = 0. Hence if we let xaeca2 = xa(ec)8x=xae(cbx) for every a,

then a2 is a well defined element of E. Now for any b in C,

xaec[b, a2] = xaecba2 — xaeca2& = x«e((r6)51 — (e5i)£>) = »aec(65i)

so that bbx= [b, a2] and bb= [b, ax — a2].

That the assumption MS = M is essential in the above lemma can be seen

from the following example (cf. [9, pp. 129-130]): Let M be a vector space

of countable dimension over a field Z and let {xt} (i = 0, 1, 2, • • ■ ) be a

basis of Tkf over Z. We consider the algebra C of linear transformations of M

spanned over Z by the linear transformations ey (i, j=l, 2, ■ ■ ■ ) defined

thus:

XoBij = Xj, i odd;        xeen = 0, i even;        xnea = 5B<*y. « > 0-

Clearly C is isomorphic to the algebra of linear transformations it induces on

the space spanned by xx, x2, ■ ■ ■ namely, the algebra of all finite matrices,

which is known to be primitive and is its own socle 5 [5, p. 18]. Hence

M =MS®Xoz. We now consider the linear transformations e'Xj given by

Xffin = Xj\        Xnfia = 0, n > 0.

It is readily verified that e'ijepq+eije'vq — b'jpe'it so that the mapping Yeaaa

—> Yevaij> aa m Z> 's a derivation of C into the algebra of linear transforma-

tions of M. But for any endomorphism a oi M, xaa = ^o" XhCth, so that if i is

even and i>m, Xo(eija — aet1)=§7£xoe'ij. Thus the derivation cannot be ex-

tended to an inner one in this case.

In his book Jacobson uses Lemma 1 to prove the next two theorems. Since

they have appeared nowhere else and we shall need them in proving Theorems

3 and 4, we reproduce them here.

These theorems concern subrings of the centralizer £(M) in £ of a divi-

sion subring P of E. In Theorem 1 the ring of constants contains a ring C0

which is assumed to be weakly Galois in the sense of Dieudonne [2] and

Nakayama [7 ]: the centralizer of C0 in E is spanned over D by semilinear

transformations.

Theorem 1. Let J^fM) be the ring of all linear transformations on a vector

space M over a division ring D. Let C be a primitive subring with nonzero socle
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5 such that MS = M. Suppose that C contains a weakly Galois subring Co- Then

any derivation o of C into J£,(M) annihilating Co can be extended to an inner one

on£(M).

Proof. By Lemma 1 there is an endomorphism a of Msuch that ch = [c, a].

Since c05 =0 for each c0 in Co, a = zZ^^i, a>m D, ti semilinear transformations

of M. Hence, for each c in C, c5= [c, a] = zZ[c< U]<Xi is a linear transforma-

tion. Now [c, ti] is a semilinear transformation with the same automorphism

of D as ti so that by Lemme 2b of [2] ch is also equal to zZ[c, ti]oa summed

only over those i for which t,• is associated with an inner automorphism of E.

But then by multiplying the t, by appropriate elements of D they become lin-

ear so that we may write ch=^Z[c> '»']0i> /3» in D, ti in J^(M). If we now write

the j8,- in terms of a basis {7.,-} of D over its center Z with 7i = l, we obtain

c8= zZ[c< si]yj with Sj in jQ,(M). Since J(^(M)D is isomorphic to £(M)®zD

[2, Theoreme 3], {7/} is a basis of £(M)D over J^(M), so that cS= [c, si].

Theorem 2. Let J^(M) be the ring of all linear transformations on a vector

space M over a division ring D with center Z. Let B be a finite-dimensional simple

subalgebra of J^(M) over Z containing the unit of j(^(M). Then any derivation

8 of B into -Q,(M) which is Z-linear (i.e. Z5=0) can be extended to an inner

derivation of J^(M).

Proof. The ring BD oi endomorphisms of M is isomorphic to B®zD

[l, Theorem 8] and so is a simple ring with minimum condition [l, Corollary,

p. 98 and Theorem 9]. Extend 5 to a derivation of BD into E by setting

E8=0. The result then follows immediately from Lemma 1.

Added in proof (July 22, 1955). We have recently exhibited Lemma 1 and

Theorem 2 as special cases of analogous results on higher cohomology groups.

3. Continuous transformation rings. We shall next prove an analog (Theo-

rem 3) of Theorem 1 in the case where J^M) is replaced by a continuous

transformation ring A =J^(M, N). A corresponding extension of Theorem 2

is already a special case of Hochschild's result [3, Theorem 4.1 ] except when

B is inseparable over Z. We conjecture the extended theorem is true without

separability hypotheses but we have no proof.

We first state a lemma which is probably well known.

Lemma 2. Let (M, N) be a pair of dual spaces over a division ring D. If p

is an endomorphism of M such that there is an adjoint endomorphism p* of N

with (xp, f) = (x, fp*) for all xinM and all fin N, then p is in J^(M, N).

Proof. For every f in N and a in D, ((xa)p, f) = (xa, fp*) =a(x, fp*)

= a(xp, f) = ((xp)a, f) so that p is a linear transformation. But every linear

transformation with an adjoint is continuous.

Theorem 3. Let A =j£(M, N) be a continuous transformation ring and let
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C be a primitive subring of A with nonzero socle S. Suppose^) that MS = M,

NS* = N, S is contained in the socle of A, and C contains a weakly Galois sub-

ring Co of A. (Note that the semilinear transformations spanning the centralizer

of Co need not be continuous.) Then any derivation 8 of C into A which vanishes

on Co can be extended to an inner one on A.

Proof. We first think of C as a subring oij^fM), the ring of all linear trans-

formations of M over D. Then Theorem 1 insures the existence of a linear

transformation / such that c8 = [c, t]. Now let e be any primitive idempotent

of C. Just as in the proof of Lemma 1, we find an element ax of A such that

[e, t — ax ] = 0 and we let [c, t — ai ] = c8i so that c8x = [c, s] with 5 a linear trans-

formation of M such that es=se. Now for any c in C, (ece)8x=e(c8x)e = ecse

— esce = [ece, ese\. Since S is in the socle of A, Me is a finite-dimensional space

and so [ll, (3.20)] assures us that eAe induces all linear transformations on

Me. Thus there is an element a2 in eAe such that a2 = ese. We now define a

derivation of C into A by c82 = c8x— [c, a2], so that (eCe)52 = 0. As in the

proof of Lemma 1, we write M= Y® xaeC and N= Y®f$e*C* for irreducible

C-modules xaeC and irreducible C*-modules/|se*C*. As before we define an

endomorphism a3 of 2kf by xaecaz = xae(c82), so that, for any b in C, [b, a3] =b82.

If we define a* by fpe*d*a3* = — f$e*(d82)*, we have

(xaeca3, fpe*d*) = (xae(c82), fpe*d*) = (xae(c82)de, fa)

= - (xaec(d82)e, fa) = (xaec, fpe*d*a3*).

Hence by Lemma 2, a3 is in A and c8= [c, ai+a^+as].

Ii in Theorem 3 we are willing to put further hypotheses on Co, several of

the hypotheses on C can be omitted. For example, if the centralizer of Co is

spanned by continuous semilinear transformations, then we need only assume

that C is primitive and MS = M, for here the proof of Theorem 1 applies

verbatim. Second, if Co is assumed to satisfy all the conditions imposed on C

in Theorem 3 as well as being weakly Galois, then by a slight modification of

[ll, Proposition 3], C also satisfies the hypotheses of Theorem 3 and so

Theorem 3 is true, assuming only that C is primitive with nonzero socle. In

fact, under these hypotheses the centralizer of Co is spanned by continuous

semilinear transformations [ll, (3.14)]. Third, if we assume Co is a Galois

subring of A [ll, §5], then our second remark applies.

Since our conditions on C are automatic when A and C are simple with

minimum condition and with the same unit, Theorems 1 and 3 are generaliza-

tions of Nakayama's theorem [7, Theorem 2 ]. The continuous transformation

ring A in Theorem 3 cannot be replaced by an arbitrary primitive ring with

nonzero socle; for example, replacing A by its own socle invalidates the theo-

rem, i.e. the derivation can of course still be extended to an inner one of

J^(M, N) but this derivation need not be an inner one on J(M, N).

(4) For the significance of these hypotheses on C, cf. [ll, footnote 5].
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The following theorem is a sort of dual of Theorem 2; e.g., if D=Z then

every centralizer in A of a finite-dimensional simple subalgebra is a C satisfy-

ing the hypotheses of Theorem 4 [10, Corollary to Theorem l].

Theorem 4. Let A =£(M, N) be a continuous transformation ring with

center the field Z. Let C be a primitive subalgebra of A over Z with nonzero socle

S. Suppose MS = M, NS* = N, and that S is contained in the socle of A. Then

if the division ring of C is finite-dimensional(6) over Z, any Z-linear derivation

8 of C into A can be extended to an inner derivation of A.

Proof. As before we write c5i = c5+ [c, ai] with e5i=0 for some primitive

idempotent e oi C. Thus 5i induces a derivation of eCe into eAe which is

eZe-l'mear. As in Theorem 3, eAe is the ring of all linear transformations on

Me with center eZe and so applying Theorem 2 to the subalgebra eCe of

eAe we find an element a2 in eAe such that (ece)Si= [ece, a2]. The rest of the

proof is identical with that of Theorem 3.

If we restrict ourselves to the case where Z is perfect, Hochschild's result

[3, Theorem 4.1 ] guarantees that any derivation of eCe into eAe can be ex-

tended to any inner one of eAe requiring only that eAe be an algebra over

eZe containing eCe. Thus the assumption that 5 is in the socle of A is no

longer needed and we have proved the

Corollary. If the center of A is perfect, Theorem 4 remains true with the

assumption that S be contained in the socle of A deleted.

Finally we show by an example that the assumption that eCe be finite

dimensional over eZe cannot be dropped. Let Z be an arbitrary field of char-

acteristic zero and let C = Z\x\ be the field of formal power series in one

variable over Z. For A we take the ring of formal power series over C in a

variable y such that yx = 2xy. This construction goes back to Hilbert and it

is shown in [8, pp. 40-41 ] that A is a division ring. Direct computation shows

the center of A is Z and so all the assumptions of Theorem 4 except the

finite-dimensionality of eCe over eZe are fulfilled (note that here e = l and

M=Me is a one-dimensional space over A). Now let 8 be the derivation of C

given by (^aiX*)5= y^'anx'-1. a,- in Z. Then 5 cannot be extended to an

inner derivation of A, for if x( zZuiy')~ ( zZbjy')x = x8 = l with bj in C, we get

^Z(l—2')bjXy' = l which is a contradiction.
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