ON THE REPRESENTATION OF α-COMPLETE BOOLEAN ALGEBRAS

BY

C. C. CHANG

Let α be an infinite cardinal. A Boolean algebra A is α-complete if every subset of A with power (cardinality) at most α possesses a least upper bound in A. An ideal I in a Boolean algebra is α-complete in case the least upper bound (if it exists) of every subset of I with power at most α belongs to I. A Boolean algebra that is \aleph_α-complete is also called σ-complete. A field of sets B is a Boolean algebra where the operations \cup, \cap, and \neg are respectively the operations of set-union, set-intersection, and complementation with respect to the unit element of B. A field of sets B is α-complete if the union of any subset of B with power at most α belongs to B.

By a theorem of Stone [7], every Boolean algebra is isomorphic to a field of sets. On the other hand, not every α-complete Boolean algebra is isomorphic to some α-complete field of sets; a necessary and sufficient condition for such a representation is that every principal ideal of the algebra be contained in an α-complete maximal ideal (cf. [5]). In 1947, Loomis [3] proved that every σ-complete Boolean algebra A is isomorphic to a σ-complete field of sets B modulo a σ-complete ideal of B. The question was raised as to whether this result holds for all infinite cardinals α. In 1948, Sikorski [5] showed that the Boolean algebra L of Lebesgue measurable subsets of the unit interval modulo the sets of measure zero is 2^{\aleph_α}-complete but not isomorphic to any 2^{\aleph_α}-complete field of sets modulo a 2^{\aleph_α}-complete ideal.

It is the object of this note to give a necessary and sufficient condition for α-complete Boolean algebras A to be α-representable, i.e., to be isomorphic to an α-complete field of sets B modulo an α-complete ideal of B (2). It turned out that to each α-complete Boolean algebra A there is associated an ideal $R_\alpha(A)$ which plays the role of a radical with respect to α-representation, i.e., a homomorphic image of A is α-representable if, and only if, the kernel of the homomorphism includes $R_\alpha(A)$ (cf. Theorem 3). Our characterization, presented in Theorem 2, may be regarded as a generalization of the theorem of Loomis since every σ-complete Boolean algebra satisfies our condition with

Presented to the Society, April 30, 1955 (cf. [2]); received by the editors June 5, 1956.

(1) The preparation of this paper was supported in part by the United States Navy under Contract No. NONR 401(20)-NR 043-167 monitored by the Office of Naval Research; reproduction in whole or in part is permitted for any purpose of the United States government.

(2) This result was first announced in the abstract [2]. It represents the first known characterization of α-representable Boolean algebras and gives a complete solution to Problem 80 in [1, p. 168].
α = ℵ₀ (cf. Theorem 4). Recently, other characterizations of α-representable Boolean algebras have been found (Scott and Tarski [4]) where the proofs given are metamathematical in nature. We shall give a purely algebraic and direct proof (Theorem 6) of the equivalence of the characterization given here and the one given in [4]. This equivalence can be established by analyzing certain properties which individual elements of a Boolean algebra must possess; in so doing, we have proved a theorem (Theorem 5) which, aside from its use in the problem of α-representation, is of some interest in itself.

Let A be a Boolean algebra. We shall denote by \(\sum_{i \in I} a_i \) (\(\prod_{i \in I} a_i \)) the least upper bound (greatest lower bound) in A (if it exists) of the set \(\{a_i; i \in I\} \). If I is of power at most \(\alpha \), then an element of the form \(\sum_{i \in I} a_i \) (\(\prod_{i \in I} a_i \)) is called an \(\alpha \)-sum (\(\alpha \)-product). A system of elements \(a_{i,j} \) indexed by the sets I and J (i.e., \(a_{i,j} \) is an element of the Boolean algebra for \(i \in I \) and \(j \in J \)) is called an \(\alpha \)-system in case the sets I and J have powers at most \(\alpha \).

As usual, the complement of an element \(a \) of A shall be denoted by \(a \). For typographical reasons, we shall denote the complement of a group of letters by enclosing the group of letters in square brackets followed by a bar, e.g., \([\sum_{i \in I} a_i]^- \). Whenever there is no possibility of confusion, we simply let \(a_i = [a_i]^- \) and \(a_{i,j} = [a_{i,j}]^- \). 0 and 1 shall denote respectively the zero and unit elements of A. For arbitrary sets A, \(P(A) \) denotes the set of all functions \(f \) with domain A and such that \(f(x) \in x \) for each \(x \in A \). We let \(J^f \) denote the set of all functions \(f \) with domain I and range included in \(J \). If \(f \) is a function and \(X \) is a set, \(f^*(X) \) is the image of \(X \) under \(f \). We assume that ordinals have been defined in such a way that every ordinal coincides with the set of smaller ordinals. A cardinal can be understood as an ordinal which has larger power than every smaller ordinal.

Definition. If A is a Boolean algebra and \(\alpha \) an infinite cardinal, then \(R_\alpha(A) \) shall denote the set of all elements \(x \in A \) for which there exists an \(\alpha \)-system of elements \(a_{i,j} \in A \) indexed by the sets I and J such that

\[
(i) \quad \prod_{j \in J} a_{i,j} = 0 \text{ for each } i \in I,
\]

and

\[
(ii) \quad \text{for each function } f, f \in J^f, \text{ the set of elements } \{a_{i,f(i)}; i \in I\} \text{ either contains } x \text{ or else contains some complementary pair of elements } b \text{ and } \bar{b}.
\]

We see readily from the definition that \(0 \in R_\alpha(A) \).

Theorem 1. If A is an \(\alpha \)-complete Boolean algebra, then \(R_\alpha(A) \) is an \(\alpha \)-complete ideal of A and \(A/R_\alpha(A) \) is α-representable.

Proof. We shall first prove that there exists a homomorphism \(f \) of A onto an \(\alpha \)-complete field of sets B modulo an \(\alpha \)-complete ideal \(N \) of B, then prove that this homomorphism \(f \) preserves \(\alpha \)-sums, and, finally, that the kernel of this homomorphism is \(R_\alpha(A) \).
For each $x \in A$, we let $x^* = \{ x, \bar{x} \}$ and $A^* = \{ x^*; x \in A \}$. We define a function g on the elements of A to subsets of $P(A^*)$ such that

$$g(x) = \{ h; h \in P(A^*) \text{ and } h(x^*) = x \}.$$

It is clear that for every $x \in A$, $g(x) \cap g(\bar{x}) = \emptyset$ and $g(x) \cup g(\bar{x}) = P(A^*)$. We let B be the α-complete field of sets generated by the elements of $g^*(A)$ in the (complete) field of all subsets of $P(A^*)$. Furthermore, let $M = \{ \bigcap_{i \in I} g(x_i); I \text{ has at most power } \alpha, x_i \in A \text{ for each } i \in I, \text{ and } \prod_{i \in I} x_i = 0 \}$ and N be the α-complete ideal generated by M in B. We now wish to show that B/N is a homomorphic image of A by the following mapping f:

$$f(x) = g(x)/N.$$

It is clear that $f^*(A)$ generates B/N. Now $f(\bar{x}) = g(\bar{x})/N = [P(A^*) \setminus g(x)]/N = [g(x)]^-/N$ and hence f preserves complementation. Let $a = \sum_{i \in I} a_i$ be an α-sum of elements of A. In order to show $f(a) = \sum_{i \in I} f(a_i)$ it is sufficient to prove that the symmetric difference of $g(a)$ and $\bigcup_{i \in I} g(a_i)$ is an element of N. Since I has power at most α and $a \cdot \prod_{i \in I} a_i = 0$, we obtain $g(a) \cap \bigcap_{i \in I} g(a_i) \in N$. But

$$g(a) \cap \bigcap_{i \in I} g(a_i) = g(a) \cap \bigcap_{i \in I} [g(a_i)]^- = g(a) \cap \left[\bigcup_{i \in I} g(a_i) \right],$$

hence

$$g(a) \cap \left[\bigcup_{i \in I} g(a_i) \right] \in N. \tag{1}$$

On the other hand, $\bar{a} \cdot a_i = 0$ for each $i \in I$, thus $g(\bar{a}) \cap g(a_i) = [g(a)]^- \cap g(a_i) \in N$ for each $i \in I$. Since N is α-complete, $\bigcup_{i \in I} ([g(a)]^- \cap g(a_i)) \in N$, and

$$[g(a)]^- \cap \bigcup_{i \in I} g(a_i) \in N. \tag{2}$$

It follows from (1) and (2) that the symmetric difference of $g(a)$ and $\bigcup_{i \in I} g(a_i)$ belongs to N. Thus f preserves α-sums and $f^*(A)$ is an α-complete subalgebra of B/N. Hence $f^*(A) = B/N$ and f maps A homomorphically onto B/N preserving all α-sums of elements of A.

It remains to prove that the kernel of f is the set $R_\alpha(A)$. If $f(x) = 0$, then $g(x) \in N$. We see that the condition $g(x) \in N$ is equivalent to the following: there exists an α-system of elements $a_{i,j}$ indexed by the sets I and J such that

(i) $\prod_{j \in J} a_{i,j} = 0$ for each $i \in I,$

(ii) $\bigcap_{j \in J} g(a_{i,j}) \in M$ for each $i \in I,$

(9) The idea of using the elements of $P(A^*)$ as points in the representation was discussed in [3].
and

\[g(x) \subseteq \bigcup_{i \in I} \bigcap_{j \in J} g(a_{i,j}). \]

By the set-theoretical distributive law,

\[\bigcup_{i \in I} \bigcap_{j \in J} g(a_{i,j}) = \bigcap_{h \in J^*} \bigcup_{i \in I} g(a_{i,h(i)}). \]

Hence (iii) together with (3) imply

\[g(x) \subseteq \bigcup_{i \in I} g(a_{i,h(i)}) \quad \text{for each } h \in J^*. \]

If the set \(\{a_{i,h(i)}; i \in I\} \) does not contain a complementary pair of elements, then any two different elements \(a_{i,h(i)} \) and \(a_{j,h(j)} \), with \(i \neq j \), belong to different elements of \(A^* \). If, in addition, the set \(\{a_{i,h(i)}; i \in I\} \) does not contain \(x \), then clearly there exists a function \(k \in P(A^*) \) such that \(k(x^*) = x \) and \(k(a_{i,h(i)^*}) = a_{i,h(i)} \) for each \(i \in I \), i.e.,

\[k \in g(x) \quad \text{and} \quad k \notin g(a_{i,h(i)}) \quad \text{for each } i \in I. \]

(5) is a contradiction to (4). Hence \(x \in R_\alpha(A) \). On the other hand, let \(x \in R_\alpha(A) \) and let \(a_{i,j} \) be the associated \(\alpha \)-system of elements indexed by the sets \(I \) and \(J \). Clearly conditions (i), (ii), and (4) are satisfied by the elements \(a_{i,j} \). By (3) and (i) we see that \(\bigcap_{h \in J^*} \bigcup_{i \in I} g(a_{i,h(i)}) \subseteq N \), which, together with (4) imply (iii). Thus \(g(x) \subseteq N \) and \(f(x) = 0 \). The theorem has been proved(4).

Theorem 2. Let \(A \) be an \(\alpha \)-complete Boolean algebra. Then \(A \) is \(\alpha \)-representable if, and only if, \(R_\alpha(A) = \{0\} \).

Proof. Obviously, if \(R_\alpha(A) = \{0\} \), then by Theorem 1 \(A \) is \(\alpha \)-representable. Let \(f \) be a homomorphism of an \(\alpha \)-complete field of sets \(B \) onto \(A \) and such that \(f \) preserves all \(\alpha \)-sums of \(B \). Let \(x \in R_\alpha(A) \) and let \(a_{i,j} \) be the associated \(\alpha \)-system of elements. We choose an inverse \(f^{-1} \) to the function \(f \) satisfying the condition: \(f^{-1}(\tilde{y}) = [f^{-1}(y)]^* \) for each \(y \in A \). It is evident that such an inverse can always be chosen. Since \(\prod_{j \in J} a_{i,j} = 0 \) for each \(i \in I \) and since \(f \) preserves all \(\alpha \)-sums (and hence all \(\alpha \)-products), we obtain

\[\bigcap_{j \in J} f^{-1}(a_{i,j}) \subseteq B \quad \text{and} \quad f \left(\bigcap_{j \in J} f^{-1}(a_{i,j}) \right) = 0 \quad \text{for every } i \in I. \]

From (1), it follows that \(\bigcup_{i \in I} \bigcap_{j \in J} f^{-1}(a_{i,j}) \subseteq B \), \(f(\bigcup_{i \in I} \bigcap_{j \in J} f^{-1}(a_{i,j})) = 0 \), and, by an application of the set-theoretical distributive law,

\[f \left(\bigcap_{h \in J^*} \bigcup_{i \in I} f^{-1}(a_{i,h(i)}) \right) = 0. \]

(4) The fact that the ideal \(R_\alpha(A) \) is \(\alpha \)-complete can be proved without resorting to the homomorphism \(f \) and without even the assumption of the \(\alpha \)-completeness of \(A \).
By our choice of the inverse function f^{-1}, we see that

$$\text{for every } h \in J, \text{ either } f^{-1}(x) \subseteq \bigcup_{i \in I} f^{-1}(a_{i,h(i)}),$$

or else $\bigcup_{i \in I} f^{-1}(a_{i,h(i)}) = 1.$

Clearly (3) leads to the condition

$$f^{-1}(x) \subseteq \bigcup_{i \in I} f^{-1}(a_{i,h(i)}) \text{ for each } h \in J.$$

Applying now the function f to both sides of the inclusion of (4) and by the use of (2), we obtain the desired conclusion $x=0$. The theorem has been proved.

The condition $R_\alpha(A) = \{0\}$, as has been proved in Theorem 2, is both necessary and sufficient for A to be α-representable. Earlier, Smith [6] gave a sufficient condition for A to be α-representable and which he has shown to be not necessary. Furthermore, he pointed out (in [6]) that all those α-complete Boolean algebras in which the so-called α-distributive law holds satisfy his sufficient condition and, consequently, are α-representable. We see quite easily from our definition of $R_\alpha(A)$ that if $R_\alpha(A) \neq \{0\}$ then clearly A will not satisfy the α-distributive law. One can also give a simple and direct argument that the condition $R_\alpha(A) = \{0\}$ is implied by his sufficient condition; however, we point out here that our condition was obtained without the knowledge of the results to be found in [6] and that the two approaches are entirely different.

The next theorem studies more closely the role that the ideals $R_\alpha(A)$ play in the problem of α-representation.

Theorem 3. Let A be an α-complete Boolean algebra and let N be an α-complete ideal of A. Then A/N is α-representable if, and only if, $R_\alpha(A) \subseteq N$.

Proof. Assume that A/N is α-representable, i.e., $R_\alpha(A/N) = \{0/N\}$. Let $x \in R_\alpha(A)$ and $a_{i,j}$ be the associated α-system of elements. It is evident that the elements $a_{i,j}/N$ of A/N satisfy

$$(i) \quad \prod_{j \in J} [a_{i,j}/N] = 0/N \text{ for each } i \in I,$$

and

$$(ii) \quad \text{for every } h \in J, \text{ the set of elements } \{a_{i,h(i)}/N; i \in I\} \text{ contains either } x/N \text{ or a complementary pair.}$$

Thus, it follows from (i) and (ii) that $x/N \in R_\alpha(A/N)$ and $x \in N$.

On the other hand, assume that $R_\alpha(A) \subseteq N$. We shall prove that $R_\alpha(A/N) = \{0/N\}$. Let $x/N \in R_\alpha(A/N)$ and let $(a/N)_{i,j}$ be the associated α-system of elements. Let us now pick representatives $a_{i,j}$ out of the cosets $(a/N)_{i,j}$ such
that if \((a/N)_{i,j} = x/N\), then \(a_{i,j} = x\), and such that if \((a/N)_{i,j} = \neg((a/N)_{i',j'})\), then \(a_{i,j} = \neg a_{i',j'}\). From this choice of representatives, it follows that

\[
\prod_{j \in J} a_{i,j} \in N \text{ for every } i \in I
\]

and

2. for each \(h \in J'\), the set of elements \(\{a_{i,h(i)}; i \in I\}\) either contains \(x\) or else contains a complementary pair.

Let now \(y = x \cdot \prod_{i \in I} \sum_{j \in J} a_{i,j}\) and let us pick a \(j' \in J\) and set \(J' = J \cup \{j'\}\). We define an \(\alpha\)-system of elements \(b_{i,j}\) indexed by the sets \(I\) and \(J'\) as follows:

(i) \(b_{i,j} = a_{i,j}\) if \(j \neq j'\) and \(a_{i,j} \neq x\),
(ii) \(b_{i,j} = y\) if \(j \neq j'\) and \(a_{i,j} = x\),

and

(iii) \(b_{i,j'} = y\).

It follows from (1), (2), and the definition of \(b_{i,j}\) that

\[
\prod_{j \in J'} b_{i,j} = 0 \text{ for each } i \in I,
\]

and

4. for every \(h \in J''\), the set of elements \(\{b_{i,h(i)}; i \in I\}\) either contains the element \(y\) or else contains a complementary pair.

Conditions (3) and (4) show that the element \(y \in R_\alpha(A)\) and hence, by our hypothesis, \(y \in N\). However, \(x = x \cdot y + y = x \cdot \prod_{i \in I} \sum_{j \in J} a_{i,j} + y\) and whence, by (2), \(x \in N\) and \(x/N = 0/N\). The proof is now complete. (It actually follows from the proof of Theorem 3 that \(R_\alpha(A/N) = R_\alpha(A)/N\) for any \(\alpha\)-complete ideal \(N\) of \(A\).)

Due to Theorem 3 we may now justly regard the ideal \(R_\alpha(A)\) as the \(\alpha\)-radical of an \(\alpha\)-complete Boolean algebra with respect to \(\alpha\)-representation. \(R_\alpha(A)\) is unique in the sense that any \(\alpha\)-complete ideal \(N'\) of \(A\) satisfying Theorem 3 with \(R_\alpha(A)\) replaced by \(N'\) must be identical with \(R_\alpha(A)\), i.e., \(R_\alpha(A) = N'\). Furthermore, we see that if \(\alpha\) and \(\beta\) are infinite cardinals and \(\beta \leq \alpha\), then \(R_\beta(A) \subseteq R_\alpha(A)\). It follows then for each \(\alpha\)-complete Boolean algebra \(A\) either \(A\) is \(\alpha\)-representable or else there exists a least \(\beta \leq \alpha\) for which \(R_\beta(A)\) does not vanish. The problem is open whether for all cardinals \(\alpha\) and \(\beta\) with \(\aleph_0 < \beta \leq \alpha\) there exists an \(\alpha\)-complete Boolean algebra \(A\) for which \(\beta\) is the least cardinal such that \(R_\beta(A)\) does not vanish. We shall see from Theorem 4 that if \(\beta = \aleph_0\), then \(R_\beta(A) = \{0\}\).

From the results in [5] and Theorem 2, the algebra \(L\) of Lebesgue measurable sets modulo the sets of measure zero is such that \(R_\gamma(L) \neq \{0\}\), where for the discussion in this paragraph we let \(\gamma = 2^{\aleph_0}\). Since the algebra \(L\) is
known to be of the power of the continuum, complete, and homogeneous\(^{(6)}\), we see immediately that \(R_\gamma(L)\) is a principal ideal of \(L\) and, what is more interesting, \(R_\gamma(L)\) simply coincides with \(L\). Another interesting example is the Boolean algebra \(B\) of the Borel sets modulo the sets of first category in a separable complete metric space \(S\). This Boolean algebra is also known as the algebra of regular open sets of \(S^{(6)}\). It is known that \(B\) is complete and is of the power of the continuum. Hence \(R_\gamma(B)\) is again a principal ideal. It is not difficult to see that for any regular open set \(x\) there exists a sequence of sets \(\{x_{i_0, i_1, \ldots, i_n}\}\) where each \(i_j\) is either 0 or 1,

\[x = x_0 + x_1,\]

and

\[x_{i_0, \ldots, i_n} = x_{i_0, \ldots, i_n, 0} + x_{i_0, \ldots, i_n, 1}\]

for each \(n\),

and such that for every choice of the index \(i\)

\[\prod_{n} x_{i_0, i_1, \ldots, i_n} = 0^{(7)}\]

From the above and Theorem 3.1 in [5] we see that again \(R_\gamma(B) = B\). Thus in the above two instances, not only are the algebras themselves not \(2^{\aleph_0}\)-representable, but any nontrivial \(2^{\aleph_0}\)-complete homomorphic image is also not \(2^{\aleph_0}\)-representable.

It should also be mentioned that Theorem 3 may be obtained in a metamathematical fashion by using Theorem 2 and the fact that the class of all \(\alpha\)-complete Boolean algebras which are \(\alpha\)-representable forms an equational class of algebras. As a matter of fact, Scott and Tarski have shown that the characterization given in Theorem 2 can be transformed in a natural way to yield a set of characterizing equations for the class of all \(\alpha\)-representable Boolean algebras\(^{(8)}\).

The connection between the result of Loomis \([3]\) concerning \(\sigma\)-complete Boolean algebras and Theorem 2 will be made clear by the following theorem.

Theorem 4. For any Boolean algebra \(A\), \(R_{\aleph_0}(A) = \{0\}\).

Proof. Let \(x \in R_{\aleph_0}(A)\) and let \(a_{i,j}\) be the associated \(\aleph_0\)-system of elements indexed by the sets \(I\) and \(J\) where we may assume \(I = J = \{\text{the set of all natural numbers}\}\). Suppose that \(x \neq 0\), thus \(\bar{x} \neq 1\). Hence \(1 \neq \bar{x} + \prod_{j \in J} a_{0,j} \) and \(1 \neq \prod_{j \in J} (\bar{x} + a_{0,j})\). We can now pick a \(j_0\) such that \(\bar{x} + a_{0,j_0} \neq 1\). If we proceed

\(^{(6)}\) For some details on the algebra \(L\), cf. [1, pp. 168–169 and p. 184].

\(^{(7)}\) For some details on the algebra \(B\), cf. [1, pp. 176–179].

\(^{(8)}\) Cf. footnote 5.

\(^{(8)}\) This result may be found in [4, Theorem 1].
in this fashion, we will pick an infinite sequence of elements a_{0,i_0}, a_{1,i_1}, a_{2,i_2}, \ldots such that

$$\bar{x} + a_{0,i_0} + a_{1,i_1} + \cdots + a_{i,i_i} \neq 1 \text{ for each } i \in I.$$

This clearly means that the function h defined by the condition $h(i) = j_i$ for each $i \in I$ will yield a set of elements $\{a_{i,h(i)}; i \in I\}$ which will not contain x and will not contain a complementary pair. Hence $x = 0$ and the theorem is proved.

For our subsequent discussion we introduce the following notion. An ideal N of an α-complete Boolean algebra A preserves the α-system of elements $a_{i,j}$ (of A) indexed by the sets I and J if, and only if,

$$(*) \quad \text{for each } i \in I, \sum_{j \in J} a_{i,j} \notin N \text{ if, and only if, } \bar{a}_{i,j} \in N \text{ for some } j \in J.$$

We see that if, in particular, N is a maximal ideal, then condition $(*)$ can be replaced by the condition

$$(** \quad \text{for each } i \in I, \sum_{j \in J} a_{i,j} \in N \text{ if, and only if, } a_{i,j} \in N \text{ for every } j \in J.$$

In general, we see that condition $(*)$ implies the corresponding notion defined in [4] and which in turn implies condition $(**)$; however, for maximal ideals N all three notions are equivalent. The following lemma will require no proof.

Lemma. An ideal N preserves the α-system of elements $a_{i,j}$ indexed by I and J if, and only if, N preserves the α-system of elements $b_{i,j}$ indexed by the sets I and $J \cup \{j'\}$ ($j' \in J$) where $b_{i,j} = a_{i,j} \text{ if } j \neq j'$ and $b_{i,j'} = [\sum_{j \in J} a_{i,j}]^{-1}$ for each $i \in I$.

It follows from the lemma that if an ideal N preserves all α-systems of elements $a_{i,j}$ where \(1 = \sum_{j \in J} a_{i,j}\) for each $i \in I$, then N preserves all α-systems of elements.

Theorem 5. For any element x of an α-complete Boolean algebra A the following four conditions are equivalent.

(i) $x \in R_\alpha(A)$.

(ii) For any α-system of elements of A, there exists a proper ideal N containing \bar{x} and preserving the α-system of elements and which is β-complete for every cardinal β such that $\alpha^\beta \text{ has at most the power } \alpha$.

(iii) For any α-system of elements of A, there exists a proper ideal N containing \bar{x} and preserving the α-system of elements.

(iv) For any α-system of elements of A, there exists a maximal ideal M containing \bar{x} and preserving the α-system of elements.

Proof. The equivalence of (iii) and (iv) follows from the fact that if N preserves an α-system of elements, then any of its maximal extensions M will
also preserve the same α-system of elements. The implication (ii) to (iii) is obvious. We shall now show the implication of (iii) to (i) by contradiction. Suppose $x \in R_\alpha(A)$ and let $a_{i,j}$ be the associated α-system of elements. Consider now a proper ideal N which preserves the α-system of elements $\tilde{a}_{i,j}$ and which contains \tilde{x}. Since $1 = \sum_{j \in J} \tilde{a}_{i,j}$ for each $i \in I$, it follows that

$$\text{(1)} \quad \text{for each } i \in I, a_{i,j} \in N \text{ for some } j \in J.$$

By (1), we define a function h, $h \in J'$, such that

$$\text{(2)} \quad a_{i,h(i)} \in N \text{ for each } i \in I.$$

Using (2) and the fact that N is a proper ideal containing \tilde{x}, we see that the set of elements $\{a_{i,h(i)}; i \in I\}$ cannot contain the element x nor a complementary pair. Hence we have a contradiction and $x \in R_\alpha(A)$.

Next we prove (ii) from (i). Let $a_{i,j}$ be an α-system of elements indexed by I and J and such that

$$\text{(3)} \quad 1 = \sum_{j \in J} a_{i,j} \text{ for each } i \in I.$$

We may assume without loss of generality that the sets I and J have precisely the power α. It follows from the lemma that it is sufficient if we can prove the existence of an ideal N preserving α-systems of the above special form. Notice that (3) leads to

$$\text{(4)} \quad 0 = \prod_{j \in J} \tilde{a}_{i,j} \text{ for each } i \in I.$$

Let β be any cardinal such that α^β has at most the power α. We let

$$I_{\beta} = \{\tilde{a}_{i,j}; i \in I, j \in J\}^\beta,$$

and

$$I' = I \cup \bigcup (I_{\beta}; \alpha^\beta \text{ has the power at most } \alpha).$$

Since the set $\{a_{i,j}; i \in I, j \in J\}$ has the power α, it is clear that each set I_{β} has the power at most α and the set I' also has power at most α. We now define (in any manner we wish) an α-system of elements $b_{i,j}$ indexed by the sets $I' \cup \{i'\} (i' \in I')$ and J and satisfying the following conditions:

$$\text{(5)} \quad b_{i,j} = \tilde{a}_{i,j} \text{ for } i \in I \text{ and } j \in J.$$

$$\text{(6)} \quad b_{i,j} = 0 \text{ for all } i \in J.$$

$$\text{(7)} \quad \{\tilde{x}; y \in f^*(\beta)\} \cup \{x\} \cup \left\{\sum_{\rho \in \beta} f(\rho) + \tilde{x}\right\} = \{b_{f,j}; j \in J\} \text{ for each } f \in I_{\beta}.$$

It follows readily from (4)-(7) that

$$\text{(8)} \quad \prod_{j \in J} b_{i,j} = 0 \text{ for each } i \in I' \cup \{i'\}.$$

Since $x \in R_\alpha(A)$ and $b_{i,j}$ is an α-system of elements satisfying (8), there exists a function $h \in J'' \cup \{i'\}$ such that
the set of elements $K = \{ b_{i,h(i)} ; i \in I \cup \{ i' \} \}$ does not contain x and does not contain a complementary pair.

From (6) and (9), we see that

(10) \[0 \in K \text{ and } 1 \notin K. \]

Let $L = \{ b_{i,h(i)} ; i \in I \} = \{ \bar{a}_{i,h(i)} ; i \in I \} \subseteq K$. For any β such that α^β has power at most α and for any subset L' of L with power β we can find a function f, $f \in I_{\beta}$, such that $L' = f^*(\beta)$. From (7) and (9) we see that

(11) \[\sum_{\rho \in \beta} f(\rho) + \bar{x} = b_{f,h(f)} \in K. \]

(10) and (11) clearly imply that the least upper bound of any subset L' of $L \cup \{ \bar{x} \}$ of power β is different from 1. We now simply let

\[N = \left\{ y; \text{for some } L' \subseteq L \cup \{ \bar{x} \}, L' \text{ has power } \beta, \text{ and } \alpha^\beta \text{ has power } \alpha, \text{ and } \right\}. \]

Obviously, N is a proper ideal containing \bar{x} and preserving the α-system of elements $a_{i,j}$. Suppose α^β has power α. For each $\xi \in \beta$, let $\gamma_\xi \in N$ and such that for some β_ξ, α^{β_ξ} has power α and

(13) \[y_\xi \leq \sum_{\rho \in \beta_\xi} y_{\xi,\rho} \]

where

(14) \[y_{\xi,\rho} \in L \cup \{ \bar{x} \} \text{ for each } \rho \in \beta_\xi. \]

Let C be the cardinal sum of all the sets β_ξ as $\xi \in \beta$. By the set-theoretical law on exponents, we see that α^C is set-theoretically equivalent to $P(\{ \alpha^{\beta_\xi} ; \xi \in \beta \})$. Since α^{β_ξ} has the power α for each $\xi \in \beta$, we see that $P(\{ \alpha^{\beta_\xi} ; \xi \in \beta \})$ is simply set-theoretically equivalent to α^β which again has the power α. Hence α^C has power α. From this and (14) it follows that there exists a subset L' of $L \cup \{ \bar{x} \}$ with power β' where $\alpha^{\beta'}$ has power at most α such that

(15) \[\sum_{\xi \in \beta} \sum_{\rho \in \beta_\xi} y_{\xi,\rho} = \sum_{x \in L'} x. \]

Hence by (13) and (15), $\sum_{\xi \in \beta} y_\xi \leq \sum_{x \in L'} x$ and, by (12), $\sum_{\xi \in \beta} y_\xi \in N$. Thus we see that N is β-complete for every β such that α^β has the power α. The theorem is proved.

Using Theorem 5 we can now present several characterizations of α-representable Boolean algebras in the following(9):

\[(*) \text{ The equivalence of 6(i) with 6(iv) is precisely a condition given in [4, Theor. 2]. This is easily seen from our remarks concerning the equivalence of conditions (*) and (**) in case } N \text{ is maximal.} \]
Theorem 6. For any \(\alpha \)-complete Boolean algebra \(A \) the following four conditions are equivalent:

(i) \(A \) is \(\alpha \)-representable.

(ii) For any \(x \neq 1 \) and any \(\alpha \)-system of elements, there exists a proper ideal \(N \) containing \(x \) and preserving the \(\alpha \)-system of elements and which is \(\beta \)-complete for every \(\beta \) such that \(\alpha^\beta \) has power at most \(\alpha \).

(iii) For any \(x \neq 1 \) and any \(\alpha \)-system of elements, there exists a proper ideal \(N \) containing \(x \) and preserving the \(\alpha \)-system of elements.

(iv) For any \(x \neq 1 \) and any \(\alpha \)-system of elements, there exists a maximal ideal \(M \) containing \(x \) and preserving the \(\alpha \)-system of elements.

Proof. By Theorem 2 and Theorem 5.

In conclusion we point out the significance of condition 6(ii) in the following special application: If a Boolean algebra \(A \) is continuously-representable (i.e. \(2^{2^{\aleph_0}} \)-representable), then for any \(x \neq 1 \) and any continuum-system of elements there exists a denumerably-complete proper ideal \(N \) containing \(x \) and preserving the continuum-system of elements.

References

2. C. C. Chang, A necessary and sufficient condition for an \(\alpha \)-complete Boolean algebra to be an \(\alpha \)-homomorphic image of an \(\alpha \)-complete field of sets, Bull. Amer. Math. Soc. Abstract 61-4-579.

Cornell University,
Ithaca, N. Y.