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1. Introduction. We treat here such topics as homology local connected-

ness, regular convergence, and the Vietoris mapping theorem^1). In general,

we are interested in those topics of topology which are based on the technique

of chain-realizations. We present an alternative technique, based on one

central theorem (Theorem 2.3). One justification for our technique is that it

allows the use of compact coefficient groups as well as fields. Moreover, we

hope that with further study it will provide a certain amount of unification

of the topics treated.

The paper is divided into two parts. The first part consists of §§2, 3, and

4. In §2 we state the basic theorem and some of its corollaries. In §§3 and 4

we give a few applications of our theorem to the topics already noted. In the

second part, which is not dependent on the first part, we prove the basic theo-

rem. In §§5 and 6 we develop in detail a Kelley-Pitcher theory of finite

closed coverings of compact spaces. This theory was partially developed in

the well-known Kelley-Pitcher paper on exact sequences [3, pp. 703-706].

In §7 we use this development to prove the basic theorem. We would be inter-

ested in knowing whether or not the basic theorem can be proved by more

elementary means.

2. The basic theorems. In this paper, a space will always be a Hausdorff

space. Suppose that a = (Al, • • ■ , Ar) is an ordered, finite covering of a

space X. In r-space, let A* be the point whose jth coordinate is 8). Then the

nerve of a will be the collection of all simplices (A u>, • ■ ■ , A *«) with A *°/^\ • • •

7\^4««^0. If X is compact, H„(X) will denote the tt-dimensional Cech ho-
mology group with coefficients in a fixed group ®, which may be either a field

or a compact abelian group; H0(X) will denote the reduced 0-dimensional

group. For a covering a, Hn(a) denotes the homology group of the nerve of a.

It u = (U1, • ■ • , Ur) is an open covering of X, there is the projection

homomorphism iru:H„(X)—>Hn(u) which assigns to each element of Hn(X)

its M-coordinate.

By a closed covering a of a compact space X, we will always mean an

ordered, finite covering a = (A1, ■ • ■ , Ar) by closed sets in X such that every

point of X is in the interior of some A'. Given such an a, there exists an open

covering u = (U1, ■ ■ ■ , Ur) of X such that UiDAi and U^CS • • • C\TJ^9^0
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a bibliography on regular convergence, see White [4]; for a modern treatment of the Vietoris
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if and only if A^f^ ■ • • C\Aii9£0 (this is a special case of (6.1)). Then u and

a have the same nerve and Hn(a)=Hn(u). Define a projection homomor-

phism TTa'• Hn(X)—>Hn(a) by ira =iru. It may be checked that ira is independent

of u.

If a and fi are finite collections of closed subsets of X, then fi refines a,

or fi> a, if and only if given an element B of fi there exists an element A of a

with BEA. A projection 7r^„ assigns to each B in fi such an A. The induced

homomorphism of Hn(fi) into Hn(a) will also be denoted by irpa (or occa-

sionally by just +). If a and fi are closed coverings of X with /3>a, it may be

checked that ir0aira=Tra.

If A and 5 are closed subsets of X with A C-B, we denote by T^s:TTn(^4)

—»TT„(i3), or occasionally by T, the injection homomorphism which is induced

by inclusion. We denote by H„(A; B) the image of Iab-

(2.1) Definition. If a and fi are finite collections of closed subsets of X

and n is a non-negative integer, we write fi">a (fi n-refines a) if and only if

given an element B of fi there exists an element A of a with BC-4 and

iTy(5;^)=0forall/gra.

We write fi"'2>a (fi strongly n-refines a) if and only if fi>a and there exists

a projection irSa:fi->a such that Hj(Bi"r\ ■ ■ ■ r\B{"; tcB^Cs ■ ■ ■ r\irBi<)=0

for all Bio, ■■-, B{" in fi and all/gra.

(2.2) If y">fi and fi star-refines a, then yn^>a.

Proof. Since yn>fi, there exists a projection ic''.y—*fi such that Hj(C; w'C)

= 0 for each C in y and each/gra. Since fi star-refines a, there is a projection

ir" :|8—>a such that if 5 is in fi then every element of fi which intersects B is in

ir"B. Let 7r=ir'V. Suppose CiaC\ ■ ■ ■ C\Ciq^0. Then

c*° r\ • • • r\ c*t c c*° c *•'<> c*o r\ • • • n irc*«.

Then iT;(On • • • PiC'«; ttOH • • • fVO) =0 since 2?y(0; tt'O) =0,

/gra.

The following is the basic theorem of the paper; its proof is deferred to §7.

(2.3) Theorem. Suppose that ^4_iD^4oD • • • Z)An is a sequence of closed

subsets of a compact space X, and that c*_i<Kno:o<C • • • <5Cna„, where ai is a

closed covering of A,-. Then

t, (i) the kernel of iran'.Hj(An)—*Hj(an) is contained in the kernel of the injec-

tion I:Hj(An)—j>Hj(A^x) for all j tin, and

(ii) the image of iran at:Hj(an)—>Hj(ai) is contained in the image of the

projection icaa:Hj(A0) —>iTy(a0) for all j tin+ 1.

We now study the implications of the theorem in case Ai = X, all i.

(2.4) Definition. Let a, fi be closed coverings of the compact space X.

We say that a, fi determine Hn(X) if and only if a<fi and ira:Hn(X)-+Hn(a)

maps Hn(X) isomorphically onto the image of the projection ir0a:Hn(fi)

—>Hn(a). We say that a, fi partially determine Hn(X) if and only if image
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xa = image ir$a (this latter is equivalent to the classical notion that fi is a nor-

mal refinement [7, p. 140] of a).

(2.5) If a, fi (partially) determine Hn(X) and y>fi, then a, y (partially)

determine Hn(X).

Proof. It is always true that image 7raCimage irya. But image 7rTaCimage

irpa = image ira, so image ira = image irya.

(2.6) If fi, y partially determine Hn(X) and if fi>a then a, y partially de-

termine Hn(X).

Proof. We have image irya =irpa (image iryp) =irga (image ir^) = image ira.

The following consequence of (2.3) is used as the basis for the rest of the

paper.

(2.7) Theorem. If X is a compact space and if a_i<K"o;0«" • • • <Cna2n,

where a,- is a closed covering of X, then a„, a2n determine Hj(X), for all j^n,

and partially determine Hn+i(X).

Proof. In (2.3 i), let Af = X. Hence according to (2.3 i) the kernel of iran

is contained in the kernel of the identity map of Hj(X), j^n, and hence

7ra„ is an isomorphism into for j'^w. In (2.3 ii), set Ai = X and consider the

coverings a„, ■ • ■ , a2„. In (2.3 ii), the image of irai„an'Hi(a2n)—>Hj(an) is con-

tained in the image of ira„ for j'^» + l. Since the opposite inclusion always

holds, the two images are equal. Hence an, a2n partially determine Hi(X) for

j=%n + l. The theorem follows.

3. Locally connected space; the Vietoris mapping theorem. We consider

here a few properties of locally connected spaces; these are known for the

case when the coefficient group is a field [7, Chap. 6]. On the basis of these,

we give a new proof of the Vietoris mapping theorem as given by Begle [l ].

(3.1) Definition. A compact space X is said to be lc", n a non-negative

integer, if and only if given xEX and a closed neighborhood TJ of x, there

exists a closed neighborhood V of x with H,-(V; 77) =0, all j^n.
(3.2) If X is an lcn, compact space, then given a closed covering a of X,

there exists a closed covering fi of X with fin~3>a.

Proof. Suppose that y is a closed covering which star-refines a. For each

xEX, there is an element C of y which contains x in its interior. Hence there

is a closed neighborhood Vx of x with Hj(Vx; C)=0 for jt%n. Let fi be a finite

collection of the Vx whose interiors cover X. Then fin>y and 7 star-refines a.

By (2.2), j8"»a.

The following is equivalent to a classical theorem [7, p. 180 ] when the

coefficient group is a field.

(3.3) Theorem. Suppose that X is a compact lcn space. For each sufficiently

small covering a of X, there exists a closed covering fi>a such that a, fi determine

Hj(X), allj^n, and partially determine H„+i(X).

Proof. Let a_i be a closed covering of X. By (3.2), there are closed cover-
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ings a0, ■ ■ ■ , an-x with a_i<SC • • • <3C"a»_i. By (3.2), for all sufficiently small

an we have a„n2>o;n_i. Given such an an, we get a sequence a_i<JCn • • • «Ba2n.

By (2.7), an, a2n determine Hj(X),jtin, and partially determine iTn+i(X).

(3.4) Definition. We shall say that the coefficient group G is elementary

if it is either a field or an elementary compact group(2). In case G is elemen-

tary, we say that Hn(X), or a subgroup thereof, is elementary if it is a finite

dimensional vector space when G is a field, or an elementary compact group

when G is an elementary compact group.

Condition (b) of the following theorem is similar to property (P, Q)n of

Wilder [7, p. 193].

(3.5) Theorem. If the coefficient group is elementary, then the following

are equivalent for a compact space X:

(a) Xis lcn;

(b) if A and B are closed subsets of X with A in the interior of B, then

Hj(A; B) is elementary for j gra;

(c) if A is a closed subset of X and U is a closed neighborhood of A, then

there is a closed neighborhood V of A with TT,( V; U)=Hj(A; U) for all j g ra.

Proof. To show that (a) implies (b), suppose (a) holds and that A is con-

tained in the interior of B (written AEEB). Let A-x = B. We may find a

sequence B=A-x, Ao, ■ • ■ , An=A such that -4,-+iCC-<4«■ Let a_i be a closed

covering of A-x- There exists a closed covering fi of A^x which star-refines a-x.

Since A 0 is in the interior of A-x and X is lcn, there is a closed covering a0 of

^40 with a0n>fi. By (2.2), a0")S>a-i. Similarly there exist closed coverings af of

Ai with a_i«na0«" ■ • • «nan. According to (2.3 i), the kernel K of

iran:Hj(A)—*Hj(otn) is contained in the kernel K' of IAb'Hj(A)—*Hj(B) for

/gra. Now Hj(a„) is elementary, together with its subgroups and factor

groups. Hence Hj(A)/K—image iran is elementary. Then

Hj(A)/K' m (Hj(A)/K)/(K'/K)

is elementary, being a factor group of an elementary group. But Hj(A; B)

^Hj(A)/K'; hence (a) implies (b).

Suppose now that (b) holds and that A E C U. For each closed V with

ACC VE U let K(V) = f\Hj (V; V) where the intersection is taken over all

V with ^CCF'CCF. Since each Hj(V; V) is elementary, there is a V

with K(V)=Hj(V; V). We note that Ivu maps K(V) onto K(U). For if

xEK(U), then xEHj(V; U) and there is a yEHj(V') with Iriu(y) =x. Then

Iru(Ivr(y))=x, and Ivv(y)EK(V). Hence the K(V), together with the

Iw, constitute an inverse mapping system of elementary groups, and Ivu

maps K(V) onto K(U). Hence, given xEK(U), there is a function assigning

to each Fan x(V)EK(V) with x(U) =x and Iw(x(V'))=x(V). Hence there

(2) An elementary compact group is defined to the direct sum of a finite number of groups,

each of which is the reals mod 1 or a finite cyclic group.
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is a yEHj(\)V)=Hi(A) with lAr(y)=x(V). In particular, lAu(y)=x- Then

Hj(A; U)=C\Hj(V; TJ). But each Hj(V; TJ) is elementary, so that for some

V, Hj(A; U)=Hj(V; U). It follows that (b) implies (c).
It is easy to see that (c) implies (a), by taking for A an arbitrary one-

point set.

(3.6) Vietoris mapping theorem. Suppose that f is a continuous map of

a compact space X onto a compact space Ysuch that Hj(f~'i(y)) =0 for all j^n

and yE Y, where the coefficient group is elementary. Then f*:Hi(X)—>Hj(Y) is

an isomorphism onto for j^n, and is onto for j = n + l.

Proof. Case I: X is lcn+1. Let /3_i be an arbitrary closed covering of Y.

Suppose that 7 is a star-refinement of fi-i; then/_1(7) is a star-refinement of

/-1(/3_i). Suppose yEY. Then y is interior to some element C of 7, and

/_1(y) is interior to/-1(C). Since X is lc" and Hj(f~1(y))=0 for j'gra, there

exists by (3.5) a V with f~l(y) CC VEf~l(C) and HS(V; f~l(C)) =0, jt%n.
There exists a closed neighborhood By of y with f~l (Bv) E V. Let fio be a finite

subcollection of {By} whose interiors cover Y. Then f~1(fio)n>f~1(y) and

f~*(y) star-refines/-H/3_i); by (2.2),/-1(/30)n»/_1(/3-i). In a similar manner we

obtain a sequence fi~i<fi0< • ■ • <fi2n of closed coverings of Y such that

if ai=f~1(fii) then a_i«" • • • <Kna2n. Then by (2.7) an, a2n determine Hj(X),

j^n, and partially determine Hn+i(X). Since fin can be made arbitrarily small,

for every sufficiently small covering fi of Y there exists a refinement fi' of fi such

that the coverings a=f~l(fi), a' =f~l(Jfi') determine H,(X), j^n, and partially

determine Hn+i(X).

Consider the diagram

Hs(X)

Hi(ct) IIAa')

f* II      —      II

Hi(fi) Hi(fi')
"7   ^^^

Ili(Y)

where a, fi, a', fi' are as above. There is commutativity: ir,if* =ira, ir^f* =ira>,

etc.

Note first that/* is an isomorphism into for j'^w. For ira=irpf* and tt«

is an isomorphism into; hence/* is an isomorphism into.

By (3.3), Hi(X) is elementary for j^n + l; hence i£ = image/* is elemen-

tary. Moreover, image 7Ts/* = image ir$ for j^w + 1. For if yEHj(Y) then
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Tr0(y) = irB'g(Tra-(y)) = ira'a(ira-(y)).

Since a, a' partially determine Hj(X), there is an xEHj(X)  with ira(x)

= rra(y). Then ttbUx) = ira(y). Hence

tb(K) = ir$(Hj(Y)) for all sufficiently small fi.

Suppose now that yEHj(Y). K—y denotes the set {k— y'.kEK}. For

each fi there is a kEK with irB(k) = irB(y), so that k—yELB = (kernel wB)

T\(K — y). Now K—y is a translate of K, which is elementary. The LB are

nonempty and decrease with fi. Hence Ob Lb7l0. If zE^a LB, then itB(z) =0

for all fi, so that z = 0. Hence OEK — y and yEK. Hence/* maps Hj(X) onto

Hj(Y),jtZn+l.
Case II: X a compact space. We may consider X as embedded in an lcn+1

compact space X' (for example, X' a product of intervals). The map/ gener-

ates a decomposition of X whose elements are the sets/-1(y), yEY. Extend

this decomposition to a decomposition of X' by admitting as elements the

one-point sets of X' — X. This upper semi-continuous decomposition of X'

has a decomposition space Y' and a decomposition map F:X'—>F\ We may

identify Y with F(X) and / with F\ X. We have the diagram

Bi+x(X') -* TTi+1(Z', X) -+ Hj(X) -» Hj(X') -> TT,(X', X)

J.F*j J.F* j./* J.F*2 J.F*

Hi+x(Y') -> FJ+1(F', F) -> TT,(F) -+ Z7;(T') -+ ff,(F', F)

where the downward homomorphisms are induced by F. Now both the F* are

isomorphisms onto, since F maps X'—X homeomorphically onto Y' — Y. For

/gra, F*2 is an isomorphism onto by Case I, and F*i is onto. By the five-

lemma of Eilenberg-Steenrod [2, p. 16], /* is an isomorphism onto. For

/ = ra + 1, F*2 is onto; by the five-lemma,/* is then onto. The theorem follows.

4. Regular convergence. In this section, we prove some theorems con-

cerning regular convergence. For the known facts where the coefficient group

is a field, see [5].
(4.1) Definition. A sequence (Ai) of closed subsets of a compact space

X is said to converge n-regularly to the subset A of X if and only if (^4.)

converges to A, and given xEA and a closed neighborhood U of x there

exist a closed neighborhood Fof x and a positive integer A7such that Hj( Vf~\A ,•;

Ur\Ai) =0 for /gra and i^N.
If fi = (B1, ■ ■ • , Br) is a covering of X and A EX then fif~\A denotes the

covering (B'fVl, • • • , BTC\A) of A.
(4.2) If the sequence (Ai) converges n-regularly to A, then given a closed

covering a of X there exist a closed covering fi of X and a positive integer N such

that aC\Ai«infif~\A,• for all i^N.
Proof. Let 7 be a closed covering of X such that 7 star-refines a. For each
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xEX there is a C in 7 with x in its interior. Hence there is a closed neighbor-

hood Bx of x and a positive integer Nx such that Hi(BxC\Ai\ CC\A^) =0 for

j=%n and i^Nx. Let j3 be a finite subcollection of Bx whose interiors cover X.

Then fir\Ain>yC\Ai for i sufficiently large. Since 7^; star-refines aP\Ai,

then fiC\A inyt>aC\A i for i sufficiently large.

(4.3) If (Ai) converges n-regularly to A, then for each sufficiently small

closed covering a of X, there exists a closed covering fi>a and a positive integer

N such that aC\A,-, fiC\A,• determine Hj(A,) for jtin and il\\N and partially

determine Hn+i(Ai) for il^N.

Proof. The proof follows easily from (4.2) and (2.7).

(4.4) Definition. Suppose that A is a closed subset of the compact space

X, and that a is a closed covering of X. We say that a is in general position

relative to A if and only if whenever A**, ■ ■ ■ , A** are elements of a with

A*r\ • • • r\A^r\A^0 then int A*'!^ ■ ■ • Hint A^C\A^0.
(4.5) If A is a closed subset of the compact space X and a is a closed cover-

ing of X, there is a refinement fi of a in general position relative to A.

Proof. Suppose a=(Al, • • • , AT). For each i0, ■ ■ ■ , iq, select a point

xii.••■.»9 0I int Aior\ • • • f~\ int^^f^, if such a point exists. Let fi

= (Bl, • ■ • , BT) be a closed covering of X such that B' is in the interior of

A* and such that B* contains (in its interior) all the x,0,...,,-, which belong to

int A \ Then fi is the desired covering.

It will be noted that if (.4*) converges to A, and a is general position

relative to A, then the nerves of a(~\A and aC\Ai coincide for i sufficiently

large.

(4.6) Theorem. Suppose that the sequence (Ai) of closed subsets of the com-

pact space X converges to A, and that for each sufficiently small closed covering

a of X there exists a closed covering fi of X and a positive integer N such that

a(~\Ai, fiC\Ai determine Hn(Ai) for i^N. Then for each a, there is a fi such that

af\A, fif~\A determine Hn(A).

Proof. We consider closed coverings a <fi<y which are in general position

relative to A. We use the diagram

Hn(A) 3 Hn(y r\A) = Hn(yT\At) V- nn(At)

\T2 J, 1T2 1T2//
^En(fiC\A) = Hn(fir\A,)S /

l1 1,"       V
\ I *l /

\n(ar\A) = H%(ar\A{y

where all the x's are projections and where i is always large enough so that

the indicated equalities hold.

Suppose that xEHn(A), #7*0, and iri(x) =0. Suppose a(~\Ai, fil~\Ai deter-
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mine Hn(Ai), i^N, that tt2(x)^0, and that pY\4<, yC\A{ determine Hn(Ai),

i*zN. Since tt$(x) =7r2"ir2(x), there is a yEHn(A,) with w2 (y) = w2(x). Then

y^O since ir2(y)?£0. Then also ir{(y)9i0, since aHA,-, fiC\Ai determine

Hn(Ai). But ir{(y)=irx(x). This is a contradiction. Hence xi is an isomor-

phism into.

Suppose that aC\Ai, fir\A{ determine TTn(^4,), i'St N. We show that image

7ri = image ir" ; we know that image 7TiCimage ir{'. Let yEHn(fif~\A). There

is an XiEHn(Ai) with tri (x) =ir{' (y). For each closed covering 7 of X, 7 in

general position relative to A, with y>fi, it" tc" (tc{ (xi)) =tr{ (xi) =7^^" (j).

Hence for each such 7 there is a zy (=irz (xi)) in TTn(7P\^4) with tri'iri'(zy)

= iri'(y). Hence there is an x£TT„(^4) whose (af\A)-coordinate is W(y)-

Then iri(x) =wl' (y). Hence if a!~\Ai, fiC\At determine Hn(Ai), i^N, and a, fi

are in general position relative to A then aC\A, fif~\A determine Hn(A).

(4.7) Theorem. Suppose that the sequence (Ai) of closed subsets of the com-

pact space X converges n-regularly to the subset A. Then Hn(A) ^Hn(Ai) for i

sufficiently large.

Proof. There exist, by (4.5) and (4.3), closed coverings a, fi of X, in general

position relative to A, such that aC\Ai, fif\Ai determine Hn(Ai). By (4.6),

a(~\A, fiC\A determine Hn(A). Hence Hn(Af) and H„(A), for i sufficiently

large, are isomorphic to the image of the projection ir'.Hn(fif\A)—*Hn(ar^A),

and are isomorphic to each other.

5. The Kelley-Pitcher theory for simplicial pairs. In §§5 and 6 we con-

tinue an investigation of Kelley and Pitcher [3, pp. 703-706] seeking rela-

tionships between the groups of a space, the groups of the nerve of a covering

of the space, and the groups of intersections of elements of the covering. The

treatment is self-contained; the portion of this section through (5.5) is due to

Kelley-Pitcher.

By a simplicial pair we mean a pair (X, a) consisting of a finite simplicial

complex X and a coveringa = (Al, ■ ■ • , Ar) by subcomplexes. Xa will denote

the nerve of a. However, Cp(a) and HP(a) will indicate the chain group and

homology group of the nerve Xa. If a simplex of Xa is of the form Tq

= (Aia ■ ■ -A**) then define f)Tq=Ail>r\ • • • C\A^. Consider Xa as having

a ( — l)-dimensional simplex F_i with f*IF_i = X.

If Sp is a ^-simplex of X let l\Sp denote the subcomplex of Xa consisting

of all Tq with SPE^Tq. If A1", • ■ • , A*" are all the elements of a which con-

tain Sp, p ^0, then /\SP consists of all faces of the simplex (Ai0 ■ • -A'«). If S_i

is the ( — l)-dimensional simplex of X, then AS_i = Z„. The boundary operator

will be denoted by d.

Denote by Cp,q(a) the set of all linear forms YgSpTq where g£® and

Sp, Tq are oriented simplices of X, Xa respectively with SpCDF,. Agree that

gSp- ( — Tq) = g( — Sj,)- Tq = ( — Q,)SP- Tq and that forms are to be added as
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usual. If Ap=Yii<Si> IS a p-chain of V\Tq, define Ap- Tt= Y%>Si' Tq. If
Bg= Y&'Tl is a g-chain of ASP, define SPBq = Y&Sp' T\.

The group Cp,-i(a) will be identified with the chain group CP(X) under

the identification Ap- T-i*->Ap. The group C-i,q(a) will be identified with the

chain group Cq(a) under the identification S-i-Bq*-+Bq.

A homomorphism A:CP,q-^>Cp-i,q is defined by A(ApSq) = (dAp) Sq and

linearity. A homomorphism D:Cp,q—*CP,q-i is defined by D(SpBq) =SP- (dBq)

and linearity.

(5.1) If p^O the sequence

D D
t^p,g4-l      ► tj,,j      * LsPtq—l      ►

is exact. If p= —I, the sequence coincides with

d d
• • • —» Ca+i(a) —* Cq(a) —* Cq-i(a) —»•••.

Proof. It is clear that DD=0 since dd=0. Suppose p==\0 and that

D(YSpBtQ) = YSv(dB\)=0, where the S], form a basis for CP(X). Then

dB\ = 0. Since B\ is on the simplex r\S*P, then Bfg=dCl for some C\ in ASp.

Then D(Y^p Gl) = Y&p B\, and the sequence is exact for pWO. The state-

ment for p = — 1 can be easily seen.

(5.2) The sequence

A          A
..._. c       _v r    _i. . .

*-* p+i,g       ^P.a

/?as AA = 0. P^e homology group HP<q(oi) of the sequence corresponding to the

indices p, q is isomorphic to the direct sum YHP(C\Tq), where the summation is

extended over all q-simplices Tq = (A'o ■ ■ ■ A**) with i0< ■ ■ ■ <iq.

Proof. It is clear that AA = 0. If q=-1, Cp,-i = Cp(X) andA=don CP(X).
Hence the homology group, if q=—l, is Hp(X)=HPt_i(a). Suppose g^O.

Elements z of Cp,q are uniquely represented as z= /.Ai- Tt, where the T\

are the oriented g-simplices of the form (A* ■ • ■ A**) with i0< • • • <iq and

where AlECp(C]Tl). This representation sets up an isomorphism of Cp,q with

YCp(^S<i) a°d the statement follows easily.

Define Ep<q to be the kernel of D:Cp,q-^Cp,q-u For pl^O, it follows from

(5.1) that Ep,q is the image of D: Cp,q+i~^Cp,q. We have the sequence

A A
•   •   •   —> Pp+ll8 —> Ep,q —>  •   •   • .

Define Kp,q to be the homology group of this sequence corresponding to indices

P, i.
(5.3) WehaveKp.-i = Hp(X).

Proof. KP,-i is the homology group of

A A
• •   •  —» Pp+l.-l —r Pp,_l —> Ep-1,-1 —*•••,
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Now T?:Cp,_i—>Cp,_2 = 0 so that EPl-x = Cp,-x = Cp(X). Moreover, A=d on

CP(X). The result follows.

(5.4) WehaveK_x.q = Hq(a).

Proof. We have C-x,q = Cq(a). Also D:C-i,q—*C-i,q-i coincides with

d:Cq(a)—+Cq-i(a). Hence jE_i,, is the cycle group Zq(a). Now -E0,c, is the

image of D: Co,q+i—>Co,q. Hence the image of A:E0.q—>E-i,q is also the image

of AF>:Co.9+i-*C_i,9. ButAD(YAio-Ti1+i) = Y(dAi0)-(dTlq+x) where dAf0 is of

the form g,S_i with g< the coefficient sum of A0. It follows that the image of

A:E0,q—*E-x,q is the bounding cycle group Bq(a). The result follows.

For each p^O, the sequence

V D
0 —> PP.q —* Gp,q —> Ep,q-x —» 0

is exact, where I' is inclusion. If p = — 1 the sequence is exact except that D

may not be onto. Taking homology groups and using a well-known method

of constructing exact sequences [3, p. 687] we get the exact sequence

/ m »j(p)
• ■ ■ —► Kp,q —> Hp,q —> KPlQ—x       > Kp—x,q —* ' ' '

-^Ko,q-x-^K-x,q—*H_x,q, where I is induced by inclusion /', m by D, and

?7(p) by the boundary operation. Since TT_1,, = 0, we get

(5.5) The sequence

I          m             Vp)
• • • —* Kp,q —> Hp.q —* Kp,q-x-* Kp-x.q —*•• • —* Ko,q-i —* K-x,p —* 0

is exact.

The map tj{p'>:KP,s_i->Xp_i,„ p^O, is of particular interest. Suppose z

represents an element x of Kp,q^x- Then z = D(z') where z'ECp,q. Then Az'

represents r](-p\x).

,,(p)              r\(-p~l)                                            n(0)

In HP(X) = Kp,-x    —* Kp-x.o-> Kp-x,2 —> • • • —> Ko,P-x-* K-x,P

= Hp(a), define t) = -nm ■ ■ ■ ̂ "-"n^.

(5.6) Theorem. Suppose (X, a) is a simplicial pair such that if S is a

simplex of X there is a vertex v of S such that if vEA * then SC-4 *. Any function

f assigning to each vertex v of X a vertex A' of Xa with vEA'is a simplicial map

of X into Xa. The homomorphism f*: Hp(X)^yHp(a) is given by f*=erj, where

€=(_l)p(P+D/2,

Proof. For a vertex v of X, Av denotes the simplex of Xa whose vertices

are those A* with vE-A*. Suppose v^v' if and only if hv = Av'. This is an equiv-

alence relation. Suppose the elements of each equivalence class are simply

ordered by an ordering >. Suppose also that v>v' whenever Av contains

Av' as a proper face. We have then a partial ordering > on the vertices of X
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such that if v>v' then AoAz/, if l\v = /\v' either v>v' or v'>v, if Av contains

hv' properly then v>v'.

Suppose 5 is a simplex of X. There is a vertex v such that if v' is any

other vertex of 5 then AvEAv'. It follows that there is a vertex v0 of 5 (with

i\v0 = Av) such that va<v' for all vertices v' of 5. It then follows that the

vertices of 5 may be ordered uniquely as fo<^i< • • ■ <vp. In this proof, all

oriented simplices S=(v0 ■ ■ ■ vp) will have »o< ■ ■ ■ <vp. Ii v0EA* then

SEA'. Also if ViEA* then vpEA>.
Consider / as in the statement of the theorem. If S=(v0 • • • vp) then

f(vf) is a vertex A*' v/ithVjEA'0.Then VpEA^r^ • • • r\A{" and /is simplicial.

A vertex of Xa will be denoted by a symbol of the form w,-. Define a homo-

morphism 3:CPr8—»Cp>9+i, pWO, by

g(v0 ■ ■ ■ vp) ■ (w0 ■ ■ ■ wq) —> g(v0 • • • vP) ■ (f(vo)w0 • ■ ■ wq)

and linearity. If S=(v0 ■ ■ ■ vp) then (w0 • • ■ wq)EAS and f(v0)eAS. Since

AS is a simplex, the definition has meaning.

It may be verified that D3 + 3D = identity. Hence if D(z) =0 then D(T(z))

= z. Hence (*) if z represents an element x of Kp,q, p^O, then AT(z) represents

^(x) in Kp^i,q+u

Let z= Y§i(voi • • • vPi) represent an element x of KPi_i=Hp(X). By (*),

7j(p)(a:) in Xp_i,0 is represented by

Y 8id(*>oi • • • vpi) -f(voi)

=   Zfi^H • ' • Vpi) -f(V0i) +  Y  (-l)'gi(l>0i ' ' •   Vji • ■ • Vpi)-f(voi).
i>o

By (*) again, i;(p_1)r;(p)(x) in Kp^it2 is represented by

Y flid(fn • • •   vp{) ■ (f(vu)f(voi))

= Y e.-(»s»- • • • vpi)-(f(vu)f(voi))

+ Y(~ 1)''-Jfli("i.- • • • va ■ ■ ■ vPi) (f(vu)f(voi)).
}>l

Continuing, the element ??(1) • • • rj^^x) in Ka.P-i is represented by

Y Qid(vP-i{Vpi)(f(vp-u) ■ ■ • f(voi))

= Y biDpi-(f(vp-a) ■ • • f(.Voi)) - Y &<i>p-ii-(J(Vp-u) • • • f(voi))-

Hence ri(x) is represented by

Y S<S-v(f(vpt) ■ ■ • /(*„*)) = (-l)"("+1)'2/(z).

The theorem follows for p^O. For p= — 1 the theorem is trivial.

If (X, a) and (Y, fi) are simplicial pairs then a map F: (X, a)—>( Y, fi) is a

pair F=(f, g) consisting of a simplicial map f'.X—>Y and a function g:a—yfi

which assigns to each A1 in a an element gA * = B> of fi with fA'EgA*. The cor-
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responding simplicial map from Xa to YB will also be denoted by g. Suppose

SpCflF, where Tq is a simplex of Xa. Then/(SP)C fig F9. If A is a chain of

X then/^4 will denote its image under/. There is the function

Y^T^Yf^iTq
of CP,q(a) into Cp,q(fi), which we denote by Fc. It may be seen that DFC = FCD.

Hence Fc maps Ep,q(a) into EPiQ(fi). Moreover, since AFc = FcA, there is in-

duced a map Fk:Kp,q(a)-+Kp,q(fi). Similarly Fc induces a map Fn:HPiq(a)

—>TTpi5(/3). The following may be seen.

(5.7) There is commutativity in each rectangle of

• • • —» Kp,q(a) -* Hp,q(a) —> Kp,q^x(a) —> • • •

1F* [Fh \.Fk

-> Kp,q(fi) -. Hp,q(fi) -> Kp,q-x(fi) -►•••.

Moreover, Fk:Kp,-x(ot)^>KPi-x(fi) coincides with /*:TTp(X)—>iTp(F) and

Fk:K-x,q(a)^K-x,q(fi) with g*:Hq(a)->Hq(fi).
(5.8) Suppose that F=(f, g) and F' = (f', g) are two maps of (X, a) into

(Y, fi) such that given a simplex S of AiEcx then there is a simplex S' of gA'Efi

such thatf(S)^Jf'(S)ES'. Then Fh = Fh' and Fk = Fk'.
Proof. For a simplex S of X suppose that S' is the smallest simplex of Y

containing/(S)U/'(S). If SGHF, then S'GDgF,. Define 3: Cp.8(a)->Cp+i,Q(^),
P^O, by

fl(»o • • • vP) -T9 -► [ Y (~m(f(vo) ■ ■ • f(vi)f'(vi) ■ ■ ■ f'(vp)) ]gTq

and linearity. Then A3 + 3A = F/ -Fc for p^l, A3 = FC' -Fc for p = 0. More-

over, F>3 = 3P. Hence 3:£p,9(a)-^£p+i.9(i3), p^O. It follows that Fh = Fh' and

Fk = Fk' forp^O.

The case p= — 1 remains. On C_i,p, FC = F£. Hence the conclusion follows

for p=—1.

The following theorem may be easily proved.

(5.9) If

(X, a) -+ (Y, fi) -» (Z, y)

then (F'F)h = Fi Fh and (F'F)k = Fi Fk.

6. The Kelley-Pitcher theory of compact pairs. In this section we extend

the Kelley-Pitcher theory to pairs (X, a), where X is a compact space and

a=(A1, • ■ ■ , AT) a collection of closed subsets of X which covers X. We

begin the section by summarizing the results.

For such a compact pair (X, a), define Hp,q(a) = YHv((^Tq), where the

summation is over all q-simplices Tq = (Ai" ■ ■ ■ A**) of Xa with io< • • • <iq.

If Tq is a simplex as above and if APEHp(C\Tq) then denote by Ap- Tq the
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element of Hp,q whose P,-coordinate is Ap and all of whose other coordinates

are 0. Agree also that Ap- ( — Tq) = (— Ap) • Tq. Then Hp<q is the set of linear

forms Y^l Tl where AipEHp(r\Tl).
A map F of a pair (X, a) into a pair (Y, fi) will be a pair F = (/, g) where

f'.X—>F is continuous and where g:a—>fi assigns to each A* in a an element

gA' = B> in fi such thatfA'EgA'. The simplicial map of Xa into Y$ will also be

denoted by g. If Tq is an unoriented simplex of Xa then f(C]Tq)E^gTq. The

map/ of C\Tq into C\gTq is denoted by/|flP9. There is the induced homo-

morphisms (f\ \)Tq)*:Hp(f\Tq)—>Hp(r\gTa). A homomorphism Fh:HPtq(a)

—>HP,q(fi) is defined by Ap Tq—>[(f\ (\Tq)*Ap] gTq and linearity.
If

(X, a) -> (Y, fi) -> (Z, y)

where F=(f, g) and F' = (f', g') then the composition F'F:(X, a)^>(Z, y) is

defined to be (f'f, g'g).
We define for each (X, a) a group Kv,q(a); a map F:(X, a)-^(Y, fi) will

induce a homomorphism Fk:Kp,q(a)^>Kp,q(fi). There will also be homo-

morphisms

/ m ij(p)

The following theorems constitute the theory for compact pairs, and are

proved later in the section.

Theorem I. For each (X, a) and each q the sequence

I           m              v(p)               I                          Vm
■ ■ • —* KVtq —> Hp,q —> 7tp,j_i-> Kp—i,q —> • • • —> Ko,q—i-> K—i,q —> 0

is exact.

Theorem II. For each (X, a) we have Kp,^i = HP(X) and K-i,q = Hp(a).

Theorem III. The homomorphism ri = r](a) ■ ■ ■ ii(-p) of HP(X) into Hp(a)

given by

,00 ,(0)
Hp(X) = Kp,~i ■-> 7sTp_i,o —►•••—» Ko,p-i-► K^i,p = Hp(a)

is such that rj = ( — l)p(p+1),2ira, where ira is the projection homomorphism of

HP(X) into Hp(a).

Theorem IV. If

(X, a) -* (Y, fi) -* (Z, y)

then (F'F),, = Fi Fh and (F'F)k = Fi Fk.

Theorem V.IfF= (f,g) maps (X, a) into (Y, fi) then Fk:Kp,.i(a)-^Kp,_i(fi)
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coincides with f*:IIp(X)—>Hp(Y); also Fk:K-x.q(c*)—>X_li3(/3) coincides with

g*:Hq(a)^Hq(fi).

Theorem VI. If F: (X, a)—>(Y,fi), there is commutativity in each rectangle

of
I                m                   jj(p)

■ • • —» Kp,q(a) —* Hp,q(a) —* KP,q-x(ct)->   • • ■

i Fk           \.Fh             I Ft
I                m

-> Kp,q(fi) -+ Hp,q(fi) -> Kp,q_x(fi)-► • • •

We now begin the proofs.

(6.1) Lemma. Suppose that X is a compact Hausdorff space, and that

a = (Al, ■ ■ • , AT) is a closed covering of X. If fi=(Bl, • • • , B") is a collection

of closed subsets of X, there is a collection y = (C1, ■ • • , C') of closed subsets of

X with C* containing Bi in its interior, i — 1, ■ ■ ■ , s, and with a set of the type

Ciar\ • ■ ■ t~\Cip intersecting some A> if and only if B^Cs ■ • • f^B1* intersects

A'.

Proof. It is sufficient to prove that if 1 g&gs then there is a 7 = (C1, • • • '

C') with Ci = Bi for i^k, Ck containing Bk in its interior, and C*°n • • • DC"

C\A^0 if and only if £''°n • • • C\B^r\A^0. Suppose that Ck contains

Bk in its interior and that Ck intersects any set of the type BiaC\ ■ ■ ■ r\Biv

(~\A> if and only if Bk intersects BioP\ ■ ■ ■ r\B^>r\A'. Let Ci = Bi for i^k.

Then OH • • • HOn,4V0 if and only if B*>n • • • C\Bi*r\Ai?±0. The
assertion follows.

(6.2) Definition. Suppose that (X, a) is a compact pair. Then a finite

open covering u of X is a special covering of (X, a) if and only if

(i) whenever Uio, ■ • ■ , £/'* are elements of u with Uior\ ■ • ■ f~\ Uip inter-

secting each of A '*, ■ ■ • ,^4'"then U'"!^ ■ ■ ■ f~\ 11** intersects A '<>r\ ■ • • P\A>*;

(ii) whenever Uia, ■ ■ ■ , U** are elements of u with £/'°n • • • fW^jZf,

there is an element Uik such that if TJikC\Ai^0 then U'"!^ ■ ■ ■ CMJ^C^A'

9^0. The set of all such special coverings will be denoted by U(a).

(6.3) Theorem. Suppose that (X, a) is a compact pair. If vis an open cover-

ing of X, there is a special open covering u of (X, a) which refines v.

Proof. Let Ym consist of all xEX with xEA* for at least raz values of i.

Then Ym is closed, Ym+1EYm and Y1 = X. We prove the following by induc-

tion for r^m^l.

Lm: there exists a covering fim = (B1, ■ • ■ , B') of Ym by closed subsets of

Ym such that fim refines v and such that fim satisfies (i) and (ii) of the definition

of a special covering with the Uvs replaced by Bvs.

LT may be seen to be true. Suppose Lm is true and that fim = (Bl, ■ ■ ■ , B')

is the desired covering of Ym. By Lemma 6.1, there is a collection 7

= (C\ • • • , C') of closed subsets of Fm_1 with C* containing Bl in its interior
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relative to Y"m_l and with CioPl ■ ■ • HC* intersecting A> if and only if

Bior\ ■ ■ ■ AP*» intersects A1. It may be seen that 7 satisfies (i) and (ii) of

Definition 6.2, since fim does. We may also suppose 7 sufficiently small so

that 7 refines v.

Now suppose x£ y"1-1— Ym. Then x is contained in exactly m — l A^'s.

There is also a neighborhood of x relative to Ym~1 every point of which is

contained in exactly those A^'s which contain x. Hence we may expand 7 to a

covering

fin-i = (C\ ■••,C, C+\ • • • , C*+')

of Ym~l by closed sets, where all points of C'+i are contained in exactly the

same Avs, and where fim-i refines v. Suppose C'°r\ ■ • •PiC'' intersects each

of A'", ■ ■ ■ , A'". If to, • • • , ip-^s, then C^Cs ■ ■ ■ HO intersects A™r\ • • ■

f~\A'* since 7 satisfied (i). If some ik>s then A'", • • • , A'* must each be one

of the Avs which contains C\. Then

a 'o n • • • r\ a 'o o d c*'° • • • o.

Hence j8m_i satisfies (i).

Suppose now that Cior\ ■ ■ ■ HC^0. If t0, • • • , ip£s, there is a C*"*

such that if CikC\A'?±0 then OH • • • C\Cipr\A'^0, since 7 satisfies (ii).
Suppose 4>5. If Cikf\A^0 then .40C**. Then OH • • • nOH.4'
= Cior\ ■ ■ ■ C\Cip9i0. Hence fim-i satisfies (ii). The induction is complete.

Now Li is true, with fii = (B\ ■ ■ ■ , B'). Let u = (U\ ■ ■ • , V) be such
that u refines v, C/OP', and such that U'0!^ • • • CMf^ intersects A' if and

only if Bior\ ■ ■ ■ f~\Bip intersects A1. Then u is a special covering, and the

theorem follows.

Suppose that (X, a) is a compact pair. For each special covering u E U(a)

there is the nerve Xu. There is also a covering au = (Al, • • • , ATU) of Xu,

where A*u consists of all simplexestp = (T7° ■ ■ ■ 0") of Xu with f/°n • • • C\UP

C\Aij£0. Furthermore, from (i) of Definition 6.2, A^C\ • • • C\Al« consists

of those simplexes rp of Xu with U°r\ ■ ■ ■ T\ TJ" intersecting Aior\ ■ • • f\4*'«.

In particular, the nerve (Xu)au of au coincides with the nerve Xa. It Tq

= (Ai" ■ ■ ■ A'") is a simplex of Xa then Tq=(A*° ■ ■ ■ A'j) is a simplex of

(Xu)a<t and Tq = T^. Moreover, \)T^ = Aisr\ ■ ■ ■ C\A\> consists of all those

simplices r" of Xu with U°(~\ • • ■ r\Up intersecting HTq.

If u, vE TJ(a) and v refines u, let x„„ denote a projection of X, into Xu.

It may be checked that irvu maps C\Tq into ClT^; this map is denoted by

x,„| f\Tq. It follows that (xt„, id), id the identity function, maps the simplicial

pair (Xv, a,) into (Xu, au). Define Fvu = (irvu, id).

(6.4) For a simplex Tq of Xa, the limit group of the inverse system [Hq(0 PJ*),

(x„u|nPJ)*], indexed by U(a), is Hp(dTq).

Proof. We have that 0 T^ consists of all simplices of Xu whose intersection

intersects f)Tq. Also, irvu\ DT', is a projection of flP° into ClT?. Since U(a) is
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cofinal in the set of all open coverings of X, the limit group may be identified

with TTp(fir4).
(6.5) If v, uEU(a) and v refines u, then (Pvu)h = P7 and (Fvu)k = F™ are

independent of the projection irvu. If also w refines v then F^'Fnv = F^u and

Proof. If ir,„ and ir'm are projections of Xv into Xu, then the maps (irvu, id)

and (tt™, id) satisfy the hypothesis of (5.8). Hence F™ and F™ are independ-

ent of the projection.

(6.6) The limit group of the inverse system [Hp_q(au), F™], indexed by U(a),

is isomorphic with HP,q(a). Henceforth we identify the two.

Proof. Consider an element ApTq of Hp,q(a), where ApEHp(r\Tq). Ac-

cording to (6.4), Ap=(Ap(u):uE U(a)), where Av(u) is the coordinate of Av

in TTp((lF"), and where, if v refines u, then (t„u| dTq)*Ap(v) =Ap(u). For each

v, Ap(v) ■ T\ is an element of Hp,q(av) and if v refines u then F™ maps Ap(v) ■ T'q

into Ap(u) ■ F". The correspondence

Ap-Tq-^(Ap(u)-Tuq:uE U(a))

together with linearity, yields an isomorphism of IIp,q(a) onto the limit group.

(6.7) Definition. For a pair (X, a), Kp,q(a) is defined to be the limit

group of the inverse system [Kp,q(au), Fl"], indexed by /7(a). The maps

I               m              jjCp>
Kp,q(a) —> Hp,q(a) —> Kp,q-x-► Kp-x.q(a)

are defined as limits of

I                 m              7/(p)
Kp.q(au) —> Hp,q(au) —> Kp,q^x-► Kp-x,q(au).

Theorem I then follows from (5.5), together with the fact that the groups

of au are either compact or finite-dimensional vector spaces.

Theorem II. We have Kp,-x(oc) =HP(X), K^x.q(a) =Hq(a).

Proof. Consider the inverse system [Kp,-x(au), F™]. According to (5.3),

i£p,_i(a„) =IIp(u). According to (5.7), Fk:KPi-x(av)—^Kp,-x(<Xu) coincides

with irvu:Hp(v)-^>Hp(u). Hence the inverse system coincides with [7Tp(w),

Trtu] and Kp,-x=Hp(X). Consider now the inverse system [i£_i,,(«„), F™].

Now K-x,q(au) =Hq((Xu)au) =Ht(u) and Ff is the identity by (5.7). Hence

K-x,q may be identified with Hq(a).

Theorem   III.   The   homomorphism   rj:Hp(X)—*Hp(a)   is   such   that   rj

= (-l)P<*+»/*7Ta.

Proof. Let IF be an open covering (IF0, • • • , IFr) of X where IFO-4*

and where WT\ • ■ ■ C\W^^0 if and only if A^r\ ■ ■ ■ C\Ai"^0. Then

Xw=Xa and ww=iru. Consider any special covering u of X such that if U is
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an element of u and TJC\Ai9^0 then UEW*. Since u is a special covering, if

UT\ • • • r\TJp^0, where the TJ^s are elements of u, there is an element U*

such that if TJif\A^0 then UT\ ■ ■ ■ r\TJpr\Aj?±0. It follows that (Xu,
au) satisfies the hypothesis of (5.6). Let/ be a function assigning to each ver-

tex TJ of Xu an element Au of a„ with TJC\Ai?±0 (that is, TJ is a vertex of

Al). According to (5.6), f\Xu-^(Xu)au = Xa is simplicial and f*:Hp(Xu)

-^>HP((Xu)au) is such that/* = ( —l)J,(p+I)'2r;u where rju is the composition

,<*> ,(0)

HP(XU) = «:,._,(«.)-►-► K-Up(au) = Hp((Xu)au).

In the diagram

Xu —* (Xu)au = Xa = Xw

note that u and w are chosen so thatf'.Xu—->XW is a projection iruw of X„ into

X,,. So xure*=/* and

xuu.* = (-1)'(*H)/V>       ir. = (-1)"^»'V

Since Xa = Xw and xa = x„,, the theorem follows.

(6.8) Definition. Suppose F = (f, g) maps the compact pair (X, a) into

the compact pair (F, fi) where fi = (B\ ■ ■ ■ , B'). Denote by P(F) the set of

all pairs (u, v), where uE TJ(a) and vE TJ(fi) and where if TJ is an element of

u then there is an element V of v with /(TJ) C V. Let fuv:Xu—*Xt assign to

each vertex TJ of Xu a vertex V of F, with /(TJ) C F. Then/„„ is simplicial.

There are the coverings au = (A\, ■ • • , ATU) of X and fiv = (B\, • ■ ■ , Bsc)

of F„. Moreover (Xu)au = Xa and ( Yv)fiv =YB.It may be seen that Fuv = (/„„ g)

maps the pair (Xu, au) into the pair (Yv, fiv). Moreover, by (5.8), P?':77p,,(q;u)

-+Hp,q(Bv) and P£" are independent of the particular fuv chosen. Also, if

u'ETJ(a) and u' refines u we have Fu'u = (irU'u, id) mapping (Xu>, au-) into

(X,„ a«). If v refines v'ETJ(fi) there is Fvv' = (x,,-, irf) mapping (Fr, /?„) into

(Yv-, fi,.). Then p™'F<",F»'» = F"'V'. Hence

(*) F\ P* F*   = Fh    ,        Fk Fh Pk    = P,    .

Consider the inverse systems [Kp,q(au), Ft"], indexed by U(a), and

[Kp,q(fiv), Ft], indexed by U(fi). For (u, v)EP(F), there'is the map

Fvk":Kp,q(au)—>KPiq(fiT) such that (*) holds. There is induced, in the limit, a

map Fk:Kp,q(a)^Kp,q(fi).

(6.9) The limit of the map FT:Hp,q(an)^Hp,q(fiv), (u, v) EP(F),is the map

Fh defined earlier.

Proof. It is sufficient to check the equality of the two maps on elements

ApTq, Tq an oriented g-simplex of a and ApEHp(\)Tt). Now Fh maps

i4„-r,into [(7"|nr,MP]-g7V Also, according to (6.6), Ap- Tq = (Ap(u) Tu,:

uE U(a)). Now FT maps Av(u) ■ T? into [(f„\ m^)*Ap(u)}gT^. This is the
coordinate in Hp,q(fiv) of [(/| flr,)*^,] gTq.
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We leave the proofs of Theorems IV, V, and VI to the reader.

7. Proof of the basic theorem.

Theorem. Suppose that A-xDA0D • • • D-4„ is a sequence of closed sub-

sets of a compact space X, and that a_i«" • • • <Kna„, where ai is a closed cover-

ing of A ». Then

(i) the kernel of iran:Hj(An)—>Hj(an) is contained in the kernel of the injec-

tion I:Hj(An)^>Hj(A-i) for j^n;

(ii) the image of ira„,o0:Hj(an)-^Hj(ai) is contained in the image of 7r„0:

Hj(A o) -+Hj(ao) for / g ra +1.

Proof. For each i there is a projection ir = irai,at_1 of a< into ct,_i such that

Hj(A^r\ • • • HAh; jrA^H • ■ • FW<0=O for all /gra. Let I{ :A{-+AM
denote the inclusion map. Then Fi = (H, ir) maps (A,, ai) into (Ai-i, a,_i)

and Fl:Kp,q(ai)—*KP,q(ai-x) is trivial for Ogpgra.

Consider the diagram

m 77(p) /
• • • —» Hp,q(ai) —> Kp,q-i(ai) -> Kp-x,q(ai) —► flp_i,,(<*<) —> • • •

IF* \,FK IF* J,-^*
m rj(p) /

• • ' —» TTp,3(aj_i) —» TCp.j-^a,--!)-> ^p_i,3(a<_i) —» TTp_i,9(a,_1) —> ■ • ■

Now (1) */ xEKp,q-x(a.i), p^n, and ^(x) =0, then Ft(x)=0. For if

rj(l,,(x)=0 then x = m(y) and Fit(x)=F\m(y)=mFih(y)=0. Moreover, (2) if

xEKp-x.q(ai), ^gra + 1, /feera F^(x)GTCp_i,4(a,_i) is of the form r)(p)(y) for some

yEKp,q-x(ai-i).
To prove (i), suppose ir„„(x)=0, xEHj(An)=Kj,-x(<xn). Then, by Theo-

rem III, raf»=n<» • ■ • ij«>(*)=0 in K-x.j(an) =Hj(an). By (1), JJtyu • • •

,«>(*)-,(« • ■ . ,,">/£(*) =0 in Zo,h(«.-i). By (1) again, FTy» • • •

n<»F2(*)=n<» • ■ ■vi'1Pr1Pk(x)=0 in Kx,j-2(a„-2). Continuing, Fr1 ■ ■ •

FZ^FKx) =0 in Xy,_i(a_jLj). But FT' • • ■ Fl(x) is, by Theorem V, the in-

jection Tof Hj(An) into Hj(An-j-i). Hence (i) follows.

To prove (2), suppose xEHj(an) =K-x,j(an). The map

,(0)

Ko.j-i-* K-i,j

is onto, by Theorem I, so x = ?j(0)(xo), x0EKo,j-x(an). By (2), Fj?(x0)

EKo,j-i(an-i) is of the form 7j(1)(xi) for some XxEKx,j-2(otn-i). Continuing

by use of (2), Fk~1+2(Xj-i)EKj-x,o(otn-j+i) is of the form n(/)(xy) for some

xEKjf_x(<Xn-j+i). Then

(0) (/).     . (0) fy-l)_n-j+2

v    • • ■ n   (xi) = v    • • • v     Fk     (xj-i)

B-j+2   (0) (j-2)    n-j+3. .

= Fk      v     ■ ■ • V      Fk      (xi-i)

= FVi+i • • ■ Fl(x).
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By Theorems IV and V, pj~'+2 • • • PJ is the projection x of Hj(an) into

Hi(<Xn-s+i). Hence image xa„,an_y+1Cimage iran_j+1. For j'gw + 1, it follows

readily that image xa„,aoCimage x„0.
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