CLOSED COVERINGS IN CECH HOMOLOGY THEORY

BY
E. E. FLOYD

1. Introduction. We treat here such topics as homology local connected-
ness, regular convergence, and the Vietoris mapping theorem(*). In general,
we are interested in those topics of topology which are based on the technique
of chain-realizations. We present an alternative technique, based on one
central theorem (Theorem 2.3). One justification for our technique is that it
allows the use of compact coefficient groups as well as fields. Moreover, we
hope that with further study it will provide a certain amount of unification
of the topics treated.

The paper is divided into two parts. The first part consists of §§2, 3, and
4. In §2 we state the basic theorem and some of its corollaries. In §§3 and 4
we give a few applications of our theorem to the topics already noted. In the
second part, which is not dependent on the first part, we prove the basic theo-
rem. In §§5 and 6 we develop in detail a Kelley-Pitcher theory of finite
closed coverings of compact spaces. This theory was partially developed in
the well-known Kelley-Pitcher paper on exact sequences [3, pp. 703-706].
In §7 we use this development to prove the basic theorem. We would be inter-
ested in knowing whether or not the basic theorem can be proved by more
elementary means.

2. The basic theorems. In this paper, a space will always be a Hausdorff
space. Suppose that a=(4%, - - -, A7) is an ordered, finite covering of a
space X. In r-space, let A% be the point whose jth coordinate is 8!. Then the
nerve of a will be the collection of all simplices (A%, - - -, A%) with A% - . .
NA4s= . If X is compact, H,(X) will denote the n#-dimensional Cech ho-
mology group with coefficients in a fixed group ®, which may be either a field
or a compact abelian group; Hy(X) will denote the reduced 0-dimensional
group. For a covering a, H,(a) denotes the homology group of the nerve of a.

If u=(UY, ---, U7 is an open covering of X, there is the projection
homomorphism ,: H,(X)—H,(u) which assigns to each element of H,(X)
its u-coordinate.

By a closed covering o of a compact space X, we will always mean an
ordered, finite covering a= (4}, - - -, A") by closed sets in X such that every
point of X is in the interior of some 4°*. Given such an e, there exists an open
covering u=(U", - - -, U") of X such that U'DA*and Ui - - - NVl J

Presented to the Society, April 20, 1956; received by the editors December 11, 1955.

() For bibliographical notes concerning homology local connectedness, see Wilder [6]; for
a bibliography on regular convergence, see White [4]; for a modern treatment of the Vietoris
mapping theorem, see Begle [1].
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if and only if A% - - - MA% ¥ (this is a special case of (6.1)). Then % and
a have the same nerve and H,(a) =H,.(u). Define a projection homomor-
phism 7,: H,(X)—H,(a) by ma =m,. It may be checked that m, is independent
of u.

If o and B are finite collections of closed subsets of X, then 8 refines «,
or 8>, if and only if given an element B of B8 there exists an element 4 of «
with BCA. A projection mg, assigns to each B in 8 such an 4. The induced
homomorphism of H,.(8) into H,(«) will also be denoted by g, (or occa-
sionally by just ). If @ and 8 are closed coverings of X with 8>, it may be
checked that mg.ms ="a.

If A and B are closed subsets of X with A CB, we denote by I4p:H,.(4)
—H,(B), or occasionally by I, the injection homomorphism which is induced
by inclusion. We denote by H,(4; B) the image of I4p.

(2.1) DeriNITION. If @ and B are finite collections of closed subsets of X
and 7 is a non-negative integer, we write 8*>a (8 n-refines ) if and only if
given an element B of B there exists an element 4 of « with BCA4 and
H;(B; A)=0 for all j=n.

We write 87>« (B strongly n-refines o) if and only if 3>« and there exists
a projection mgq:f—a such that H;(B\ - . - MBi; wBoM . . . M7wBi) =0
for all B, - - -, Biein 8 and all j=n.

(2.2) If y»>PB and B star-refines a, then y*>a.

Proof. Since y"> B, there exists a projection 7’ :y— such that H;(C; ’'C)
=0 for each C in v and each j<#. Since 3 star-refines «, there is a projection
'’ :B—a such that if B is in B then every element of 8 which intersects B is in
7w''B. Let m=7""w'. Suppose CiM - - - N\Ciz . Then

CoMN -« - NC CCio Ca'Cio CaCioM - - - M aCla,

Then H;(CM - - - MNCis; wCoN - - - NwCi) =0 since H;(C; ='C%)=0,
j=n.
The following is the basic theorem of the paper; its proof is deferred to §7.

(2.3) THEOREM. Suppose that A_1DAcD - - - DA, is a sequence of closed
subsets of a compact space X, and that a1 <Ky <K « - + L o, where o is a
closed covering of Ai. Then
v () the kernel of wa,: Hi(A.)—H(om) is contained in the kernel of the injec-
tion I:H;(A,)—H;(A-) for all jEn, and

(ii) the image of Ta, oyt H(tn)—Hj(w) is contained in the image of the
projection wa,: H;(Ao)—Hj(ao) for all jSn+1.

We now study the implications of the theorem in case 4;=X, all 4.

(2.4) DEFINITION. Let «, 8 be closed coverings of the compact space X.
We say that «, 8 determine H,(X) if and only if < and me: H.(X)—H, ()
maps H,(X) isomorphically onto the image of the projection wga:H.(B)
—H,(e). We say that «, 8 partially determine H,(X) if and only if image
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T« =1image ms, (this latter is equivalent to the classical notion that 8 is a nor-
mal refinement [7, p. 140] of ).

(2.5) If a, B (partially) determine H,(X) and yv>B, then o, v (partially)
determine H,(X).

Proof. It is always true that image w,Cimage m,,. But image w,,Cimage
Tga =1Mage Tq, SO iMmage T, =image Tyq.

(2.6) If B, v partially determine H,(X) and if B>« then a, v partially de-
termine H,(X).

Proof. We have image 7y, =ms. (image m,5) =ms. (image m3) =image mq.

The following consequence of (2.3) is used as the basis for the rest of the
paper.

(2.7) THEOREM. If X is a compact space and if a1 <K ay<K" « - + Koy,
where a; 1s a closed covering of X, then o, as, determine H;(X), for all j=<n,
and partially determine H,1(X).

Proof. In (2.3 i), let 4;=X. Hence according to (2.3 i) the kernel of 7.,
is contained in the kernel of the identity map of H;(X), j<#, and hence
Ta, i an isomorphism into for j<». In (2.3 ii), set 4;=X and consider the
coverings o, + * -, @z, In (2.3 i), the image of 74y, o, H;(2.) —~Hj(ats) is con-
tained in the image of ., for j<n-+1. Since the opposite inclusion always
holds, the two images are equal. Hence a., as, partially determine H;(X) for
j=n-+1. The theorem follows.

3. Locally connected space; the Vietoris mapping theorem. We consider
here a few properties of locally connected spaces; these are known for the
case when the coefficient group is a field [7, Chap. 6]. On the basis of these,
we give a new proof of the Vietoris mapping theorem as given by Begle [1].

(3.1) DEFINITION. A compact space X is said to be lc*, #» a non-negative
integer, if and only if given x€X and a closed neighborhood U of x, there
exists a closed neighborhood V of x with H;(V; U) =0, all j<=.

(3.2) If X is an lc, compact space, then given a closed covering a of X,
there exists a closed covering 3 of X with B*>>a.

Proof. Suppose that v is a closed covering which star-refines @. For each
xE X, there is an element C of ¥ which contains x in its interior. Hence there
is a closed neighborhood V., of x with H;(V,; C) =0 for j<#. Let 8 be a finite
collection of the V, whose interiors cover X. Then 8*>+ and v star-refines a.
By (2.2), ~>a.

The following is equivalent to a classical theorem [7, p. 180] when the
coefficient group is a field.

(3.3) THEOREM. Suppose that X is a compact lc* space. For each sufficiently
small covering o of X, there exists a closed covering B> o such that o, B determine
H;(X), all jEn, and partially determine H,1(X).

Proof. Let a_; be a closed covering of X. By (3.2), there are closed cover-
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ings ag, * * +, @u—y With @1 K" « + + KL"a,—1. By (3.2), for all sufficiently small
o, we have o,">a,_1. Given such an «,, we get a sequence a1 K" - - + K"ay,.
By (2.7), aa, as. determine H;(X), j <n, and partially determine H,1(X).

(3.4) DEeFINITION. We shall say that the coefficient group G is elementary
if it is either a field or an elementary compact group(?). In case G is elemen-
tary, we say that H,(X), or a subgroup thereof, is elementary if it is a finite
dimensional vector space when G is a field, or an elementary compact group
when G is an elementary compact group.

Condition (b) of the following theorem is similar to property (P, Q). of

Wilder [7, p. 193].

(3.5) THEOREM. If the coefficient group is elementary, then the following
are equivalent for a compact space X :

(a) X is e,

(b) if A and B are closed subsets of X with A in the interior of B, then
H;(A; B) is elementary for j<n;

(c) if A is a closed subset of X and U is a closed neighborhood of A, then
there is a closed neighborhood V of A with Hy(V; U)=H;(4; U) for all j=n.

Proof. To show that (a) implies (b), suppose (a) holds and that A4 is con-
tained in the interior of B (written A CCB). Let A_1=B. We may find a
sequence B=A4_;, 4y, - - -, An=A4 such that 4,,,CCA4.:. Let a_; be a closed
covering of A_;. There exists a closed covering 8 of A_; which star-refines a_;.
Since 4, is in the interior of A_; and X is lc", there is a closed covering a, of
Ay with a*>B. By (2.2), ao">a_;. Similarly there exist closed coverings e; of
A; with a1 K ap<K" - - - L"a,. According to (2.3 i), the kernel K of
Te,: H;(A)—H,(c,) is contained in the kernel K’ of I 5:H;(A)—H,;(B) for
j=<n. Now Hj(a,) is elementary, together with its subgroups and factor
groups. Hence H;(4)/K =~image m, is elementary. Then

H(4)/K' ~ (Hi{(4)/K)/(K'/K)

is elementary, being a factor group of an elementary group. But H;(4; B)
~H;(A)/K’; hence (a) implies (b).

Suppose now that (b) holds and that A C CU. For each closed V with
ACCVCUIlet K(V)=NH; (V’; V) where the intersection is taken over all
V' with ACCV'CCV. Since each H;(V’; V) is elementary, there is a V’
with K(V)=H;(V’; V). We note that Iyy maps K(V) onto K(U). For if
xEK(U), then xEH;(V’; U) and there is a yEH;(V’) with Iy.y(y) =x. Then
Iyy(Iyv(y)) =%, and Iyv(y)EK(V). Hence the K(V), together with the
Iy, constitute an inverse mapping system of elementary groups, and Iyy
maps K(V) onto K(U). Hence, given x €K (U), there is a function assigning
to each Van x(V)EK(V) with x(U) =x and Iy.y(x(V’)) =x(V). Hence there

(?) An elementary compact group is defined to the direct sum of a finite number of groups,
each of which is the reals mod 1 or a finite cyclic group.
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is a yEH;(NV)=H;(A) with I4v(y)=x(V). In particular, I4y(y) =x. Then
H;(4; U)=NH,;(V; U). But each H;(V; U) is elementary, so that for some
V, H;(A; U)y=H;(V; U). It follows that (b) implies (c).

It is easy to see that (c) implies (a), by taking for 4 an arbitrary one-
point set.

(3.6) VIETORIS MAPPING THEOREM. Suppose that f is a continuous map of
a compact space X onto a compact space Y such that H;(f~'(y)) =0 for all j<n
and yE Y, where the coefficient group is elementary. Then fy: H(X)—H,;(Y) is
an isomorphism onto for j<n, and is onto for j=n-+1.

Proof. Case 1: X is lc»*!. Let B_; be an arbitrary closed covering of Y.
Suppose that v is a star-refinement of B_;; then f~1(y) is a star-refinement of
F~Y(B-1). Suppose yE€Y. Then y is interior to some element C of v, and
f~Y(y) is interior to f~1(C). Since X is lc® and H,;(f~'(y)) =0 for j<u, there
exists by (3.5) a V with f~1(y) CCVCfYC) and Hy(V; f~1(C)) =0, j<n.
There exists a closed neighborhood B, of y with f~! (B,) C V. Let 8 be a finite
subcollection of {B,,} whose interiors cover Y. Then f~1(B8¢)»>f"'(y) and
f7(7) star-refines f~1(B_1); by (2.2), f~1(80)*>>f~1(B_1). In a similar manner we
obtain a sequence f_;<Bo< - - - <. of closed coverings of ¥ such that
if ay=f"1(8;) then a1 K™ - - - K"a,. Then by (2.7) a,, oz, determine H;(X),
j=mn, and partially determine H,,(X). Since 8, can be made arbitrarily small,
for every sufficiently small covering B of Y there exists a refinement 8' of B such
that the coverings a=f1(B), o' =f~1(B') determine H;(X), j<n, and partially
determine H,1(X).

Consider the diagram

1 (X)
Ta'
T

H (o) I i(a")

S+ l—
Tap

H(8) H(8)

T8

Hi(Y)

where a, 8, o/, B’ are as above. There is commutativity: msfs =me, Tofs =T,
etc.

Note first that fy is an isomorphism into for j<#u. For 7, =msfx and m,
is an isomorphism into; hence fx is an isomorphism into.

By (3.3), H;(X) is elementary for j<n+1; hence K =image f is elemen-
tary. Moreover, image msfx =image 5 for j<n+1. For if yEH,(Y) then
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78(y) = mp(me () = wara(mwa(y)).

Since a, o' partially determine H;(X), there is an xEH;(X) with m.(x)
=mg(y). Then mafa(x) =mp(y). Hence

ms(K) = ws(H;{Y)) for all suﬁoienﬂy small B.

Suppose now that yEH;(Y). K—y denotes the set {k—y:kEK}. For
each B there is a k€K with ws(k) =m5(y), so that k—yE Ls=(kernel )
MN(K—y). Now K—y is a translate of K, which is elementary. The Ls are
nonempty and decrease with 8. Hence Ng Lg7= &. If 2EN; Lg, then ms(2) =0
for all B, so that 2=0. Hence 0&K —y and y&E K. Hence fx maps H;(X) onto
HJ'(Y)v jén'l’l.

Case II: X a compact space. We may consider X as embedded in an l¢ct!
compact space X’ (for example, X’ a product of intervals). The map f gener-
ates a decomposition of X whose elements are the sets f~!(y), y&€ V. Extend
this decomposition to a decomposition of X’ by admitting as elements the
one-point sets of X’ —X. This upper semi-continuous decomposition of X’
has a decomposition space ¥’ and a decomposition map F:X’'—Y’. We may
identify ¥ with F(X) and f with F| X. We have the diagram

Hin(X') = Hin(X', X) - Hi(X) » Hi(X') > H{(X', X)
| Fx, VFd 1/« | Fy, JFy
Hin(Y') > Hin(Y', Y) - H(Y) - Hi(Y') - H(Y', Y)

where the downward homomorphisms are induced by F. Now both the Fy are
isomorphisms onto, since F maps X’ —X homeomorphically onto ¥’ — Y. For
j=n, Fy is an isomorphism onto by Case I, and Fy is onto. By the five-
lemma of Eilenberg-Steenrod [2, p. 16], f« is an isomorphism onto. For
j=n+1, Fy; is onto; by the five-lemma, fi is then onto. The theorem follows.

4. Regular convergence. In this section, we prove some theorems con-
cerning regular convergence. For the known facts where the coefficient group
is a field, see [5].

(4.1) DEFINITION. A sequence (4,) of closed subsets of a compact space
X is said to converge n-regularly to the subset 4 of X if and only if (4,)
converges to A, and given xEA4 and a closed neighborhood U of x there
exist a closed neighborhood V of x and a positive integer N such that H;(VNA4;;
UNA,)=0forjSnand t=N.

If B=(B!, - - -, Br) is a covering of X and A CX then fMNA4 denotes the
covering (B'M4, - - -, B'MA) of A.

(4.2) If the sequence (A:) comverges m-regularly to A, then given a closed
covering o of X there exist a closed covering B of X and a positive integer N such
that aMAKL"BNA; for all i= N.

Proof. Let v be a closed covering of X such that «y star-refines a.. For each
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xEX thereis a Cin v with x in its interior. Hence there is a closed neighbor-
hood B, of x and a positive integer N, such that H;(B.NA4;; CNA;) =0 for
j=<n and 1= N.,. Let 8 be a finite subcollection of B, whose interiors cover X.
Then BNA»>yMNA; for ¢ sufficiently large. Since ¥4 ; star-refines aMN4;,
then BNA #>aMA; for ¢ sufficiently large.

(4.3) If (A:) converges m-regularly to A, then for each sufficiently small
closed covering o of X, there exists a closed covering B> o and a positive integer
N such that aMA;, BNA; determine H;j(A;) for j<n and i= N and partially
determine H,1(A;) for i=N.

Proof. The proof follows easily from (4.2) and (2.7).

(4.4) DEFINITION. Suppose that 4 is a closed subset of the compact space
X, and that « is a closed covering of X. We say that « is in general position
relative to A if and only if whenever 4%, - . - | A% are elements of a with
AN - - - NAWNA# I then int AN - - - Nint A%NA = K.

(4.5) If A is a closed subset of the compact space X and « is a closed cover-
ing of X, there is a refinement 3 of a in general position relative to A.

Proof. Suppose aa=(4*, - - -, A7). For each 4, - - -, 1,, select a point
Xig,---rig Of int A%0MN - - - N intd%NA4, if such a point exists. Let 8
= (B!, - - -, B") be a closed covering of X such that B¢ is in the interior of

A’ and such that Bf contains (in its interior) all the x;,,...,:, which belong to
int A¢. Then B is the desired covering. '

It will be noted that if (4%) converges to 4, and « is general position
relative to 4, then the nerves of «\4 and aM4; coincide for ¢ sufficiently
large.

(4.6) THEOREM. Suppose that the sequence (A:) of closed subsets of the com-
pact space X converges to A, and that for each sufficiently small closed covering
a of X there exists a closed covering B of X and a positive integer N such that
aMA;, BNA; determine H,(A;) for t= N. Then for each o, there is a 8 such that
aMAd, BNA determine H,(4).

Proof. We consider closed coverings & <8<+ which are in general position
relative to 4. We use the diagram

Ha(A) 5 Haly N 4) = Ha(y N 42 & Ha(42)

e l?l’z', ‘l'z’
\H,(a N 4) = Hy(BN A)) -/

B! wf

L’
Hy(aMNA) = Hi(aMNA))
where all the #’s are projections and where ¢ is always large enough so that

the indicated equalities hold.
Suppose that x EH,(4), x50, and m(x) =0. Suppose aN\A;, BNA; deter-
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mine H,(4;), 1= N, that m(x) 0, and that N4, yNA4; determine H,(4,),
1= N. Since m3(x) =m/’m(x), there is a yEH,(4:) with 7 (y) =m(x). Then
y5#0 since w7 (y)#0. Then also #{(y) 0, since aMA4;, BMNA; determine
H,.(4,). But w{(y) =m(x). This is a contradiction. Hence m; is an isomor-
phism into.

Suppose that aMN4;, BMNA; determine H,(4:), 1= N. We show that image
m=image 7/’ ; we know that image m;Cimage n{’. Let yEH,(8MA). There
is an x;€H,(4;) with 7{ (x) =w{’(y). For each closed covering ¥ of X, v in
general position relative to A4, with y>8, m/’wd’ (wf (x:)) =7{ (x5) =7{’ ().
Hence for each such v there is a 2z, (= (x,)) in H,(yN4) with m/''ms’ (3,)
=m{’(y). Hence there is an xEH,(4) whose (aMNA4)-coordinate is = (y).
Then mi(x) =7{’ (v). Hence if aMNA4,, BNA; determine H,(A:),2Z N, and o,
are in general position relative to A then aMA, BNA determine H,(A).

(4.7) THEOREM. Suppose that the sequence (A:) of closed subsets of the com-
pact space X converges n-regularly to the subset A. Then H,(A) ~H,(A;) for i
sufficiently large.

Proof. There exist, by (4.5) and (4.3), closed coverings «, § of X, in general
position relative to 4, such that aMN4;, BMNA4; determine H,(4:). By (4.6),
aNA4, BNA determine H,(4). Hence H,(4;) and H,(A4), for 7 sufficiently
large, are isomorphic to the image of the projection w: H,(BMA)—H,.(aMNA4),
and are isomorphic to each other.

5. The Kelley-Pitcher theory for simplicial pairs. In §§5 and 6 we con-
tinue an investigation of Kelley and Pitcher [3, pp. 703-706] seeking rela-
tionships between the groups of a space, the groups of the nerve of a covering
of the space, and the groups of intersections of elements of the covering. The
treatment is self-contained; the portion of this section through (5.5) is due to
Kelley-Pitcher.

By a simplicial pair we mean a pair (X, «) consisting of a finite simplicial
complex X and a covering a= (41, - - -, A7) by subcomplexes. X, will denote
the nerve of @. However, Cp(c) and H,(e) will indicate the chain group and
homology group of the nerve X,. If a simplex of X, is of the form T,
=(4i - - - A%) then define NTy;=A4%N - - - NA%, Consider X, as having
a (—1)-dimensional simplex T—; with N7T_;=X.

If S, is a p-simplex of X let AS, denote the subcomplex of X, consisting
of all T, with S,CNT,. If A%, - . ., At are all the elements of a which con-
tain S,, p =0, then AS, consists of all faces of the simplex (Aéo - - - Aia). If S_;
is the (—1)-dimensional simplex of X, then AS_;=X,. The boundary operator
will be denoted by a.

Denote by Cp.(a) the set of all linear forms Y gSp Ty where g€® and
S,y T, are oriented simplices of X, X respectively with S,CNT,. Agree that
4S5, (—T)=¢(—S;) T,=(—¢)S, T, and that forms are to be added as
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usual. If A,= > 0.5 is a p-chain of NT,, define A, To= D g:S5 T, If
B,= >.q:T} is a g-chain of AS,, define S,-B,= .S, T\.

The group Cp,—1(a) will be identified with the chain group C,(X) under
the identification 4,- T—1<>4,. The group C_;,,(a) will be identified with the
chain group C,(e) under the identification S_;- B,«>B,.

A homomorphism A:Cp,e—Cp,q s defined by A(A,-S,) =(04,)-S, and
linearity. A homomorphism D:C, —Cp, -1 ts defined by D(S, Bg) =S, (0B,)
and linearity.

(5.1) If p=0 the sequence

+2Ch1—Cpg—Cpq1— -

s exact. If p = —1, the sequence coincides with

a
+ = Conr(@) = Cyla) > Con(a) =+ - -

Proof. It is clear that DD =0 since dd=0. Suppose p=0 and that
D(2.S, Bty = >S5t (dB%) =0, where the S, form a basis for C,(X). Then
dB;=0. Since Bj is on the simplex AS}, then B;=9C, for some C; in AS].
Then D( .St Ch = 2S5, B!, and the sequence is exact for p =0. The state-
ment for p = —1 can be easily seen.

(5.2) The sequence
A

+ = Cpt1,4—2Cpg— - - -

has AA=0. The homology group H,, .(c) of the sequence corresponding to the
indices p, q is isomorphic to the direct sum Y H,(NT,), where the summation is
extended over all g-simplices Tq= (A% - - - A%) with 4,< - - - <i,.

Proof. It is clear that AA=0. If g=—1, Cp,_.1=C,(X) and A=9 on Cp(X).
Hence the homology group, if ¢=—1, is Hp,(X)=H,,_1(c). Suppose ¢=0.
Elements z of C,,, are uniquely represented as z= » A4} T:, where the T}
are the oriented g-simplices of the form (4# - - . i) with 4o< - - - <4, and
where A& C,(NT,). This representation sets up an isomorphism of C,,, with
>.C,(NS,) and the statement follows easily.

Define E,,, to be the kernel of D:Cp,—Cp,,—1. For p =0, it follows from
(5.1) that E, , is the image of D:C,,,41—Cp,,. We have the sequence

A A

2 Ep g0 Epg— .

Define K,,, to be the homology group of this sequence corresponding to indices
b, q
(5.3) We have K,,_1=H,(X).
Proof. K, _, is the homology group of
A

o By Ep i o Epy 1>



328 E. E. FLOYD [March

Now D:C,,_1—Cp,—2=0 so that E, _;=Cp-1=C,(X). Moreover, A=3d on
C,(X). The result follows.

(5.4) We have K_,,=H ,(a).

Proof. We have C_;,,=C.(a). Also D:C_;,;—C_;,,-1 coincides with
3:C,(a)—>C,1(a). Hence E_,,, is the cycle group Z,(a). Now E,,,, is the
image of D:Co,441—Co,q Hence the image of A:E, ,—E_,, , is also the image
of AD: Cy,o1—C—1,,. But AD(D AL T 1) = D (048) - (3T},,) where 34} is of
the form g:S_; with g; the coefficient sum of 4§. It follows that the image of
A:Ey, ,—E_1,, is the bounding cycle group B,(a). The result follows.

For each p =0, the sequence

’
0> Epq—Cpg—Epe1—0

is exact, where I’ is inclusion. If p = —1 the sequence is exact except that D
may not be onto. Taking homology groups and using a well-known method
of constructing exact sequences [3, p. 687] we get the exact sequence

(p)
n
= Kp g Hpy g Kpg1— Kpy,g— -

—Ko,1—K_1,,—H_1,,, where | is induced by inclusion //, m by D, and
n( by the boundary operation. Since H_,,,=0, we get
(5.5) The sequence

l m 7](?)
= Ky g2 Hpg— Kpg1 »Kp 14— > Kog1—>K_1,,—0

s exact.

The map 7 :K,, ,-1—Kp1.4, P20, is of particular interest. Suppose z
represents an element x of K,, 1. Then z=D(2") where 2’&€C,,,. Then Az’
represents 7 (x).

n(p) n(p—-l) n(o)
In Hy(X) = Kp.1 = Kpao0—Kp 12— - > Kop1—> Ky

= Hp(a), deﬁne n = ,7(0) . "(p—l)nfp).

(5.6) THEOREM. Suppose (X, o) is a simplicial pair such that if S is a
simplex of X there is a vertex v of S such that if vEA* then SCA*. Any function
f assigning to each vertex v of X a vertex Aiof X, withvEA'is a simplicial map
of X into Xa. The homomorphism fx:Hp(X)—H,(cr) is given by fx=en, where
e=(—1)p+D/2,

Proof. For a vertex v of X, Av denotes the simplex of X, whose vertices
are those 4 with v&A4+. Suppose v~ if and only if Av=Av’. This is an equiv-
alence relation. Suppose the elements of each equivalence class are simply
ordered by an ordering >. Suppose also that »>%' whenever Av contains
A’ as a proper face. We have then a partial ordering > on the vertices of X
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such that if ¥>v’ then Av DAY, if Av=Av’ either v >9’ or v’ >, if Av contains
Ao’ properly then v>v'.

Suppose S is a simplex of X. There is a vertex v such that if ¢’ is any
other vertex of S then AvCAv’. It follows that there is a vertex v, of S (with
Avo=Av) such that v,<v’ for all vertices v’ of S. It then follows that the
vertices of S may be ordered uniquely as vo<9;< - - - <v,. In this proof, all

oriented simplices S= (v - - - v,) will have v,< - - <v,. If 9,E4°¢ then
SCA:. Also if v;,€A7 then v,EA1.
Consider f as in the statement of the theorem. If S=(v, - - - v,) then

f(v;) is a vertex A% withy;€ A%, Then v,EA%N - - - NA'and f is simplicial.
A vertex of X, will be denoted by a symbol of the form w;,. Define a homo-
morphism 3:C,p,,—Cyp, 041, P20, by

8o+ -+ 03) (w0 -+ ) = g0 -+ + 9,) (floo)wo - - - )

and linearity. If S=(vo - - - v,) then (wp - - - w,) CAS and f(vo)eAS. Since
AS is a simplex, the definition has meaning.

It may be verified that D3+ 3D =identity. Hence if D(2) =0 then D(T(z))
=3z. Hence (*) if 2z represents an element x of K, 4, p 20, then AT (3) represents
7P (x) in Kp1,¢41.

Let 2= gi(vos - - - v,¢) represent an element x of K,,_,=H,(X). By (*),
7™ (x) in K,_,,¢ is represented by

D 8:0(oi + + * Vp9) - F(v09)
= 20 0ivni - - 950) - f(00s) + D (—1)7g(D0i + + + T v+ + 9,9) - (o).

>0
By (*) again, Uy (x) in K,_;,, is represented by

20 80 - - 9p0) - (f(21)f(205))
= 2 giva:i - - - 950) - (f(020)f(205))

+ 20 (=D gi(on - - - Bgi e D) (f(m10)f(v02).
1
Continuing, the element 7 - - - 9®)(x) in K,,,_; is represented by

22 0:0(@p105) (f(05-1) - - - f(00))
= 2 0pi- (f(0pa1d) - -+ f(009) — 2 80p1is (f(Bp1s) -+ + f(v0d)-
Hence 7n(x) is represented by
22 8S-1- (f(05) - - - f(203)) = (—1)?HDI2f(3),
The theorem follows for p 0. For p = —1 the theorem is trivial.
If (X, @) and (Y, B) are simplicial pairs then a map F:(X, a)—(V,B) isa

pair F=(f, g) consisting of a simplicial map f:X—Y and a function g:a—f
which assigns to each A* in o an element gA*=Bi of B with fAiCgA*. The cor-
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responding simplicial map from X, to ¥} will also be denoted by g. Suppose
S,CNT, where T, is a simplex of X,. Then f(S,) CNgT,. If 4 is a chain of
X then fA will denote its image under f. There is the function

2 ATy~ X fA" T,
of Cp,q(@) into Cp,(B), which we denote by F.. It may be seen that DF.=F.D.
Hence F. maps E,,,(a) into E,, ,(8). Moreover, since AF,=FA, there is in-
duced a map Fi:K,, (a)—>K,, (B). Similarly F, induces a map Fy:H,, (cr)
—H, .(B). The following may be seen.
(5.7) There is commutativity in each rectangle of

« = Ky, o(@) = Hp,o(@) = Kp,g-1(a) = - -
LFy L Fy L Fy
+ = Kp,(B) = Hp,o(B) = Kp,ga(B) = -+ -

Moreover, Fi:K, _1(a) K, 1(8) coincides with fyiH,(X)—>H,(Y) and
Fii K y,(@)—K_1,4(B) with gx:H (o) >H,(B).

(5.8) Suppose that F=(f, g) and F' =(f', g) are two maps of (X, &) into
(Y, B) such that given a simplex S of A'Ca then there is a simplex S’ of gA*EPB
such that f(S)Jf'(S)CS’. Then Fy=F) and Fr=F{.

Proof. For a simplex S of X suppose that S’ is the smallest simplex of ¥
containing f(S)\Uf'(S). If SENT, then S'ENgT,. Define 3: Cp, o(@) > Cp41,,(B),
»20, by

8(vo - - - 5) Tg— [ 25 (—1)ig(f(w0) « « + f@f' (@) - - - f'(v:))]- 8T

and linearity. Then A3+3A=F] —F, for p=1, A3=F/ —F, for p =0. More-
over, D3=3D. Hence 3:E,, (@) >E41.,(8), » =0. It follows that F, =F) and
Fy=F{! for p=0.

The case p = —1 remains. On C_1,,, F.=F/. Hence the conclusion follows
for p=—1.

The following theorem may be easily proved.

(5.9) If

’

F F
X, a) > (¥, 8) = (Z,7)

then (F'F)y=F{ Fy and (F'F);=F{ F.

6. The Kelley-Pitcher theory of compact pairs. In this section we extend
the Kelley-Pitcher theory to pairs (X, ), where X is a compact space and
a= (A}, - - -, A7) a collection of closed subsets of X which covers X. We
begin the section by summarizing the results.

For such a compact pair (X, @), define H, (o) = D H,(NT,), where the
summation is over all g-simplices Ty= (A% - - + Aia) of X o with 4,< « - - <i,.
If T, is a simplex as above and if 4,EH,(NT,) then denote by 4, T, the
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element of H,,, whose T,-coordinate is 4, and all of whose other coordinates
are 0. Agree also that 4,- (—T,)=(—A4,) - T,. Then H,,, is the set of linear
forms D A% Tt where A4S H,(NT}).

A map F of a pair (X, @) into a pair (Y, B) will be a pair F=(f, g) where
[:X—>Y is continuous and where g:a—f assigns to each A in a an element
gAi=DBiin B such that fA*CgA*. The simplicial map of X, into ¥ will also be
denoted by g. If T, is an unoriented simplex of X, then f(NT,) CNgT,. The
map f of NT, into NgT, is denoted by f|NT,. There is the induced homo-
morphisms (f|NT)x: Hy(NTQ)—H,(NgT,). A homomorphism Fy:H, ()
—H,, (B) is defined by A, Ty— [(f| NT)«4,] gT, and linearity.

If

/

F F
(X, 0) = (¥,8) = (Z,7)

where F=(f, g) and F' =(f’, g’) then the composition F'F:(X, a)—(Z, v) is
defined to be (f’f, g’g).

We define for each (X, a) a group K, (); a map F:(X, a)—(Y, B) will
induce a homomorphism F;:K,, (a)—K,,.(3). There will also be homo-
morphisms

m ﬂ(?)
Kpq—Hp g Kpg1—> Kp_1,0

The following theorems constitute the theory for compact pairs, and are
proved later in the section.

THEOREM 1. For each (X, ) and each q the sequence

m e l 7®
s> Ky y—Hyg—Kpg1—>Kpy,g— -+ > Kog1—> K_1,,—0

is exact.
THEOREM II. For each (X, ) we have K,y =H,(X) and K_;,,=Hy().

THEOREM lII. The homomorphism n=5©® . . . 9@ of H,(X) into Hy()
given by
p(® 7®
H,(X) = Kp1—Kp 10—+ > Kopo1—> K_1,, = Hy(a)
is such that n=(—1)P»+D 2%, where w, is the projection homomorphism of
Hy(X) into Hy(x).

TuaeOREM IV, If

’

F F
(Xt a) g (Y’ B) - (Zs 7)
then (F’F)). = Fy Fy and (F’F)k = F! F.
TrEOREM V. If F=(f,g) maps (X, a) into (Y, B) then Fi.: K,,_1(a)—K,._1(B)
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cotncides with fe:Hp(X)—>Hy(Y); also Fr:K_1,,(a)—K_1,,(8) coincides with
gx: Ho(a)—H,(B).

THEOREM VI. If F: (X, a)—(Y, B), there is commutativity in each rectangle

of
l m n(P)
« = Kpo(@) = Hp o(a) = Kpga(@) — - -
LFy ; LFa m L Fs
« = Ky, 4(B) = Hp,o(B) = Kp,g—1(B) — -

We now begin the proofs.

(6.1) LEMMA. Suppose that X is a compact Hausdorff space, and that
a=(AY, - - -, A") is a closed covering of X. If B=(B!, - - -, B*) is a collection
of closed subsets of X, there is a collection y=(C", - - -, C*) of closed subsets of
X with C* containing B* in its intertor, 1=1, - - -, s, and with a set of the type

CioN\ - - - NC' sntersecting some A7 if and only if BN\ - - - MB' intersects
Al

Proof. It is sufficient to prove that if 1 £k =s then thereisay=(C", - - -’
C*) with C*=B"for 15k, C* containing B* in its interior, and C¥*M - - - N\C»
NA7= & if and only if BN\ - - - \B#»MA7% &. Suppose that C* contains
BF in its interior and that C* intersects any set of the type B/ - - - M B
MA7 if and only if B* intersects B/ - - - M\B#»NA7. Let Ci=B* for ik.
Then CoN\ - - - NC?NA7 & if and only if BN\ - - - NB»NAi= . The
assertion follows.

(6.2) DEFINITION. Suppose that (X, «) is a compact pair. Then a finite
open covering % of X is a special covering of (X, «) if and only if

(i) whenever U, - - -, U% are elements of # with UM\ - - - N\ U% inter-
secting each of A%, - - - | Aiathen UM\ - - - N\ U¥%intersects A7\ - - - MATq;
(ii) whenever U, - - - | U% are elements of » with UM - - - N\NU»= O,

there is an element U such that if U%MAis= & then UM - - - N\NU»NA47
# (. The set of all such special coverings will be denoted by U(e).

(6.3) THEOREM. Suppose that (X, o) 1s a compact pair. If v is an open cover-
ing of X, there is a special open covering u of (X, ) which refines v.

Proof. Let Y™ consist of all xEX with x&EA4°* for at least m values of 7.
Then Y™ is closed, Y"»t1C ¥™ and Y'=X. We prove the following by induc-
tion for r=m=1.

L,.: there exists a covering B,=(B1, - - -, B*) of Y™ by closed subsets of
Y™ such that B, refines v and such that 8, satisfies (i) and (ii) of the definition
of a special covering with the U¥s replaced by B¥'s.

L, may be seen to be true. Suppose L is true and that 8,= (B!, - - -, B?)
is the desired covering of Y™, By Lemma 6.1, there is a collection vy
=(C, - - -, C* of closed subsets of ¥»~1 with C’ containing B* in its interior
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relative to ¥”~! and with CiN\ - - - NC% intersecting 47 if and only if
B\ - . . MB intersects 47. It may be seen that v satisfies (i) and (ii) of
Definition 6.2, since B, does. We may also suppose v sufficiently small so
that v refines v.

Now suppose xEY"~!— ¥™ Then x is contained in exactly m—1 A¥s.
There is also a neighborhood of x relative to ¥Y™! every point of which is
contained in exactly those 4¥s which contain x. Hence we may expand v to a
covering

ﬂm—l = (Cl’ cee, Co, Ca+l’ e ,C"'H)

of Y™ ! by closed sets, where all points of C*t% are contained in exactly the
same A¥s, and where B, refines v. Suppose CN\ - - - N\ (C¥ intersects each
of A#, - - . Aie If 4y, - - -,1,=s5, then C*N\ - - - N\C¥ intersects A7 - - -
MA7asince v satisfied (i). If some 4> s then 4%, - - -, 472 must each be one
of the 4¥s which contains Cé. Then

AN\ - N\ Aia D Ck D Civo. .. Cin,

Hence B,-1 satisfies (i).

Suppose now that CoN\ - . - NC%= . If 4, - - -, 1,5, there is a Ci
such that if C*M A7 & then CioN\ - - - NC»MA75 ¥, since v satisfies (ii).
Suppose #4.>s. If C#MAi=@ then AiDC*. Then CiN\ - .. NC»NA47+
=CiN\ - - - \C» F. Hence B, satisfies (ii). The induction is complete.

Now L, is true, with By =(B!, - - -, B*). Let u=(UY, - - -, U*) be such
that u refines v, U* D B?, and such that UM - - - N\ U* intersects A7 if and
only if BN\ . . . M\B intersects 47. Then # is a special covering, and the
theorem follows.

Suppose that (X, @) is a compact pair. For each special covering u € U(a)
there is the nerve X,. There is also a covering a,=(4,, - - -, 4}) of X,,
where A} consists of all simplexes 72 = (0J° - - - U?) of X, with U\ - - - N\ U
MNA$# J. Furthermore, from (i) of Definition 6.2, A9\ - - - NAY consists
of those simplexes 77 of X, with U\ - - - N UP intersecting A%\ - - - NA%,
In particular, the nerve (Xu)a, of oy coincides with the nerve X,. If T,
=(A' - - . A%) is a simplex of X, then T¥=(d% . - - A%) is a simplex of
(Xu)a, and T,=T;. Moreover, NT¢=A%N - - - NA% consists of all those
simplices 77 of X, with U°"\ - - - N\ U? intersecting N T,

If u, y€ U(a) and v refines u, let 7,, denote a projection of X, into X..
It may be checked that m,, maps N7 into NT}; this map is denoted by
7r..,[ NTy. It follows that (m,., id), 4d the identity function, maps the simplicial
pair (X,, a) into (X, o). Define Fov = (m,,, id).

(6.4) For a simplex Ty of X, the limit group of the inverse system [H(NTY),
(Tou| NTY) 4], indexed by U(a), is Hy(NT,).

Proof. We have that NT7 consists of all simplices of X, whose intersection
intersects NT,. Also, m,,|NT; is a projection of NT? into NTY. Since U(a) is
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cofinal in the set of all open coverings of X, the limit group may be identified
with H,(NT,).

(6.5) If v, uE U() and v refines u, then (Fv+),=Fy and (F),=Fpy are
independent of the projection To.. If also w refines v then FyFy=Fy and
FRFy=F"

Proof. If m,, and m,, are projections of X, into X,, then the maps (m,., 7d)
and (m},, 1d) satisfy the hypothesis of (5.8). Hence Fy* and Fy* are independ-
ent of the projection.

(6.6) The limit group of the inverse system [H, o(aw), Fy'], indexed by U(a),
is isomorphic with Hp 4(c). Henceforth we identify the two.

Proof. Consider an element 4,- T, of H, (), where 4,EH,(NT,). Ac-
cording to (6.4), A,=(4,(%):uE U(x)), where 4 ,(u) is the coordinate of 4,
in H,(NTY), and where, if v refines «, then (mou|N7T})xA4 5(v) =A,(u). For each
v, Ap(v) - T!is an element of H, o(e,) and if v refines » then F}* maps A4,(v) - Tq
into 4,(u)- T;. The correspondence

ATy — (Ay(u) Tyiu € Ua))

together with linearity, yields an isomorphism of I, ,(e) onto the limit group.
(6.7) DEFINITION. For a pair (X, a), K, (a) is defined to be the limit
group of the inverse system [K, o(ow), F2], indexed by U(a). The maps

l m n(P)
Ky o(a) = H, () > Ky g1 —— Kp1,4(a)

are defined as limits of

Ky o(aw) = Hp,o(aw) = Kp,g-1 — K p-1,q(t)-
Theorem I then follows from (5.5), together with the fact that the groups
of e, are either compact or finite-dimensional vector spaces.

THEOREM 11, We have Kp_1(c) = Hp(X), K—1.4(c) = Hy(<).

Proof. Consider the inverse system [K, _i(a.), Fi*]. According to (5.3),
K, _1(an) =H,(u). According to (5.7), Fi:K, (o) —Kp,—1(a,) coincides
with ey H,(v)—H,(x). Hence the inverse system coincides with [Hp(w),
Tou] and K,_1=H,(X). Consider now the inverse system [K_j(a), F{'].
Now K_io(o) = Hy((Xu)aw) = Ho(u) and Fi* is the identity by (5.7). Hence
K_,,, may be identified with H,(a).

TueoreM 1II. The homomorphism n:H(X)—>Hy(a) is such that 7n
=(—1)r@+Di2r,,

Proof. Let W be an open covering (W?, - - -, W) of X where WiDA*
and where Wi\ « . - N\Wias« & if and only if A% - - - NA¥z= . Then
X, =X, and m, =m,. Consider any special covering » of X such that if U is
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an element of » and UNA4i# & then UCW". Since u is a special covering, if
U - - - NU?## ¥, where the U¥s are elements of %, there is an element U*
such that if U'MAi#= g then UM - - - NUPN4;# . It follows that (X,,
o,) satisfies the hypothesis of (5.6). Let f be a function assigning to each ver-
tex U of X, an element A% of o, with UNAis & (that is, U is a vertex of
A}). According to (5.6), f:X,—(X.)au=X, is simplicial and fx:H,(X.)
—H,((X.)a) is such that fy=(—1)?@+D/2y where 7, is the composition

n(P) 7,(0)
H,(X.) = Kpa(aw) — -+ - — K_1 () = H,((Xu)aw).

In the diagram
Xu'f_) (X.,)au = Xa = Xw

note that » and w are chosen so that f: X,—X,, is a projection ., of X, into
X SO Tyws =fx and

Tuwk = (—=1)PPHD 2 = (—1)p(pD /2y

Since X,=X, and m,=1,, the theorem follows.

(6.8) DEFINITION. Suppose F=(f, g) maps the compact pair (X, «) into
the compact pair (Y, B) where 8= (B}, - - -, B?). Denote by P(F) the set of
all pairs (u, v), where #€ U(a) and v& U(B) and where if U is an element of
u then there is an element V of v with f(U)CV. Let f,,: X,—X, assign to
each vertex U of X, a vertex V of Y, with f(U)C V. Then f,, is simplicial.

There are the coverings o, =(4,, - - -, A}) of X and B,=(B:, - - -, BY)
of Y¥,. Moreover (X,)a, = Xqand (¥,)B, = Y. It may be seen that F** = (f,,, g)
maps the pair (X, a,) into the pair (¥, 8,). Moreover, by (5.8), Fy": H, ,(a.)
—H, .(B,) and Fy’ are independent of the particular f,, chosen. Also, if
#'E U(er) and «’ refines # we have F'*=(m,,, id) mapping (X,., a,’) into
(Xu, o). If v refines v’ € U(B) there is F** = (my,, 1d) mapping (Y, B,) into
(Yy, By). Then Fve’' Fuefvw'v= Fu's’ Hence
¢ BRI, PR -

Consider the inverse systems [K, .(@.), F¢*], indexed by U(a), and
[K,..(8.), F;'/], indexed by U(B). For (u, v)EP(F), there is the map
Fy' Ky o(an)—K,,4(Bs) such that (*) holds. There is induced, in the limit, a
map Fi: K, o(a) 2Ky q(B).

(6.9) The limit of the map Fy': Hp o(ctn) —>Hp o(By), (4, v) EP(F), is the map
F), defined earlier.

Proof. It is sufficient to check the equality of the two maps on elements
Ay T, T, an oriented g-simplex of a and 4,EH,(NT,). Now F, maps
A, Tyinto [(f{NTo)sd,] gT,. Also, according to (6.6), A, To=(A,(u)- T*:
€ U(a)). Now Fi* maps A,(u)- T¢ into [(fus| NT¥)xd (1) ]-gT? This is the
coordinate in H,,o(8,) of [(f|NT)+A4,] gT,.
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We leave the proofs of Theorems IV, V, and VI to the reader.
7. Proof of the basic theorem.

THEOREM. Suppose that A_1DAyD - - - DA, 1s a sequence of closed sub-
sets of a compact space X, and that a1, K - + + K", where o 1s a closed cover-
ing of A% Then

(i) the kernel of wa,: Hi(A,)—Hj(c,) is contained in the kernel of the injec-
tion I:H;(A,)—H;(A_)) for j<n;

(ii) the image of Tap a0 Hi(o)—H(otg) is contained in the image of ma,:
H;(Aoy)—Hj(a) for j=n1.

Proof. For each ¢ there is a projection  =ma;,q;_, of a; into a;_; such that
H;(A»dN - - - NAi; AN - - - NrAi) =0 for all jSn. Let Il 14,4,
denote the inclusion map. Then Fi=(I{, w) maps (4, o) into (41, @i-1)
and Fy: K, o(a:)—Kp (i) is trivial for 0Sp<n.

Consider the diagram

m (p)
« = Hy o)) — Kpga(a)) —— Kp_q,(@s) — Hpq,q(aq) — - -+

O D 2
cr = Hy air) = Ky ga(oi) — Kpo,(@i1) = Hpq,0(@i1) =+ - -

Now (1) if xEK, 4u(ow), p<n, and 7@ (x)=0, then Fi(x)=0. For if
n®(x) =0 then x=m(y) and Fi(x)=Fim(y) =mF;(y)=0. Moreover, (2) if
xEKp_1,4(as), pSn-+1, then Fi(x) EKp_1,q(ais) is of the form n® (y) for some
YEKp —1(ai).

To prove (i), suppose T, (x) =0, xEH;(4,) =K; (a.). Then, by Theo-
rem III, n(x) =9©® - - - nD(x) =0 in K_y;(an) =Hj(en). By (1), Fgn® - - -
D) =n® - - . g DFRx)=0 in Ko,a(as). By (1) again, FF'p@ ...
N DFR(x) =n® - . . g Fp ' Fp(x) =0 in Ki,j_s(ans). Continuing, Fp~ - - -
Fy'Fi(x) =0 in K; _1(otn_j—1). But Fp~7 - - . F§(x) is, by Theorem V, the in-
jection I of H;(A,) into H;(4.—;j—1). Hence (i) follows.

To prove (2), suppose xEHj(a,) =K_;,;(as). The map

)
Ko,j1 KA K_y,j

is onto, by Theorem I, so x=79®(x¢), xeEKo,j1(as). By (2), Fg(x0)
E€K,y,;_1(ctn—1) is of the form 9V (x,) for some x1EK;,;—s(a,—1). Continuing
by use of (2), Ff#*%(x;_1)) EK;_1,0(0tn—j11) is of the form n?(x;) for some
xEK; _1(on_j31). Then

(0) (7 (0) (7—-1)_n—j+2
n o e (x) =79 - Fr ~ (xi-1)

n—ji+2 (0) (7—2)_ _n—j+3
Fy " n  «-om” Fi o (x-)
n—j+2

= F, - o Fi(2).
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By Theorems IV and V, Ff~#*2 ... F} is the projection 7 of Hj(a,) into
Hj(an—j41). Hence image ma,,a,_j,, Cimage ma,_j,,. For j=n-1, it follows
readily that image 7., ., Cimage mq,.
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