Some Theorems about the Riesz Fractional Integral

By

Nicolaas Du Plessis

I show in this paper that theorems which hold for Riemann-Liouville fractional integrals have analogues holding for the Riesz fractional integral [1]. Theorems 1, 2, and 3 are analogous to well-known results due to Hardy and Littlewood [2]. Theorem 4 is of a different character and is analogous to one recently proved by the author [3].

The Riesz fractional integral \(f_\alpha (P) \) of order \(\alpha \) is given by

\[
f_\alpha (P) = K_m^{-1} \int_E r_{PQ}^{-\alpha m} f(Q) dQ, \quad \text{where} \quad K_m = \pi^{m/2} \Gamma(\alpha/2) [\Gamma((m - \alpha)/2)]^{-1},
\]

\(E \) denotes all of Euclidean \(m \)-space, and \(r_{PQ} \) denotes the distance between \(P \) and \(Q \).

We assume always that \(f(Q) \) is \(L \)-integrable over \(E \).

I prove the following theorems.

Theorem 1. If \(f(P) \in \text{Lip} \beta \), \(0 < \beta < 1 \) then \(f_\alpha (P) \in \text{Lip} (\alpha + \beta) \), \(0 < \alpha + \beta < 1 \).

Theorem 2. If \(f(P) \in L^q \), \(q > 1 \), \(1 + m/q > \alpha > m/q \), then

\[
f_\alpha (P) \in \text{lip} (\alpha - m/q).
\]

Theorem 3. If \(f(P) \in L^q \) and \(0 < \alpha < m/q \), then

\[
f_\alpha (P) \in L^r, \quad \text{where} \quad \alpha = m(1/q - 1/r).
\]

Theorem 4. If \(f(P) \in L^q \) then

(a) for \(0 < \alpha < m \), \(2 < q < \infty \), \(f_{\alpha/q} (P) \) is finite everywhere except possibly in a set which is of zero \(\beta \)-capacity for all \(\beta > m - \alpha \);

(b) for \(0 < \alpha < m \), \(1 < q < 2 \), \(f_{\alpha/q} (P) \) is finite everywhere except possibly in a set of zero \((m - \alpha) \)-capacity.

Both (a) and (b) are best possible.

1. Preliminaries. If \(P \) is the point \((x_1, \ldots, x_m) \) and \(Q \) the point \((t_1, \ldots, t_m) \) we define the points \((x_1 + t_1, \ldots, x_m + t_m) \) and \((x_1 - t_1, \ldots, x_m - t_m) \) to be \(P + Q \) and \(P - Q \) respectively. The distance \(|P| \) of \(P \) from the origin \(0 = (0, \ldots, 0) \) is given by \(|P|^2 = \sum_{r=1}^m x_r^2 \), and \(|P - Q| \) is the distance \(P \) to \(Q \).

If, for \(0 \leq \beta \leq 1 \), \(f(P + H) - f(P) = O(|H|^\beta) \) uniformly in \(P \) as \(|H| \to 0 \), we say that \(f(P) \in \text{Lip} \beta \). If, in this, \(O \) is replaced by \(o \) we say that \(f(P) \in \text{lip} \beta \).

Received by the editors July 26, 1954.

124
Next, we have
\[K_m(f_a(P + H) - f_a(P)) = \left(\int_U + \int_{E - U} \right) (|Q - H|^{m-a} - |Q|^{m-a}) f(Q + P) dQ, \]
where \(U \) is the unit hypersphere having the origin as center. For \(|H| < 1/2 \) it is not difficult to establish that
\[|Q - H|^{m-a} - |Q|^{m-a} = O(|H|) \]
uniformly in \(E - U \). The second integral is thus \(O(H) \) uniformly in \(P \), and so
\[K_m(f_a(P + H) - f_a(P)) \]
(2)
\[= \int_U (|Q - H|^{m-a} - |Q|^{m-a}) f(Q + P) dQ + O(|H|). \]

2. Proofs of Theorems 1 and 2. First, Theorem 1. The first term on the right-hand side of (1) of §1 may be rewritten in the form
\[\int_U (|Q - H|^{m-a} - |Q|^{m-a})(f(Q + P) - f(P)) dQ + f(P) \left\{ \int_{U'} |Q|^{m-a} dQ - \int_U |Q|^{m-a} dQ \right\}, \]
where \(U' \) is the sphere \(U \) transforms into under the transformation \(Q' = Q - H \). The expression in curly brackets is dominated by \(\int_S |Q|^{m-a} dQ \), where \(S = U' + U - U'U \).

Now \(mS < \pi^{m/2} \Gamma((m+2)/2)^{-1}(1 + |H|)^{m-1} = O(|H|) \) and \(|Q|^{m-a} < 2^{m-a} \) in \(S \) for \(|H| < 1/2 \). Consequently, the second term in (2) is \(O(|H|) \).

To deal with the first term we note that it is of order \(H |Q - H|^{m-a} - |Q|^{m-a} |Q|^{a} dQ \) and apply a uniform dilatation transformation of ratio 1:\(|H| \) and then a rotation which takes the transform of \(H \) into the point \(1 = (1, 0, \ldots, 0) \). The first term is then seen to be less than
\[|H|^{a+\beta} \int_B |Q - 1|^{m-a} - |Q - 1|^{m-a} |Q|^{\beta} dQ = O(|H|^{a+\beta}), \]
since it is again a simple matter to establish that the integral is finite. This proves Theorem 1.

Next, Theorem 2. Let \(S(r) \) denote the hypersphere of radius \(r \) centered at the origin and write
\[A(\delta) = S(\delta) - S(|H|), \quad B(\delta) = U - S(\delta), \]
where \(\delta \) will presently be defined. Split the right-hand side of (1) into integrals
\[I_1 \text{ over } S(|H|), \ I_2 \text{ over } A(\delta), \text{ and } I_3 \text{ over } B(\delta). \] Then, firstly
\[
|I_1| \leq \left\{ \int_{S(|H|)} \left| Q - H \right|^{a-m} - \left| Q \right|^{a-m} |q'dQ| \right\}^{1/q'} \\
\cdot \left\{ \int_{S(|H|)} |f(Q + P)|^{q} dQ \right\}^{1/q}
\]
\[
= |H|^{a-m/q} \left\{ \int_{U} \left| Q - 1 \right|^{a-m} - \left| Q \right|^{a-m} |q'dQ| \right\}^{1/q'} \cdot o(1)
\]
as \[|H| \to 0: \] we use the same transformation on the integral as before. Thus
\[I = o(|H|^{a-m/q}). \] Further
\[
|I_2| \leq \left\{ \int_{A(\delta)} \left| Q - H \right|^{a-m} - \left| Q \right|^{a-m} |q'dQ| \right\}^{1/q'} \\
\cdot \left\{ \int_{A(\delta)} |f(Q + P)|^{q} dQ \right\}^{1/q}
\]
It is again easy to show that, for \[|H| < \delta/3,\]
\[
\left| Q - H \right|^{a-m} - \left| Q \right|^{a-m} \leq C \left| H \right| \left| Q \right|^{a-m-1}
\]
and thus
\[
|I_2| \leq C \left| H \right| \left\{ \int_{A(\delta)} \left| Q \right|^{(a-m-1)q'} dQ \right\}^{1/q'} \left\{ \int_{A(\delta)} |f(Q + P)|^{q} dQ \right\}^{1/q}
\]
Further
\[
\int_{A(\delta)} \left| Q \right|^{(a-m-1)q'} dQ < \left| H \right|^{(a-1)q'(a-m-1)} \int_{E-U} \left| Q \right|^{(a-m-1)q'} dQ,
\]
so that
\[
|I_2| \leq C \left| H \right|^{a-m/q} \left\{ \int_{A(\delta)} |f(Q + P)|^{q} dQ \right\}^{1/q}
\]
Given any \[\epsilon > 0,\] we can choose \[\delta\] so that \[\int_{A(\delta)} |f(Q + P)|^{q} dQ\] is less than \((\epsilon/C)^q\), and so
\[
|I_2| < \epsilon \left| H \right|^{a-m/q}.
\]
Finally
\[
|I_3| \leq \left\{ \int_{B(\delta)} \left| Q - H \right|^{a-m} - \left| Q \right|^{a-m} |q'dQ| \right\}^{1/q'} \left\{ \int_{\bar{E}} |f(Q + P)|^{q} dQ \right\}^{1/q}
\]
For fixed \(\delta\), \(\left| Q - H \right|^{a-m} - \left| Q \right|^{a-m} = O(\left| H \right|)\) uniformly in \(B(\delta)\), and so
\[I_3 = O(|H|).\]
Thus, finally, \(K_m(f_a(P + H) - f_a(P)) = o(|H|^{a-m/\mu}), \) giving the required result.

3. **Proof of Theorem 3.** We first prove a many-dimensional generalization of a theorem due to Hardy and Littlewood [2, Theorem 3].

Lemma. If \(f(P) \in L^q, \ g(Q) \in L^r, \ 1/q + 1/r > 1, \ q > 1, \ r > 1 \) and \(\mu = 2 - 1/q - 1/r \) then

\[
(1) \quad \int_E \int_E |Q - P|^{-\mu} f(P) g(Q) dP dQ \leq KM_q(f) M_r(g),
\]

where \(M_q(f) = \left\{ \int_E |f(P)|^q dP \right\}^{1/q} \) and \(M_r(g) \) is similarly defined.

I prove here the case \(m = 3 \), which is sufficiently typical.

Since an arithmetic mean is greater than the corresponding geometric mean we have

\[
|P - Q|^2 = (x_1 - t_1)^2 + (x_2 - t_2)^2 + (x_3 - t_3)^2
\geq 3 \left| x_1 - t_1 \right|^{2/3} \left| x_2 - t_2 \right|^{2/3} \left| x_3 - t_3 \right|^{2/3}
\]

and so

\[
|P - Q|^{-\mu} \leq C \left| x_1 - t_1 \right|^{-\mu} \left| x_2 - t_2 \right|^{-\mu} \left| x_3 - t_3 \right|^{-\mu}.
\]

Consequently the left-hand side of (1) is not greater than a constant multiple of

\[
(2) \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x_1, x_2, x_3) g(t_1, t_2, t_3)}{|x_1 - t_1|^{\mu} |x_2 - t_2|^{\mu} |x_3 - t_3|^{\mu}} \cdot \, dt_3 dx_3 dt_2 dx_2 dt_1 dx_1.
\]

By the Hardy-Littlewood theorem mentioned, which is the case \(m = 1 \) of the lemma,

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| x_3 - t_3 \right|^{-\mu} f(x_1, x_2, x_3) g(t_1, t_2, t_3) \, dt_3 dx_3
\]

is dominated by \(CF(x_1, x_2) G(t_1, t_2) \), where \(F(x_1, x_2) = \left\{ \int_{-\infty}^{\infty} |f(x_1, x_2, x_3)|^q \, dx_3 \right\}^{1/q} \) and \(G(t_1, t_2) \) is defined analogously.

Hence \([2]\) is dominated by

\[
C_1 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| x_1 - t_1 \right|^{-\mu} \left| x_2 - t_2 \right|^{-\mu} F(x_1, x_2) G(t_1, t_2) \, dt_2 dx_2 dt_1 dx_1.
\]

Applying the case \(m = 1 \) of the lemma again to the inner two integrals we find that (1) is dominated by
where $F(x_1) = \left\{ \int_{-\infty}^{\infty} |F(x_1, x_2)|^q dx_2 \right\}^{1/q}$ and $G(t_1)$ is defined analogously.

A final application of the lemma with $m=1$ shows that (1) is dominated by $C_1 C_2 M_q(F) M_r(G)$. Since $M_q(F)$ equals $\left\{ \int_E |f(P)|^q dP \right\}^{1/q}$ and a similar result holds for $M_r(G)$, we have the required result.

To prove Theorem 3 it is sufficient to prove that, for every $g(P)$ such that $M_q(g) \leq 1$,

$$\int_B f_{a}(P) g(P) dP \leq KM_q(f).$$

The left-hand side of this is equal to

$$(3) \quad K_m^{-1} \int_B \int_B |P - Q|^{a-mf(Q)} g(P) dQ dP$$

and, since $\alpha - m = m(1/q - 1/r) - m = -m(2 - 1/q - 1/r')$, the lemma applies and shows (3) to be, in modulus, not greater than $K'M_q(f) M_r(g) \leq K'M_q(f)$, thus proving the theorem.

4. Preliminaries about Theorem 4. We say, with Frostman [4, p. 26], that a non-negative additive set function $\mu(S)$ defined for all Borel sets in E is a distribution if $\mu(E) = 1$. Further, if $S \subset E$ and $\mu(S) = 1$ we say that the distribution is concentrated on S.

Let S be a given set. Suppose that there is a distribution concentrated on S such that

$$V_{\beta} = \sup_{P \in E} \int_B |Q - P|^{-\beta} d\mu(Q)$$

is finite. Then we say that S is of positive β-capacity. Otherwise S is said to be of zero β-capacity. Clearly, if S is of positive β-capacity, it is of positive γ-capacity for all $\gamma < \beta$. Further, if it is of zero β-capacity, it is of zero γ-capacity for all $\gamma > \beta$.

Lemma. For $1 < q < 2$, and for every $\epsilon > 0$ for which $q - \epsilon > 1$, we have

$$(1) \quad \int_S \left\{ \int_E |Q - P|^{(a/q') - m} d\mu(Q) \right\}^{q/\epsilon} dP \leq A(\alpha, \epsilon, m, q, S)V_m^{(q-\epsilon)/(q-\epsilon)}$$

where $A(\alpha, \epsilon, m, q, S)$ is a constant depending only on the parameters shown and S is a bounded set.

For $2 \leq q \leq \infty$ we have

$$(2) \quad \int_E \left\{ \int_E |Q - P|^{(a/q') - m} d\mu(Q) \right\}^{q} dP \leq A(\alpha, m)V_m^{q-1}$$
where \(A(\alpha, m) \) is a constant depending only on the parameters shown.

We have
\[
\left\{ \int_E |Q - P|^{(a/q')-m} d\mu(Q) \right\}^q \leq \left\{ \int_E |Q - P|^{-\alpha/q} |Q - P|^{-m} d\mu(Q) \right\}^q \]
\[
\quad \cdot \left\{ \int_E |Q - P|^{-m} d\mu(Q) \right\}^{(q-\epsilon)/(q-\epsilon)'}
\]
by Hölder's inequality. The second factor is not greater than \(V^{(q-\epsilon)/(q-\epsilon)'} \), while the first is \(\int_E |Q - P|^{-\alpha/q-m} d\mu(Q) \). The left-hand side of (1) is therefore not greater than
\[
V_m^{(q-\epsilon)/(q-\epsilon)'} \int_S dP \int_E |Q - P|^{-\alpha/q-m} d\mu(Q).
\]
We invert the order of integration and note that
\[
\int_S |Q - P|^{-\alpha/q-m} dP = A(\alpha, \epsilon, m, q, S), \text{ say.}
\]
Furthermore \(\int_E d\mu(Q) = 1 \). (1) now follows.

To prove (2) I first show the result true for \(q = 2 \) and then that this implies its truth for \(q > 2 \). For this latter part of the proof I am indebted to Professor J. E. Littlewood.

We have first, on inverting the order of integration,
\[
\left\{ \int_E \left(\int_E |Q - P|^{-m} d\mu(Q) \right)^2 dP \right\}^2
\]
\[
= \int_E \int_E \int_E \int_E |Q - P|^{-m} |R - P|^{-m} dP d\mu(Q) dP d\mu(R).
\]
To deal with the inner integral we dilate \(E \) uniformly, taking \(Q \) as the center of dilatation, in the ratio \(1:|Q - R| \) and then rotate the dilated space so that the transform of \(Q - R \) goes into the point 1. The inner integral then becomes
\[
|Q - R|^{-m} \int_E |U|^{-m} dU + 1 \int_E |U|^{-m} dU = B(\alpha, m) |Q - R|^{-m}.
\]
Consequently, the right-hand side of (3) is dominated by
\[
B(\alpha, m) \int_E \int_E |Q - R|^{-m} d\mu(Q) \leq B(\alpha, m) V_m^{-a}(E).
\]
Since \(\mu(E) = 1 \) this gives the result for \(q = 2 \).

For \(q > 2 \), we have

\[
\int_E \left\{ \int_E |Q - P|^{\alpha/q - m} d\mu(Q) \right\}^q dP
= \int_E \left\{ \int_E |Q - P|^{\left(\frac{(q-2)}{q}\right)(\alpha-m)} |Q - P|^{\left(\frac{\alpha-2m}{2}\right)} d\mu(Q) \right\}^q dP
\]

and this, by Hölder's inequality, does not exceed

\[
J = \int_E \left\{ \int_E |Q - P|^{\alpha-m} d\mu(Q) \right\}^{q-2} \left\{ \int_E |Q - P|^{\left(\frac{\alpha-m}{2}\right)} d\mu(Q) \right\}^2 dP.
\]

The first curly bracket does not exceed \(V_{m-a}^{q-2} \) (by the definition of \(V_{m-a} \)). So

\[
J \leq V_{m-a}^{q-2} \int_E \left\{ \int_E |Q - P|^{\frac{\alpha-m}{2}} d\mu(Q) \right\}^2 dP.
\]

and this, by the result for \(q = 2 \), does not exceed \(V_{m-a}^{q-2} V_{m-a} \). This gives the result for \(q > 2 \).

5. Proof of Theorem 4. Let

\[
S_n(P) = \int_E |Q - P|^{\alpha/q - m} \left[f(Q) \right]_n dQ,
\]

where

\[
\left[f(Q) \right]_n = \begin{cases} f(Q) & \text{for } |f(Q)| \leq n \\ n & \text{for } |f(Q)| > n \end{cases}
\]

\(S_n(P) \) is always defined and finite, and to prove the theorem it is sufficient to show that \(S_n(P) \) is bounded everywhere except possibly in a set of zero \(\beta \)-capacity, where \(\beta = m - \alpha \) for \(1 \leq q \leq 2 \) and \(\beta > m - \alpha \) for \(q > 2 \).

Assume, then, that \(S_n(P) \) is unbounded in a set \(M \) of positive \(\beta \)-capacity. It is then unbounded in a bounded set \(S \) of positive \(\beta \)-capacity. Then, first, there is a distribution concentrated on \(S \) such that \(\int_E |Q - P|^{-\beta} d\mu(Q) \) is bounded for all \(P \). Secondly, there is a function \(n(P) \leq n \), taking only integer values such that \(\int_S S_{n(P)}(P) d\mu(P) \) exists and is unbounded as \(n \to \infty \). This is an adaptation of a known result used by Salem and Zygmund [5, embodied in the proof of Theorem II], but a proof is perhaps not unwelcome.

Let \(\overline{S}(P) = \sup_{0 \leq m \leq n} S_m(P) \) for \(0 \leq m \leq n \). Then for all \(P \in S \), \(\{ \overline{S}_n(P) \}^{-1} \to 0 \) as \(n \to \infty \). By Egoroff's theorem on uniform convergence it follows that there is a set \(S' \subset S \) such that \(\mu(S - S') \) is as small as we please, and in which \(\{ \overline{S}_n(P) \}^{-1} \to 0 \) uniformly. It follows that, given any large number \(G \), there is an integer \(n_0 = n_0(G) \) such that, for all \(P \in S' \), \(\overline{S}_n(P) > G \) for all \(n > n_0(G) \). Choose \(n(P) \) such that \(S_{n(P)}(P) = \overline{S}_n(P) \). Then
\[\int_S S_{n(P)}(P) d\mu(P) > G\mu(S') \quad \text{for} \quad n > n_0, \]

and so

\[\int_S S_{n(P)}(P) d\mu(P) \to +\infty \quad \text{as} \quad n \to \infty. \]

I show this last to be impossible. We have

\[\left| \int_S S_{n(P)}(P) d\mu(P) \right| = \left| \int_S \int_E |Q - P|^{\alpha/q} \left[f(Q) \right]_{n(P)} dQ d\mu(P) \right| \]

\[\leq \int_E |f(Q)| \int_S |Q - P|^{\alpha/q} d\mu(P) dQ \]

and this does not exceed \(M_q(f) M_{q'} \left[\int_S |Q - P|^{\alpha/q} d\mu(P) \right] \). Now \(M_q(f) < +\infty \) by hypothesis, and we have only to show that

\[(1) \quad M_{q'} \left[\int_E |Q - P|^{\alpha/q} d\mu(P) \right] \]

is bounded.

If \(1 \leq q \leq 2 \) then \(q' \geq 2 \) and (2) of the lemma of §4 immediately gives (1). If \(q > 2 \) we write \(\beta = m - \gamma \). Since \(\gamma < \alpha \) there is an \(r < q \) such that \(\alpha/q = \gamma/r \). We may suppose \(\beta \) so near \(m - \alpha \) that \(2 < r < q \) since the result, if true for a given \(\beta \), is true for a larger \(\beta \). We may now rewrite (1) in the form

\[M_{r'} \left[\int_E |P - Q|^{\gamma/r} d\mu(Q) \right], \]

which, since \(r' > 2 \), is shown to be bounded by invoking (1) of the lemma.

6. **Theorem 4 is best possible.** We show this by constructing a function \(f(P) \in L^q \) and a set \(M \) of positive \(\beta \)-capacity (where \(\beta = m - \alpha \) when \(1 \leq q \leq 2 \), and \(\beta \) is any number greater than \(m - \alpha \) when \(q > 2 \)) at every point of which \(f_{1/q}(P) \) is infinite. It will avoid unnecessary complication and fully illustrate the general procedure if this is done for the simplest case \(m = 2 \).

\(M \) is constructed as follows. Let \(\{\xi_n\} \) be any sequence such that \(0 < \xi_n < 1/2 \). Let \(M_0 \) be the unit square \(0 \leq x_1 \leq 1, 0 \leq x_2 \leq 1 \). From \(M_0 \) remove the rectangle \(\xi_1 < x_1 < 1 - \xi_1, 0 \leq x_2 \leq 1 \) thus leaving the set \(M_1 \). From the left-hand rectangle in \(M_1 \) remove the rectangle \(\xi_1 \xi_2 < x_1 < \xi_1(1 - \xi_2), 0 \leq x_2 \leq 1 \), and make a similar symmetric removal from the right-hand rectangle of \(M_1 \), thus leaving a set consisting of 4 closed rectangles of length 1 and breadth \(\xi_1 \xi_2 \). If we continue in this manner we are left, after the \(n \)th removal, with a set \(M_n \) consisting of \(2^n \) closed rectangles each of length 1 and breadth \(\xi_1 \xi_2 \cdots \xi_n \). Consequently
\[m \mathbb{M}_n = 2^n \xi_1 \xi_2 \cdots \xi_n. \]

It is known [5, p. 40] that the projection \(S \) of \(M = \lim M_n \) on the \(x \)-axis will be of positive \(\beta \)-capacity if and only if

\[\sum_{n=1}^{\infty} 2^{-n} (\xi_1 \xi_2 \cdots \xi_n)^{-\beta} < \infty. \]

If \(S \) is of positive \(\beta \)-capacity there is a distribution \(\nu \) concentrated on \(S \) such that \(\int_0^1 |x_1 - t|^{-\beta} d\nu(t) \) is bounded for all \(x_1 \). Let \(\mu \) be an additive set function defined over \(E \) by

\[\mu(X) = \int \int_X d\nu(x_1) dx_2. \]

Then

\[\int_M |P - Q|^{-\beta-1} d\mu(Q) = \int_0^1 \int_0^1 [(x_1 - t_1)^2 + (x_2 - t_2)^2]^{-(\beta+1)/2} dt_2 d\nu(t_1). \]

In the inner integral make the substitution \(x_2 - t_2 = (x_1 - t_1)u \). It is then dominated by

\[|x_1 - t_1|^{-\beta} \int_{-\infty}^\infty (1 + u^2)^{-(\beta+1)/2} du = A(\beta) |x_1 - t_1|^{-\beta}. \]

Consequently, since \(\mu \) is a distribution concentrated on \(M \),

\[\int_M |P - Q|^{-\beta-1} d\mu(Q) = \int_E |P - Q|^{-\beta-1} d\mu(Q) \leq A(\beta) \int_0^1 |x_1 - t_1|^{-\beta} d\nu(t_1), \]

which is bounded. \textbf{Thus} \(M \) \textbf{is of positive} \((\beta+1)\)-capacity if \(S \) \textbf{is of positive} \(\beta \)-capacity.

Define \(\{f_n(P)\} \) over \(M_0 \) by

\[f_0(P) = 0 \text{ in } M_0, \]
\[f_n(P) = (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha/n^{\alpha-1}} \text{ in } M_n, \]
\[f_n(P) = f_{n-1}(P) \text{ in } M_0 - M_n. \]

Since \(\{f_n(P)\} \) is, eventually, an increasing sequence of measurable functions the function \(f(P) \) given by

\[f(P) = \lim_{n \to \infty} f_n(P) \text{ in } M_0, \]
\[f(P) = 0 \text{ in } E - M_0 \]

exists and is measurable over \(E \).

It is easily seen that, for \(n = 1, 2, \cdots \),
\[f(P) = 0 \text{ in } M_0 - M_1, \]
\[f(P) = (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha/q_n - 1} \text{ on } M_n - M_{n+1} \]

so that
\[
\int_E |f(P)|^q \, dP = \int_{M_0} |f(P)|^q \, dP = \sum_{n=1}^{\infty} \int_{M_n - M_{n+1}} |f(P)|^q \, dP
\]

\[= \sum_{n=1}^{\infty} (\xi_1 \xi_2 \cdots \xi_n)^{-\alpha/q - \alpha/(qM_n - qM_{n+1})} \]

\[= \sum_{n=1}^{\infty} (1 - 2\xi_{n+1}) 2^n (\xi_1 \xi_2 \cdots \xi_n)^{1-\alpha/q - \alpha}. \]

For \(q > 2 \), we may choose \(\delta > 0 \) so that \(2(1+\delta) < q \), and then put

\[2^{\xi_{n+1}^{1-\alpha}} = 1 + (1 + \delta) n^{-1}. \]

Then \(2^{-n}(\xi_1 \xi_2 \cdots \xi_n)^{q - 1} \sim C n^{-1} \) so that \((1) \) with \(\beta = 1 - \alpha \) is satisfied, showing \(S \) to be of positive \((1-\alpha)\)-capacity, and hence that \(M \) is of positive \((2-\alpha)\)-capacity.

Further, \((2) \) is clearly finite, so that \(f \in L^q \) over \(E \).

Let \(P(x_1, x_2) \) be any point of \(M \). Let

\[M_n(P) = M_n \cdot S[l_2; x_2 - \epsilon_n \leq l_2 \leq x_2 + \epsilon_n], \quad \text{where } \epsilon_n = \xi_1 \xi_2 \cdots \xi_n/2; \]

\[M_n^*(P) = (M_n - M_{n+1}) \cdot S[l_2; x_2 - \delta_n \leq l_2 \leq x_2 + \delta_n], \quad \text{where } \delta_n = \xi_1 \xi_2 \cdots \xi_n(1 - 2\xi_{n+1})/2. \]

\(M_n(P) \) then consists of \(2^n \) squares each of side \(\xi_1 \xi_2 \cdots \xi_n \), while \(M_n^*(P) \subset M_n(P) \) and consists of \(2^n \) squares each of side \(\xi_1 \xi_2 \cdots \xi_n(1 - 2\xi_{n+1}) \). No square in \(M_n^*(P) \) contains \(P \), but one of the squares, \(I_n \) (say), is contained in that one of the squares, \(J_n \) (say), of \(M_n(P) \) which itself contains \(P \). Furthermore, the \(I_n \) \((n = 1, 2, \cdots)\) are disjoint.

Now \(|Q - P| < 2^{1/2} \xi_1 \cdots \xi_n \) for \(Q \) in \(J_n \), and so certainly for \(Q \) in \(I_n \), and thus

\[
K_{2^a/q}(P) = \int_{M_0} |Q - P|^{a/q - 2} f(Q) \, dQ = \sum_{n=1}^{\infty} \int_{M_n - M_{n+1}} \geq \sum_{n=1}^{\infty} \int_{I_n}.
\]

This last is not less than

\[
\sum_{n=1}^{\infty} (2^{1/2} \xi_1 \cdots \xi_n)^{a/q - 2}(\xi_1 \cdots \xi_n)^{-\alpha/q - \alpha/(qM_n - qM_{n+1})^2} (1 - 2\xi_{n+1})^2
\]

\[= 2^{a/2q - 1} \sum_{n=1}^{\infty} (1 - 2\xi_{n+1})^2 n^{-1} = + \infty. \]
Consequently, $f_{a/q}(P)$ is infinite at every point of M, giving the required example in the case of $q > 2$, thus showing part (a) of Theorem 4 best possible.

For the case $q \leq 2$, let β be any positive number less than $1 - \alpha$ and let ξ be such that $2\xi^{1-(1-\alpha+\beta)/2} = 1$. Consider the set M with $\xi_n = \xi$ for all n. Since $2\xi^\beta > 1$, M is of positive $(\beta+1)$-capacity. Defining $f(P)$ as before, we use exactly the same argument to show that $f_{a/q}(P) = +\infty$ at every point of M. Furthermore, since $2\xi^{1-\alpha} < 1$, (2) is bounded, so that $f \in L^2$.

This shows part (b) of Theorem 4 best possible.

7. The lemma of §4 is best possible. Consider, e.g., (2) of the lemma. Suppose this is not the case, i.e. that there is an $e > 0$ for which, in general,

$$M_{q+\epsilon} \left[\int_E |Q - P|^{a/q' - m} d\mu(Q) \right] < \infty.$$

If, then, $f(P) \in L^{(q+\epsilon)}$, we may say that

$$\left| \int_E S_n(P) d\mu(P) \right| \leq M_{(q+\epsilon)}(f) M_{q+\epsilon} \left[\int_E |Q - P|^{a/q' - m} d\mu(Q) \right]$$

which is bounded. This would imply that (b) of Theorem 4 is not best possible. Since it is best possible we have shown (2) best possible. A similar argument using (a) would show (1) best possible.

References

Rhodes University,
Grahamstown, South Africa