THE AUTOMORPHISMS OF THE HOLOMORPH
OF A FINITE ABELIAN GROUP

BY
W. H. MILLS

In 1908 G. A. Miller [4] proved that the holomorph of a finite abelian
group of odd order has only inner automorphisms. The group of automor-
phisms of the holomorph of an arbitrary group was studied by Gol’fand [3]
who found some cases in which the outer automorphism group has order one
or two. In the present paper I determine explicitly the outer automorphism
group O of the holomorph H of an arbitrary finite abelian group G. If G is the
direct product of a group of odd order, a group of order two, and a cyclic
group of order 2" where =2, then O is the direct product of a finite number
of groups of order two and a non-abelian group ©* of order six or eight. If
n=2 then 0* is isomorphic to the symmetric group of order six, and if =3
then 0* is the octic group. In all other cases 0O is either trivial or the direct
product of a finite number of groups of order two.

Let 4 be the group of all automorphisms of the finite abelian group G,
let ® be the group of all automorphisms of H that map G onto itself, and let
d be the group of all inner automorphisms of H. Then ®8/9 can be identified
with the first cohomology group H!(4, G). Thus H(4, G) can be regarded
as a subgroup of 0. Now G is an invariant subgroup of H, and it is known [6]
that H has at most four invariant subgroups isomorphic to G. It follows that
H'(4, G) has index at most four in 0.

In Part I the first cohomology group H'(4, G) is determined explicitly—
it is either trivial or the direct product of groups of order two. In Part II the
results of Part I are combined with the results of [6] to determine © explicitly.

1. H\(4, G)

1. The role of H'(A4, G). Let G be a finite abelian group and 4 its group
of automorphisms. The holomorph H of G is defined(?) to be the semi-direct
product of 4 and G. Thus H is the group of all ordered pairs (g, d), gEG,
o EA, with multiplication given by

(8, 0)(a, 7) = (goa, o7).
The first eight lower case Roman letters will be used to denote group

Received by the editors June 7, 1956.

(*) There are two other well known definitions of the holomorph. It has been defined as the
group of one-to-one mappings of G onto itself that is generated by the automorphisms of G and
the left multiplications g—ag. Suppose G is represented as a regular permutation group on #
letters. Then, according to the original definition, the holomorph is the normalizer of G in the
symmetric group S,. These three definitions are equivalent up to isomorphism.
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elements (usually elements of (), and the remaining ones to denote non-nega-
tive integers. Lower case Greek letters will be used to denote homomorphisms
of groups (usually automorphisms of G), and capital Greek letters will be
used to denote automorphisms of the holomorph H and one dimensional co-
cycles.

We denote the identity of G by e, and that of 4 by e.

The elements of the form (g, €) form an invariant subgroup of H, the
mapping g—(g, €) is an imbedding of G in H, and we will henceforth identify
the element g in G with the element (g, €¢) in H. On the other hand we will
distinguish carefully between the element o in 4 and the element (e, ¢) in H.

Let I, denote the inner automorphism of H corresponding to (g, o).
Thus

I(U.V)(a! T) = (gr 0‘)(0, T)(g' ‘7)_1~

In particular I, ,»g=0g, so that every automorphism of G can be extended
to an inner automorphism of H.

Let @ be the group of all automorphisms of H, and let g be the group of
all inner automorphisms of H. Let ® be the group of all automorphisms of H
that map G onto itself, and let € be the group of all automorphisms of H that
act as the identity on G. Then @2®2 € and 4 is an invariant subgroup of
both @ and ®. Let 9= @/d be the outer automorphism group of H. Our ulti-
mate goal is the determination of ©, and we will begin with the study of ®/4.

Suppose QE®. The restriction of © to G is an automorphism ¢ of G, and
we have Q. » g =g for all g&G. Hence Q,,»n'EC. It follows that B = €4.

Suppose I'E . Let I'V be the mapping of 4 into G and ¢—¢ the mapping
of 4 into itself such that I'(e, 0) = (I, o) for all cEA. If g is an arbitrary
element of G we have (e, o)g=0g(e, o),

I'((e, 0)g) = (I'o, 0)g = g(I'a, 7),
and
T'(og(e, o)) = ag(I's, 5).

Hence og=0g for all g&G. Therefore ¢ =0. Furthermore (I, o)(I'7, 7)
=I'((e, 0)(e, 7)) =T'(e, o7) = (I’ (o7), o7). Comparing first components we ob-
tain

1) (Vo) (eI'7) = IV(o7)

for all o, 7 in A. We note that (1) is the condition that I be an element of

Z'(4, G), the group of one dimensional cocycles or crossed homomorphisms
of 4 into G. Conversely if IY&€Z'(4, G), then the mapping I' given by

(2 I'(g, o) = (gT'0, 0)

is an automorphism of H and hence an element of €. The mapping I'-I" is
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an isomorphism of @ onto Z!(4, G). Henceforth we will identify the cocycle
I with the element I of @ given by (2). Then we have €=2Z'(4, G).
Suppose now that I,,»&E €. Then

g§=Twung = ld(e,ng = 78
for all g&G. Hence 7=¢ and (a, 7) =a. Furthermore
I.(e, 0) = a(e, 0)a! = (aca™?, o).

It follows that if '&€Z'(4, G), then the condition that I' be an inner auto-
morphism of H is that it be of the form I';, where

3) T = aca™},
a a fixed element of G. Now this is the condition that I" be an element of

Bl(4, G), the group of one dimensional coboundaries or splitting homomor-
phisms of A4 into G. Thus §Ne=B'(4, G) and we have

®/9 = Cg/9 = e/gN e = Zi(4,G)/B\4,G) = H'(4,G),

the first cohomology group of 4 acting on G. The first cohomology group
H'(A, G) is thus isomorphic to ®/9 under the natural isomorphism

I'BY(4,G) = T4.

We are now faced with the problem of explicit determination of H'(4, G)
to which we devote the remainder of part I.
2. Additional notation and preliminary lemmas. We will write

4 Q=01 X0 X"+ XQn,
or Q=HQ,~, if the Q; are subgroups of the group Q, and Q is the direct product
of the Q.. Suppose (4) holds, let .S be a subset of {1, 2, -, m}, and put
0s = II 0.
€8

If o is any automorphism of Qs we identify ¢ with the automorphism ¢’ of Q

such that )
, {ag if g € 0s,
' =
4 if gEQJ!] EES

This identification does not depend on Qs and Q alone, but also on the groups
Q;, 7&S. However we will not hawve occasion to deal with two decompositions
of the same group simultaneously, except in cases where they have a common
refinement. Hence we can identify ¢ with ¢’ without danger of ambiguity, and
we will do so freely.

We need to know a set of generators for the group of automorphisms of

G. It is sufficient to settle this question for the prime power case, which is
treated in the following lemma.
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LeMMA 1. Let G® be a finite abelian group whose order is a power of the
prime number p. Let GP =Dy XDy X - - - XDy, where D; is cyclic of order m;
and myZme= - - - Zm>1. Let d; be a generator of D, and let A; be the group
of automorphisms of D;. For 1 =j<1—1, let sj=m;/mju1, and let v; and 8; be
the automorphisms of D; X D1 such that

vid; = didjp, Yi@it1 = djta,

8id; = d;, 8idjpr = djdjr.
Then the group of all automorphisms of G is generated by the automorphisms
Yi, 05, 1=7<1, and the groups A, 1 11,

Proof by induction on /. Lemma 1 is trivial if /=1. Suppose that />1 and
that Lemma 1 holds for the subgroup G=D;XD3X - - - XD,. Let 4 be the
group generated by the automorphisms v;, §;, 1=j<,, and the groups 4;,
1 <7 =1 By the induction hypothesis any automorphism w of G belongs to 4.
Let ¢ be an arbitrary automorphism of G». We write

l s
ody = [ di'.
t=1

We begin by constructing an automorphism ¢ €4 such that Yd, =od;. There
are two possibilities to be considered: (I) p[ #1. Here for some j=2 we must
have pfu;and m,=m;. Therefore m;=m,, s;=1, and there is an automorphism
p of G such that

l
pdy = [ d5°.

1=2

For such a p we have

oo yidy = pbs' (dads) = p(dy'ds) = od,

and we put ¥ =p8""'y;, which belongs to A. (II) p}u:. In this case there
exists an automorphism 7 of D; such that 7d;=d{* and an automorphism p’
of G such that

l .
p'dy = dy [] di°,

=3

where p’ is understood to be € if /=2. Then

1
Uug—1 —1 ug—1 U,y
T'er P"Yldl T‘Y';2 P’(dldz) = 7’712 (dle H d; >

=3

I

l .
T(dl H di:‘) = 0’d1,

=2

and we put ¢ =7yp*Vy;, which is an element of 4.
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Thus in both cases we have found an automorphism ¢ &A4 such that
Ydi=0d,. Put o=y '¢. Then 0,d; =d;. We now write

l
od; = [[ &7, 2751
1
Let ¢ be the endomorphism of G given by
l
¥ud; = J1 ¥, 2521
2

Since ¢1d1=d, it follows that ¥1 has a trivial kernel. Therefore ¥ is an auto-
morphism of G. Hence ;€4 and we put o;=y; 's;. Then ¢.d; =d, and

od; = dy’d;, 225751

Now put v;=uv;m;/m;. Since (d.d;)™ =¢ it follows that v; is an integer. For
j=3 let 7; be the automorphism of D, XD; such that

—1 me/mj
Tjdz = dz N Ti@; = dz dj.

Then (r;8,)%d;=d™™id; and (r;8,)%d;=d; for i54j. It follows that

1
o1 =0y [ (=)™ € 4.
=3
Therefore o =yy10: EA. This completes the proof of Lemma 1.
We write the finite abelian group G in the form G =G’ XG®, where G’ has
odd order, and the order of G® is a power of 2. Let A’ and A® be the groups
of automorphisms of G’ and G® respectively. Then 4 =4’ XA4®. We write

G(2)=C1XC2X"'XCI¢,

where C; is cyclic of order #n;, ma=n,= + - + 27,22, and each of these #; is
a power of 2. Let ¢; be a generator of C;. For >k we let C; be the trivial group,
cj=e, and n;=1. Furthermore we put r;=#:/n,,; which must be a non-nega-
tive power of 2. If G has odd order, then G® is trivial and k=0. We will use
the decomposition

G=G XCi X+ XCy

to identify automorphisms of such groups as G’, G®, C;, C;X C;i;1 with ele-
ments of 4. Let N\, N, and N’ be the automorphisms of G, G’, and G® respec-
tively such that

)\g - g“. )‘/g/ = g"‘, )‘/rgu = gn._l
for all gE€G, g'EG’, g’ €GP, Clearly A=N\".
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Now let N\; and £; be the automorphisms of C; such that

Aici = C:ly fici = C:-
Let 7; and 6; be the automorphisms of C; X C;41 such that

Ni€i = CiCit1, NiCi+1 = Citly
Ty
ici = ¢, Oiciyr = Ci Ciyre

We note that \; and £; generate the group of automorphisms of C;. Hence,
according to Lemma 1, the automorphisms \;, &, 1 £¢<k, and 3;, 0;, 1 £j <k,
generate A®. It is clear that \;=§;=¢ for 1>k, and 7;=0;=¢ for j=k.

Let J be the center of H. Then (a, o) €J if and only if

(a, 0) = gla, 0)g™* = (agog™, o)
and

(a,0) = (e: T) (a’ 0‘)(6, T)_l = (ra, 10777)

for all gEG, TEA. It follows that (e, ¢) €J if and only if ¢ =€ and ra =a for
all 7€ A. Thus we have the following result:

LEMMA 2. The center J of H is the group of all characteristic elements of G.

LemMA 3. If G has a nonirivial characteristic element h, then ny>n, and

h=c""2. Conversely if ny>na, then c? is a characteristic element of G.

Proof. Let % be a nontrivial characteristic element of G. We have A =X\k
=h~! and hence % has order 2. Therefore A &EG® and n;22. If h7%c™/? then
there is an automorphism 7 of G®® such that rh=hc"?sh. Thus h=c""2 If
n1=mn, then interchanging the roles of C; and C; we obtain & =c3*%, a contra-
diction. Therefore n;>n,.

Conversely if #;>n,, then ¢}V? is the only element of G of order 2 of the
form gm/2, g&G. Thus n;>n, implies that ¢}/ is a characteristic element of
G.

Combining Lemmas 2 and 3 we obtain J explicitly:

LEMMA 4. The center J of H is trivial if ny=mna. If ni>no then J has order two

and is generated by cp/%.

Now put
N;=G/XHC,', Nj_j'=Glx HC.

i i#5, 3’

Let J/, J®, K;, and K; ; be the groups of characteristic elements of G,
G®, N;, and N;,;» respectively. Applying Lemma 3 to these various groups
we obtain the following information:

LeEMMA 5. J' is trivial and J®=J. If 35j<j', then K;=K; ;=J. If
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2=j<j', then K; and K; ; are subgroups of Ci of order at most two. If 2=<j<j'
and ny>ny, then K;=K; ; =J. Furthermore KyCC, and K1, Cs. If ny=ns
then K, is trivial, and if n,>n3 then K, has order two. If ny=mn4 then Ky is
trivial, and if ny>ny then Ky, has order two.

LEMMA 6. Suppose that G= Q1 X Q: and that T is the group of characteristic
elements of Q1. Let T be an automorphism of Q. IFTEZY (A, G), then T1ET X Qs
and I'(72) € Q,. Furthermore if Z is the group of all cocycles T such that TrEQ,,
then [Z'(A, G):Z], the index of Z in Z'(4, G), is at most two.

Proof. Let ¢ be any automorphism of Q;. Then ¢7 =706 and hence
(Te)(eT7) = (I'r)(7Tq).
Since G is abelian this can be written
(Tr)~YoT'1) = (T'e)~(sT0).

Now g~logEQ; and g~ 7gEQ, for all g&EG. Therefore (I'7)~(e'r) EQNQ:,
which consists of e alone. Hence oI'r =T'7. Since this holds for any automor-
phism ¢ of Q; we must have I'7 €T X Q;. We may write I'r =g, AET, g.EQ,.
Now 7J is the group of characteristic elements of a finite abelian group. There-
fore, by Lemma 3, J has order 1 or 2. Hence hrhk=ht=e for any FET. It
follows that I'(r?) = (I'r) (7T'1) = garg: € Q.

Finally we note that the mapping I'—/% is a homomorphism of Z!(4, G)
into J with kernel Z. Hence [Z1(4, G):Z] is at most the order of 7, which in
turn is at most 2.

LEMMA 7. If G= Q1 X Qy, if T and X are automorphisms of Qz, and if Ago=g;*
for all g, Q,, then

(5) (I'r)? = (TN (sTX)~!
for all TEZY (A, G).

Proof. As in Lemma 6 let J be the group of characteristic elements of Q.
Since T has order one or two it follows that Az=%k=/#"! for all A€7. Hence
Ag=g7! for all gETXQ,. We have I''€T X (0. by Lemma 6, and therefore
Al'r=(I'r)~% Now X is in the center of the group of automorphisms of Q..
Therefore X =r,

(T'7)(+TX) =TA(ATr) = (TA)(T'7")Y,

and (5) follows at once.
If we apply Lemma 7 to the case Q; =G, Q, trivial, then we obtain

(6) I'’r = (I'r)2 = (T\)(sT\)!

for all €4, T€ZY(4, G). It follows from (6) that the square of every ele-
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ment of Z'(4, G) is a coboundary. Therefore every nontrivial element of
H'\(A, G) has order two.

LEMMA 8. If n1=8, then (T\)™?=¢ for all TEZ'(A4, G).

Proof. Let 7 be the automorphism of C; such that r¢;=c!*™2. Then
=e. By Lemma 6, I'\; and I'r are elements of C; X K;. For any g&€C: X K;
we have rg=g!*m/2 [t follows that 7'\, = (I'\;)*™/2 and

e = I'(r?) = (I'1)(7T'7) = (I'r)2tm/2,

Now #; is a power of 2 and 7, =8. Hence 2+n,/2 is not divisible by 4. Fur-
thermore I'r&G® so that the order of I'r is a power of 2. Hence (I'r)2=e.
Applying Lemma 7 to the case Q,=N;, Q;=C;, A=X\;, we obtain

e = (I'r)?2 = (TA\) (7T~ = (TAy)—™/2

which is the desired result.

3. The group Hom (A4, J)BY(4, G). Let Hom (A4, J) be the group of all
homomorphisms of 4 into J, the center of H. Since J is the group of character-
istic elements of G it follows that Hom (4, J) is a subgroup of Z!(4, G). In
this section and the next we determine the factor group Z'(4, G)/Hom (4, J)
-B(4, G). We need the following characterization of the group Hom (4, J)
-BY(4, G).

THEOREM 1. Let '€ZY(A, G). Then T'&Hom (A4, J)BY(4, G) if and only
if the following conditions hold:

(i) TnNEC.

(ii) T €Ci X Co.

(iti) T €T X C2 X Cs.

(iv) Either ni5=4n, or T(\im) E CX Cs, where C 1is the cyclic group gemer-
ated by cic;’ .

Proof. Throughout this proof 7 and j will always denote positive integers.
We have JC ;. Furthermore if 7, =4n,, then J=C/NCCC. It follows that
(1), (ii), (iii), and (iv) hold for any IY&Hom (4, J). Let I""&€B'(4, G). Then
there is a fixed a €G such that I'Y'e =aga=! for all sEA. Now gh\ig '€,
g01g71E Cy, gneg~ E Cs, and ghimg~—'EC for all g&G. Hence (i), (ii), (iii), and
(iv) hold for any I'""EB'(4, G). Now the conditions (i), (ii), (iii), and (iv)
are of such a nature that if they hold for two cocycles I and I/, then they
hold for their product I'I'”’. It follows that (i), (ii), (iii), and (iv) hold for
every element of Hom (4, J)B!(4, G).

To prove the converse let '&€Z'(4, G) and suppose that (i), (i), (iii), (iv)
hold. According to Lemma 6 we can write, for 1 £7 <k,

I‘O = Cy CH.;h,,

where k€K, iy1 and u,, v; are integers. We have ki =e¢ by (ii). Now I'\;
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ECi1XC;for j=2 by Lemmas 6 and 5. Furthermore I'\; & C; by (i). Therefore
0.I'N\;=T'\; for all . We observe that A;=0:\,. Hence
\; = (10;)(6:T\;) (9:\T6)
which reduces to
rivi 2vg

e = (I‘O,)(O.)\,I‘O.) = C; Citl.

Thus n.-| rw; which is equivalent to ng+1|v;. Therefore c}.; =e and we have

) I9; = ¢; ks
It follows at once that 6,I'9;=T9;. Combining this with 6}¥“=¢ we obtain
e = I‘(H:"/ri) - (1.‘0'.)".'/1'4‘

Therefore ¢}*/=¢ and we have ;| u;.
By Lemmas 6 and 5 we have TN'&€J® X G’ =J XG’'. Every element of G’
has odd order. Therefore every element of G’ is a square and we have
TN = hg'?,

where k& J and g’ €G’.
By Lemmas 6 and 5 we can write

r 8-
I"m = 6162’1,

where #€ K, ,C Cs. By (i) we have I'\; =¢} for some integer ¢. By Lemma 8,
t is even if n,=8n,. Now put

’

{ s if (3] é 4”2,
s =

—t/2 if ny = 8n,,
and
8 k1 us/rg
f=g7% [l ein -
-l

Let T’y be the element of B1(4, G) corresponding to f, i.e. I'yo =faf~* for
all c&€A4. Put I''=TIT,. To prove Theorem 1 it is sufficient to show that
I'&EHom (4, J). As a result of the choice of f we have

) '\ =hEJ,

) T, =h=e

and

(10) I'd; = h; € K;,j11 € Cy forallj = 2.

Furthermore
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(11) Ty = cih if ny < 4dne

and

(12) IT'\y = ¢ if n, = 8n,.

We note also that (i), (ii), (iii), and (iv) hold for T'; since they hold for both
T and TYy.

Let 77€A4’. Applying Lemma 7 to the case Q:=G’, 01=G®, X =\ we ob-
tain
(13) T)2 = CN)E'TN) L= h(7'h) L =e.

Now I't'EJP XG'=JXG" by Lemmas 6 and 5. Combining this with (13)
we see that I'ir' € J for all &€ 4.

Since 4 =A4"XA® and since the automorphisms \;, £;, 6;, n; generate
A® it is sufficient to show that I'|\;, T':£;, I'i;, and T'1y; are elements of J for
1=:5k, 155<k.

Now let # be an odd integer and let 7; be the automorphism of C; such
that 7ic;=c¥. Since h? =e and 0;h; =k, we have I',(6¥) = (140,)*= k¥ =h.. It fol-
lows that 7,1 (8}) =T'16;. Hence if we apply I'1 to both sides of the identity
0.’7','+1=T.'+10;‘, we obtain 0.’F1T.'+1=F1T,'+1. NOW FlT;+1€K;+1XC,+1, K.;+1C_:C1,
and e is the only element of C;;1 left fixed by 6;. Therefore I'i7;(1E K. In
particular

(14) T\;EK; and T; € K; forall j = 2.

We have T'§; =T1(6}) =e. Therefore if we apply T'; to both sides of 63
=£,0;, we obtain

0lir‘1$1 = I
Since I'i& € Ci X K1 S €1 X C, this implies that
(15) I € Ch.
Now we study I'im;. By Lemma 6 we have

T €Ci X Cipr X Kijigre

Applying T, to both sides of 7:1.10:=0:n:41 and noting that 7;.I'0:=T10;, we
obtain T19ip1=0:T1m:41. It follows that

(16) T'm; € Cit1 X Ki,is1 © C1 X Cir forallj = 2.

Now put ¥ip1 = (@ir1Ni410:) 2 By (9), (10) and (14), T'1(0:41Ni110;) isan element
of C; of order at most 2. Hence I'i};11 =e. Now

. {c; 7504 2,
R PAC T gy}
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It follows that Y,.1g =g if and only if g& Ny;e. Furthermore g~ EC; for
all g&G. Now

Virmips = nepfi Wit
We apply I'; to both sides and get
YiriTamips = (Camap)nenaTa(0: ") = (Tamap) b

Hence ki+ is of the form g=%,.g. Therefore hi+'€C;. Since hy=e and
k;E€C, for =2, we have kit =e for all 7. Therefore I'1ni11E Niys. Combining
this with (16) we have

T € Kj,is1 € Cy forall j = 2.

By Lemma 5 we have K; ;. =J if j=3. Furthermore I'i.€J X C: X C; by
(iii). Therefore

(17) Tm; €J for all j = 2.

If we apply T’y to both sides of the identities A; =nAom1 and Gany =mi6: we
obtain

(18) (TiA2) (mTAe) ™" = (Tim1) (nahaTam1)

and

(19) (T182) (mT'182) =" = (1) (8T 1ma) 2
Next we will establish:

(20) '’».&€J, T¥.cJ

and

(21) I'm €J X Ca.

There are two cases to be considered.

(I) #1>mn,. Here K, 3=K,=J by Lemma 5. Hence (20) follows from (14)
and (10). We have T'yp =clcs %, where 7 and s’/ are integers and A€ K. Cs,
h*=e. It follows from (20) that the left hand sides of both (18) and (19) are
equal to e. Therefore

2r r
e = (Tm)(nLim) = ¢1 c2
and
e = (Tin)(0:T1m)~t = h(62h)L.

Therefore ¢& =k =e which implies (21).

(II) my=mn,. In this case let { be the automorphism of C;XC, such that
fe1=cs, {ca=c1. We have {?=¢ and 9, ={0:{. Applying I'; to these two equali-
ties we obtain I'/¢ ={(I'1¢)~! and
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Ty = (T (T0)(08) = { (T~ 0: 1)},

since I''61=¢ by (9). Now g~0,g& C; and hence {(g~0,g) EC. for all g&G.
Therefore I'y € C; and (21) is established. It follows from (21) that the right
hand sides of both (18) and (19) are equal to e. Hence I''A\;=mI1\; and
P102=ﬂ1F102. Since we already have F])\zecl by (14) and P102€C] by (10)
these last two equalities imply (20).

We have established that (20) and (21) hold in all cases.

We will next establish:

(22) '\,

(23) either n; = np or T € J,
and

(24) 'm&J.

If ;=8 then (22) follows from (12). If ;=<4 then (24) follows from (11)
and (21). We will now show that (22), (23) and (24) are equivalent. Then
it will follow that all three hold in all cases.

Suppose (22) holds. We apply Lemma 7 with Q;=Ci, Q1 =Ny, and A=A,
Then (5) yields (T':£,)2=e. Combining this with (15) we see that I'&,EJ if
n1>ns. Thus (22) implies (23).

Next suppose (23) holds and that r,=8. We specialize 7; to be the auto-
morphism of C; such that 7.;=c;*". Since 8|7y it follows that 7, is an even
power of £;. Furthermore, since 7;>n,, it follows from (14) and (23) that
T'\&,€J for all 4. Therefore I''ry=e for all 2. Now

(miNaTe01)? = 7179,

We apply T'; to both sides of this identity, noting that I'\.&K,=J, T\,
=Tyri=Tir.=e, and T'yp=cic, where ¢;EJ by (21). This gives us
e = (Tim) (nherobiTimy) = C:“’
Therefore nllns”, ngls", &' =e, and Ty =c, EJ. Thus (23) implies (24).
Suppose (24) holds. Then applying I'y to (\1n1)%2=¢, we obtain

tl
e = (T A)AmIiN) = ce

where T)\i=¢. If 1 <2, then b=¢ implies EJ. If r1=4 then T'i(\im)
ECXCsby (iv), and, since M\[''m EJ CC, we have '\ E(C X Cs)MCi=J. We
already know that (22) holds if ;= 8. Therefore (24) implies (22).

It follows that (22), (23), and (24) hold in all cases.

Combining (17) and (24) we have

Tm;eJ, 1=j<k
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From (9), (10), and (20) we obtain

re;eJ, 1<k
From (14), (20), and (22) we obtain

T\ EJ, 1<5i=5k
and

I‘lEieJy 3§i§k.

Furthermore (14) and (23) imply: If #,>n,, then I't;€J and I'EEJ. To
complete the proof of Theorem 1 we need only show that I'&iE€J and T'hé,EJT
for the case ny=n,.

Suppose #1=n,. In this case J consists of e alone. As above let { be the
automorphism of CiXC; such that {¢i=c; and {c;=c1. Since =N 'n1 it
follows that I'i{ =e. Hence, if we apply I'i to both sides of the identity
£ =06¢ we obtain I'&, ={T'£1. Now, by (14) and (15), I'é.E Cr and (Th6, ECe.
Hence I'i£,=T1£,=e&J and the proof of Theorem 1 is complete.

Let Z; be the set of all cocycles that satisfy condition (i) of Theorem 1.
Clearly Z; is a subgroup of Z!(4, G) and we put m;= [Z!(4, G):Z;], the index
of Z;in Z'(4, G).

LEMMA i. m;S2. If m;=2, then either n1>n.>ng or n1=n, =4ns.

Proof. The inequality m;=<2 follows at once from Lemma 6. Suppose
m;=2 and let TE€2'(4, G), I'&Z;. Then '\i& C:. From Lemma 6 we have
I'\N€Ci X K,. Hence K, is not trivial and Lemma 5 yields #y>n;. Thus
n1=ny=2n3. If n1>2n; then either ny>n,>n3 or #;=n,=4n;. Thus we need
only eliminate the case #n;=2n;.

Suppose 7;=2n;. Then A3 =¢?2, where ¢ is the automorphism of C;XC;
such that ¢c;=cic3 and ¢cs =ci2cs L. It follows from Lemma 6 that

(TA)(MTN5) = T(A ;) = T(¢?) € C1 X Cs.

Now I'\s €K;3 X C; S C1 X Cs. Hence M\ I'N;&E C1 X C; and we have T\ &C; X Cs.
Now I'NNECi X K1 C Ci X C, by Lemmas 6 and 5. Therefore I'\; EC;, a contra-
diction. This contradiction establishes Lemma i.

Let Z;; be the group of all cocycles I' satisfying the conditions (i) and (ii)
of Theorem 1. Put m;; = [Z;: Z;].

LEMMA ii. m;; 2. If mii=2 then ny>n,.

Proof. By Lemma 6 the set of all cocycles that satisfy (ii) form a subgroup
Z" of Z'(4, G) of index at most two. We have Z;;=Z;MN\Z" and hence

my = [Z:Z;N\Z2") = [2.2":2"] £ [2Y(4,6):2"] £ 2.

If 3 =n,, then (ii) is satisfied by all '&€Z(4, G) by Lemmas 6 and 5. Hence
if mii=2 then n3>n,.
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Let Z;;; be the group of all cocycles T satisfying conditions (i), (ii), and
(iii) of Theorem 1. Put my;; = [Zii: Ziis].

LEMMA iii. mm§2. If mm=2 then NL=Mng >Nz > Ny.

Proof. By Lemma 6, I');ECo X C3X Ky 3 for all TEZY(A, G). If n1>n,,
then K, 3=J, (iii) holds for all '&Z'(A4, G), and m;;; =1. Thus without loss
of generality we suppose #;=n,. Then J is trivial. It follows from Lemma 6
that the set of all cocycles that satisfy (iii) form a subgroup Z’’’ of index at

most two in Z1(4, G). We have
mii = [Zuw:ZuNZ"] = [2:2:2""] £ [2(4,G):Z2""] < 2.

Now suppose n3=n4. Then n,=¢? where ¢ is the automorphism of
Ca X C3 X Cy such that ¢cy=cocy, Pcz=c3, Ppcs=cscit. It now follows from
Lemma 6 that (iii) is satisfied by all T&Z'(4, G), and m;;;=1. Thus n3=mn4
implies m;; = 1.

Suppose n1=ny=mn;. Let 'EZ;; and let { be the automorphism of C; X C;
such that ¢c1=¢; and {¢3=¢;. Then {?=¢€ and 7. ={6:¢. Applying T' to these
two equalities we obtain I't = (¢{T'¢)~! and

Ty = (DO (TO,)(F0.T) = ¢{(T6,)(T5)~1(6:T¢) ).
Now I'0, € C, X C, by (ii). Furthermore g='0,g€ C; for all g&G. Therefore
(T8,)(T¢)~1(0:T¢) € C1 X Ca

and ', € C2 X Cs. Thus mi;;=1 if ny=ny=mns.

It follows that if »;;;>1 then n,=n,>n3>n4, and Lemma iii is estab-
lished.

Now put m;, = [Z;;;:Hom (4, J)B'(4, G)].

LEMMA iv. miv 2. If miy, =2 then ny=4n,.

Proof. If n;4#n,, then m;, =1 by Theorem 1, and Lemma iv holds. Sup-
pose n; =4n, and let '&€Z;;;. By Theorem 1, '&Hom (4, J)B'(4, G) if and
only if TAm)ECXC(Cs. Since 'AMm)ECIXC: XKy, we have T'(A\imi)
=ci(3ct)*h, where r and s are integers and % is an element of C; such that
h*=e. Now (\imi)2=e. Hence

e = TOm)MmT(am) = o,

and we have 7,|7. Now in the case under discussion CN\C;=J and J is the
cyclic group generated by ¢i™. Let D be the group generated by.c}? and
ceit. Then T'—¢[C is a homomorphism of Z;; into D/C with kernel
Hom (4, J)B'(4, G). Hence m;, < [D:C] =2, which establishes Lemma iv.

Clearly [ZY(4, G):Hom (4, J)BY(4, G)|=mimim;;im;,. It follows from
Lemmas iii and iv that m;;; and m;, cannot both be two. Therefore

[Z2Y(4, G):Hom (4, J)BY(4,6)] < 8.
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It will follow from the results of §4 that this index can actually assume any
of the four possible values 1, 2, 4, 8.

4. Special cocycles. The four lemmas of §3 give us necessary conditions
for m,=2, v=i, ii, iii, or iv. In this section we will show, by actual construc-
tion of suitable cocycles, that these conditions are also sufficient. This will
provide us with a set of generators of the factor group

ZY(A4,G)/Hom (4, J)BY(4, G).

Let G be a characteristic subgroup of G, and let 4 be the group of auto-
morphisms of G. For any ¢ €4 we let & denote the restriction of ¢ to G. Since
G is a characteristic subgroup of G it follows that & 4. In particular & is the
identity of 4. If T&€Z!(4, G), then there is a corresponding element T'
&Z'(4, G) such that

(25) I'c =T¢ forall ¢ € 4.

Let a;, ag, * -+, am be a set of generators of 4 and let T be a mapping of
this set of generators into G. We will say that T' satisfies the relation(2)

apag, oo = €
if
(f‘a;l)(allf‘ah) cee (agon, o az,_lf‘az,) =e.

Let

all...alr=€'
(26) :

Qg * * " Qg = €
be a set of relations between ay, - - -, a,, that is complete in the sense that

any other relation can be deduced from it. The following lemma is due to
Anne P. Cobbe [1, pp. 43-45].

LEmMMA 9. If T ' satisfies each of the relations (26), then T' can be extended to
an element TEZ'(4, G). The extension T is uniquely determined by T.

Throughout the remainder of the paper we will use the following addi-
tional notation:

n, /4
a; = C;
for those ¢ for which #;=4, and
/2 .
bi=c 1<j<*

We are now in a position to proceed to the construction of special cocycles.

(%) For our present purposes it is sufficient to consider only relations in which no negative
powers of the a; occur.
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(i) By Lemma i, if m;=2, then either n;>n.>n; or ny=n.=4ns;.

(i") Suppose n;>n,>ns. Here we take G to be the characteristic subgroup
of G generated by a; and b,. Then G is the direct product of a cyclic group of
order 4 and one of order 2. Hence 4 is the octic group. Let @ and 3 be the
automorphisms of G defined by

aa; = by, ab; = aibzy
Bal = d::bz, Bbz = bz.

Then a?=2X; and a8 =8, the restrictions of A\; and 6, respectively to G. Fur-
thermore « and 8 generate A and a complete set of relations is

(27) at = B2 = (aff)? = &
The mapping I of the set {a, B} into G given by
Mo = a:b,, "g=c¢e
satisfies (27). Hence, by Lemma 9, I can be extended to an element I of

Z'(4, G). This in turn corresponds to an element '€ Z(4, G) by the cor-
respondence (25). Now

'\ = T(e?) = (IYa)(al'a) = b & C1.

Thus IV Z;.

@i"). Suppose n;=mn;=4n;. Here we take G to be the characteristic sub-
group of G generated by a; and a,. In this case G is the direct product of two
cyclic groups of order four. Hence A has order 96. Let 4 and & be the auto-
morphisms of G such that

2 2
Ya1 = @182, Ya: = aaz,
3
da, = a,, and da; = a,a,.

Then v has order 2, 6 has order 6, and 82 has order 4. The symmetric group
of order 24 is characterized, as an abstract group, by the property that it is
generated by an element of order 2 and an element of order 3 whose product
has order 4. Hence v and 82 generate a group A, of order 24 isomorphic to
the symmetric group. Now (v§%)?=¢. It follows that 6% commutes with every
element of A,s. Therefore 83 Az It follows that 4 and § generate a group
A s of order 48 and that a complete set of relations (3) for this group is

(28) yE=00 = (vé?)t = (v8)? = &
Now
(29) )% = &

(®) The group Aus is isomorphic to the direct product of the symmetric group of order 24
and the group of order 2. The set of relations (28) for this group is due to G. A. Miller [5].
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It follows that (Xyy)2€k 424, and hence X, & 4 4. Therefore v, 8, and X, generate
A. A complete (though redundant) set of relations for 4, with respect to this
set of generators, is (28), (29), and

X: = 7\16)'\1767 = €
This set of relations is satistied by the mapping I’ of {7, 8, X;} into G given
by
Iy =1T"X, = aiaz, I =e.
By Lemma 9, I’ can be extended to an element T &€Z!(4, G), and I' in
turn corresponds to a cocycle I'"'€Z'(4, G). Clearly

I‘")q = f‘"Xl = afa: E Cl.

Hence I'' & Z;.
Combining Lemma i with the existence of IV and I'”’ we see that

2 if ny > ny > n,
m; =12 if ny = ny = 4n,,
1 otherwise.
Put
{P/ if n1 > ny > ny,
Yo i g = ma 2 s
Then T'; is an element of Z!(4, G), defined whenever m;=2, such that
IigZ..
_ (ii) By Lemma ii, if m;;=2, then n3>n,. Suppose n3>ns. We now take
G to be the characteristic subgroup of G generated by b, b,, and b;. This G

is the direct product of three groups of order two, and the corresponding 4
has order 168. Let ¢ and p be the automorphisms of G such that

¢b1 = b]bz, ¢b2 = b3, ¢b3 = blb2b3;
pby = b1b,, pbz2 = bobs, pbs = bs.

We note that ¢p=4,, the restriction of §; to G. Furthermore pe5b;=bs,
pPibs = b1bs, and pdPb; =b;. Hence

(30) @7 = p* = (¢0)? = (0¢°)* = &

It is known(%) that (30) and ¢ ¢ are sufficient to insure that ¢ and p
generate the simple group of order 168. Therefore ¢ and p are a set of gener-

(4) This set of generators and relations for the simple group of order 168 is due to Dyck
[2, p. 41] and confirmed by Miller [5].
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ators for 4 and (30) is a corresponding complete set of relations. Let I';; be
the mapping of {¢, p} into G given by

Tig = e, Tiip = b

It can be readily veri_ﬁed that T';; satisfies (30). Hence T';; can be extended to
an element T';;EZ!(4, G). By the correspondence (25), T; corresponds to a
cocycle T';;E€Z1(4, G). Now X\ =é Hence I';\;=e. Furthermore

Tiif: = Tii(¢p) = ¢Tiip = bs & C1 X Ca.
Thus we have constructed a cocycle T';;, defined whenever #n;>n4, such that
' € Z;, Ty & Zis.
Combining the existence of I';; with Lemma ii we obtain
{2 if n3 > Ny,
mii =
1 if N3y = nN4.

(iii) By Lemma iii, if mi;; =2, then ny=n.>n;>n4s. Suppose n;=mns>n;
>n,4. In this case again we take G to be the group generated by by, b, and b;.
Let T;; be the element of Z!(4, G) defined above. Let 7 be the projection
of G onto C1 X C; such that

_ {g if g€C1><C2,
e if g € Ny,
Let x be the homomorphism of G onto G such that
{b.~ if 1 =3,
XCi =
e if 1> 3,

and xg’'=e if g €EG’. The kernel of x is generated by G’ and the elements
e, c¢j, 113, j>3. Since n3>n, it follows that the kernel of x is a char-
acteristic subgroup of G. Therefore if s &4, then

Fxg = xo8

gives a single valued mapping & of G onto itself. Now ¢ &4, ¢—¢ is a homo-
morphism of 4 into 4, and we put

(31) I‘mcr = Tfiiﬁ.

We must now show that T'j;; is a cocycle. Since #n1=mn,>n; it follows that
wxg =gm'? for all gEG. Hence for any g&G® we have

orxg = (og)™/* = wxog = mixg.

Therefore grg =még for all EG. Now let ¢ and 7 be arbitrary elements of 4.
Since T;;7EG, we have onl';i7 =wdli7. Hence
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(I‘iiia)(crI‘iiir) = (wfii&)(awfm'-)

= (aTi6) (wéTsi7)
= r{(riitf)(friif)}
= al5i(67)
= Tii(o7).
Thus I';;;EZ1(4, G). We note that if
ac‘=ﬁc§ii, 17k

1=l

then T'i;;0 depends only on the residue classes of the ¢;; modulo 2, since these
residue classes determine ¢ completely. Hence I'i;;A\ =e. Furthermore T';ii0
ECiXC, for all & A. In particular T';i6,&ECi X C,. Finally 7, =¢%p¢%¢",
T'iifl2 =b1bs, and hence

Tiine = by ECe X C3 = J X Cy X Cs.
Thus we have a cocycle T';;;, defined whenever n,=n,>n3>n,4, such that
Tiwi €Zis, T & Ziase
It follows that
20f ny = n2> ng > ny,
s = {l otherwise.

(iv) Suppose n, =4n,. We now take G to be the characteristic subgroup of

G of order 4 generated by a,. In this case 4 has order two and is generated by
Xi. A complete set of relations is

A

It follows from Lemma 9 that there is a cocycle T',,EZ1(4, G) such that
TiwXi=a:. By (25), T, corresponds to a cocycle I's, EZ'(4, G) such that

e if aga, = a,
Tivo = -1

ay if oa; = ay .

= &

We have I'i,)\1=a,, i1 =Tivn2=e, and T';,(A\im) =a1 & C X C;. Thus we have
a cocycle T';y, defined when n; =4n,, such that

Piv G Ziii’ I‘iv & Hom (Al J)Bl(Av G)'

It follows that

{2 if n = 4”2,
Mmiy =
1 if n1 # 4%2.
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We have determined all m,, i<v=<iv, and constructed a cocycle T, for
each v such that m,=2. Z'(4, G) can be obtained from Hom(4, J)B!(4, G) by
adjoining these I',; H'(4,G) can be obtained from Hom(4,J)B!(4,G)/B(4,G)
by adjoining the corresponding cosets I',B!(4, G).

5. Hom (4, J). Our next goal is the determination of the group
Hom (4, J). We will discuss the slightly more general problem of the deter-
mination of Hom (4, T), where T is an arbitrary group of order two.

We let e denote the identity of T as well as that of G. Let & be the other
element of 7. We write

G=]I6»,
P

where p runs over all prime numbers dividing the order of G, and G is the
Sylow subgroup of G whose order is a power of p. Now

A=]J]4®,
P

where A® is the group of automorphisms of G®. Under suitable identifica-
tion Hom (4@, T) can be regarded as a subgroup of Hom (4, T) and we
have
Hom (4, T) = [] Hom (4®, T).
P

Now let p be a fixed prime dividing the order of G. We will use the nota-
tion of Lemma 1. By Lemma 1, A is generated by the automorphisms 7;,
8;, 1=j<l, and the automorphisms of D;, 1 =i =/1.

In the sequel 7 and j will always denote positive integers.

LEMMA 10. Let T&Hom (4, T). If p is odd, or if m;p1=mj4e, or if j=2 and
m;_1=mj, then Dy;=T8;=e. If mj=mjy, then I'y;=T4,.

Proof. Since T&Hom (4, T) it follows that T'e?=e¢ for all c E4.
Suppose p is odd. Then v; and 8; have odd order and hence they are
squares. Thus in this case I'y;=T'8,=e.
Next suppose #;41=mj4s. Then v;=0% and §; =03, where ¢, and o are the
automorphisms of D; X D;;1XDjye such that
01d; = d;djy, o1djp1 = dj, 01djr2 = djndjy,
o:d; = dj, o2div1 = djndjys, oadjre = di djpa.
Hence I'y;=T'6;=e.
Now suppose j =2 and m,;_,=m;. Then v;=03 and §,=03, where o3 and o4
are the automorphisms of D;_; XD;XDj;, such that

—1
o3di1 = @j1djp, o3d; = d;-1d;, o3dip1 = djy,

_1 o
oidj-1 = djd;, oid; = dj, oidjy1 = diadjp.
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It follows that I'y;=T'¢;=e.
Finally suppose m;=mj,;. Then s;=1 and v,8; =02, where o is the auto-
morphism of D;XD;;, such that

0’5dj = d:’+l’ Ubdj+1 = djdj+1-
Hence (T'y;)(I'3;) =e which implies T'y; =T'é;.

LeEmMmA 11. Let '&EHom (A4, T). Let q be an integer relatively prime to p,
and let u; be the automorphism of D; XDy, such that

q q
pid; = d;,  pidip = djp

If g=1 (mod s;), then Tu;=e.

Proof. Suppose g=1 (mod s;). Then u; =»? where v is the automorphism
of D; X Dj,; such that

1 —1
vdj = dj djpy vy = d; djps.

Hence I'u; = (I'v)2=e, which establishes Lemma 11.
For p odd let u(p) denote the number of distinct integers in the set
my, Mg, * -, M.

LeMMA 12. If p is odd, then the order of Hom (AP, T) is at most 2@,

Proof. Since p is an odd prime, the group 4; of automorphisms of D; is
cyclic. Let 71 be a generator of 4;. Then 7,d;=d] for some integer q relatively
prime to p. For arbitrary ¢ let 7; be the automorphism of D; such that 7.d;
=dj. Then 7, is a generator of the cyclic group 4;. By Lemma 1, A® is gen-
erated by the automorphisms 7,, ¥;, 0;, 1 1=/, 1=5j</. Let '&EHom (4™, T).
Then I'y;=T'6;=¢ for all j by Lemma 10. If m;=m; then I'r;=T7; by Lemma
11. Let ji, j2, - * +, juw be a set of indices such that m;,, - - -, m;, , is the
complete set of distinct values of m;. Then I' is completely determined by
the I'r;;, 1 =< u(p). Since there are only two possible values for I'r; for each
7, the order of Hom (4™, T) is at most 2%®, This completes the proof of
Lemma 12.

Let m be one of the numbers m,, - - -, m;. Thus m is a power of p. Let
D,, Dy, + - -, D¢ be those D; of order m. For e €A we write
! e
odj = [] 47, sSjst

i=1

Let 4;; denote the residue class of #;; modulo p, and let %, be the value of the
t—s—+1 rowed determinant | ﬂ“jl , sSt=t, s<j=<t. Then ¢—u, is a homomor-
phism of 4 onto the multiplicative group of residue classes modulo p. We
now define the mapping T of 4 into T as follows:
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e if u, is a square modulo p,
Tmo = {

h otherwise.

Then T,EHom (4@, T). If p is odd, then as m runs through its u(p) pos-
sible values, T, runs through %(p) independent homomorphisms of 4 onto 7.
Combining this with Lemma 12 we obtain:

LemMA 13. If p is an odd prime dividing the order of G, then the order of
Hom (A®, T) is 2*®, Furthermore Hom (A®, T) is generated by the u(p)
homomorphisms of the form Y., where m is a power of p and an invariant of the
finite abelian group G.

It can be shown that T, depends only on G, T, and m.

We now study Hom (4, T). We know that A is generated by \;, &,
0;, 7;, 1515k, 1=5j<k. We will put no=r¢=  in the following in order to
insure that ny>n; and 7, =8.

Let u(4) denote the number of positive values of 7 such that r;=4, and
let #(8) denote the number of positive values of 7 such that r;=8. Let u(y)
be the number of values of 7 such that #;_1>#; and 7,1 >n.. Let u(0) be
the number of values of 7 such that #;_1>n;>n;11>ni2. Let T&Hom (4?2,
7).

We note that A\y=¢ if #,=2, and that & =¢ if n,<4. From Lemma 11 it
follows that

I\ = Mhin ifr; <2

and
TE = Téia if r; < 4.

It follows that at most #(4) of the I'\; are independent and that at most %(8)
of the I'¢; are independent. From Lemma 10 it follows that I'n;=T8;=e¢ if
either 7;1 =04y or n;y=n; Furthermore I'n;=T8; if n;=n;,. It follows
that at most #(n) of the I'y; are different from e, and that I'§; is independent
of I'y; for at most %(6) values of j. Thus the order of Hom (4, T) is at most
24 where

w(2) = u(4) + u(8) + u(n) + u(6).

We shall now construct #(2) independent homomorphisms of 4(® onto 7.

For any ¢ &4 we write
k a5
1
gCj = Cq J, 1
=1

A
I\

j <k

Let r=4 or 8. Choose s and ¢ such that s=t¢, r;<r if s<j<¢, r,.127,
r.=r. For each r there are u(r) possible choices of s and ¢. Let §;; denote the
residue class of g;; modulo 7. Let ¢, be the value of the t—s-+1 rowed deter-
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minant [q.y[, s<i1=t, s<j=t. The mapping 0—¢, is a homomorphism of 4
onto the multiplicative group of odd residue classes modulo r. For r =4 we
put
{e if ¢ =1 (mod 4),
A;O’ = .
hif ¢, = — 1 (mod 4).

For r=8 we put

i

{e if ¢g = £+ 1 (mod 8),
“7 hif g = + 3 (mod 8).

The %(4) mappings A; and the %(8) mappings = are elements of Hom (4®,T).
Furthermore

Ak = Af; = Am; = e for all j,
and
hif s <5 =,
A‘7\,~ = .
e otherwise.
Moreover
ENj= Eb; = Em; = e for all j,
and

2 {h fs<j=y,
e e otherwise.

Now let s be one of the %(n) integers such that #,_1>#n, and #7,41> 7,4s.
Let §;; denote the residue class of ¢;; modulo 2, and let I, be the 2 X2 matrix
(§i5), sS1=s+1, s=j=<s+1. Then eI, is a homomorphism of 4 into the
group of nonsingular 2 X2 matrices over the field of two elements. This group
of 2 X2 matrices is isomorphic to the symmetric group of order 6 and has an
invariant subgroup S of order 3 consisting of

G G (o)

{e if M, € S,
Vo =
kif M, € S.

The u(n) mappings ¥, are elements of Hom (4®, T). For each of them we
have

Put

Y\ = ¥,k = ¢ for all 5,
V0; = ¥; = eforj #s,
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and ¥,n,=h, while ¥,0, may be either e or &.
Finally let s be any positive integer such that n,_1>#n,>#,.1>7,2. We
put

{e if 2r,l G, 5+1y
0 = .
h otherwise.

Then ©,EHom (4@, T). There are u() such ©, and for each one
O\ = O,f; = Oum; = eforall j

and

eif 7 s,
@-9:'={ . ]
hif j = s.

We see that the #(2) homomorphisms A,, =, ¥,, 0, are independent. There-
fore the order of Hom (4™, T) is 2*® and the homomorphisms A,, Z.. ¥,, O,
form a basis for it.

It can be shown that the homomorphisms A,, Z;, ¥,, O, are independent
of the decomposition of G® into the direct product of cyclic groups C; and
of the choice of generators c;.

Summarizing the results of this section we obtain:

THEOREM 2. The order of Hom (A, T) is 2%, where u= o u(p), the sum
being taken over all primes dividing the order of G. There is a basts for Hom (4,T)
consisting of the elements T, where m runs over the odd prime power invariants
of G, A, for those positive t such that r. =4, &, for those positive t such that r, =8,
W, for those s such that n,_1>n, and n,41>Neypa, and O, for those s such that
Mgl > Ng > Nyy1 > Net2.

6. H'(4, G). In §2 we showed that every nontrivial element of H'(4, G)
has order 2. Therefore H'(4, G) is either trivial or the direct product of cyclic
groups of order 2. It follows that H'(4, G) is isomorphic to the direct product
of the two factor groups

ZY(A,G)/Hom (4, J)BY(4,G) and Hom (4, J)B'Y(4, G)/BY4, G).
The first of these two factor groups was determined in §3 and §4, while the

latter is isomorphic to Hom (4, J)/Hom (4, J)NBY4, G).
Now if #;=mn,, then J is trivial and hence

HY(4,G) = Z'(4, G)/Hom (4, J)BX4, G).

If #1>n,, then J has order 2 and Hom (4, J) is given by Theorem 2 with
T =J. Thus to complete the determination of H'(4, G) we need only deter-
mine the intersection Hom (4, J)M\B'(4, G) under the assumption 71> n,.
If 71> n,, then we use the notation of §5 with T'=J and A=0b;=c}p/% We
note that if A; is defined, then 7, =4, Ajo =ay0a;" for all e €A, and hence
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A =T,, € Hom (4, J) N\ BY4, G).
Similarly if 0, is defined, then #:>#n;>n;3 and

0, = Ty, € Hom (4, J) N BY(4, G).
Conversely we have:

LeMMA 14. If T is a nontrivial element of Hom (4, J)N\BY(4, G), then T is
esther A1, Oy, or A,10,.

Proof. If n,=n, then Lemma 14 is trivial. Suppose 7#:>#n, and let a be an
element of G such that I's&Hom (4, J). Then asca='& J for all t €EA. Letting
o run through the automorphisms of N; we obtain a € C1 X K. If a €& C;, then
K, is not trivial, ny>n3, a is of the form a’b, with o’ ECy, and T, =T/ 0,.
Hence without loss of generality we may suppose a ©C;. Then a?=a\a™1E&J
and thus a‘=e. Now a=¢! for some integer ¢. Hence ama='=¢'€JC (.
Therefore m[ g and n1|r1q. Hence an=e. Thus if a&J, then a?#e, ri 24, As
is defined, aa;'E€J, and I'; =T, =A;. On the other hand if aE€J, then T, is
the identity element of the group Hom (4, J). Thus Lemma 14 is established.

It now follows that if #;>n,, then a set of representatives of a basis of
Hom (4, J)B(4, G)/B'(4, G) can be obtained from the basis of Hom (4, J)
given in Theorem 2 by deleting A; and @, (if they are defined). We now sum
up in the following theorem.

THEOREM 3. Let G be a finite abelian group and A its group of automor-
phisms. Let 8 be the set of all v for which T'y is defined, i Sv=iv. If ny=n,, then
the cosets T',B'(A4, G), vES, form a basis of H'(A, G). If n1>n,, then there is a
set of representatives of a basis of H(A, G) that consists of the elements T'y for
all v&S, T, for all odd prime power invariants m of G, A, for all t>1 such that
re=4, B, for all positive t such that r. =8, ¥, for all s such that n,_1>n, and
Mep1> Moy, and O, for all s>1 such that n,_1>n,>n,0.1>n.409. In both cases
H'(A, G) is either trivial or the direct product of groups of order two.

II. THE OUTER AUTOMORPHISM GROUP OF H

In Part II we will complete the determination of the outer automorphism
group of H. Throughout Part II we will use the notation of Part I. In particu-
lar H is the holomorph of the finite abelian group G, @ and g are the outer and
inner automorphism groups of H respectively, @ is the group of all automor-
phisms of H, and ® is the group of all automorphisms of H that map G onto
itself.

7. Invariant subgroups of H isomorphic to G. In this section we will col-
lect certain results(®) about the invariant subgroups of H isomorphic to G.

(5) Most of these results can be found in [6] in somewhat different form. We will appeal to
[6] only for the result that there are no invariant subgroups of H isomorphic to G other than
the ones listed in this section.
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In particular we will list all these subgroups and, for each such subgroup G*,
we will construct an automorphism of H that maps G onto G* and leaves
GNG* fixed elementwise.

Let A* be the group of all elements of H of the form (e, ¢), s EA.

LEMMA 15. Let G* be an invariant subgroup of H isomorphic to G and sup-
pose that every element of G occurs as the first component of an element of G*.
Let w be any isomorphism of G onto G*. For any g&G let g* denote the first
component of wg. Then there exists a unique extension Q of w to an automorpism
of H that maps A* onto itself. For any s €A we have Qe, o) = (e, c*) where

(32) o*g* = (og)*.

Furthermore if Q' is any automorphism of H that maps G onto G* and A* onto
itself, then Q'Q €49. If Q* is any automorphism of H that maps both G and A*
onto themselves, then Q*E&d.

Proof. Since G and G* are finite and have the same order it follows that
every element of G occurs exactly once as the first component of an element
of G*. Hence the mapping g—g* is a one-to-one mapping of G onto itself.
Suppose that Q is an automorphism of H mapping 4* onto itself such that
w is the restriction of @ to G. For any ¢ €4 we put Q(e, g) = (e, 0*). Now

Qog = Q{(e, 0)g(e, 0)7'} = (e, a*)(g*, d,)(e, o*)!

where wg=(g*, ¢,). Comparing first components we obtain (32), which de-
termines ¢* uniquely. Since Q is completely determined by its effect on G
and A* it follows that there is at most one automorphism of H with the re-
quired properties.

We must now prove the existence of Q. For any ¢ €4 let [¢] denote the
automorphism of G* induced by the inner automorphism I, of H. Since
every element of G occurs as the first component of an element of G* it fol-
lows that the mapping o— [c] is one-to-one of 4 into the group of automor-
phisms of G*. Since 4 and the group of automorphisms of G* have the same
finite order it follows that ¢— [o] is an isomorphism of 4 onto this group of
automorphisms. Let ¢* be the automorphism of G such that [¢*]=wow™".
Then the mapping Q given by

Qg, o) = wgle, o*)

is a one-to-one mapping of H onto itself. Clearly Qg =wg for all g&€G and Q
maps A* onto itself. Furthermore

{Qa, o)} {006, 1)}

waf [o*]wb} (e, o*r%)
= w(aob)(e, o*r*)

Q{(a, 0)(, ) }.

Hence Q is an automorphism with the desired properties.

It
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Now £’ maps G onto G*. Hence for suitable & A we have Q'¢g =wg for
all g&G. Then Q1,4 is an extension of w to an automorphism of H that
maps 4 * onto itself. Hence Q' ,4) = by the uniqueness of Q. Thus Q@' €4,
Finally putting G*=G, =1, the identity automorphism of H, and Q' =Q*
this becomes Q*&4d, which completes the proof.

If n1=4 let ¢1 denote the automorphism of G® such that

dig = gt

for all g&G®@. Clearly ¢, belongs to the center of 4 and ¢ =e.
If no=2 put ¢, =0%2 Thus

n/2
¢201 = €1, P20z = €1 Ca.

Furthermore ¢2=e.
If 7, =4 put ¢s =¢n™%. Thus
14n1/2 ny/2 14+n;1/2
by =c1 e, bsca = ¢
We have ¢2=e.

We will now list the invariant subgroups of H isomorphic to G.

1. Suppose 7, =8 and n;>n,. In this case let G; be the group generated
‘by (c1, ¢1) and Ny. Then G; is isomorphic to G. The group G; consists of those
elements of H of the form (a, ¢1) where 7, divides the order of a and of those
elements of G whose order is not divisible by #,. It follows that G, is an invari-
ant subgroup of H isomorphic to G, that every element of G occurs exactly
once as the first component of an element of G;, and that GG, is generated
by 2 and N,. Let w, be the isomorphism of G onto G; such that

14+n/4
wier = (1, é1)
and wg=g for all gEN,. Then w, leaves every element of GN\G; fixed. By
Lemma 15 there exists an automorphism § of H that extends w; and that
maps 4 * onto itself. By (32) we have

Q (e, o) = (e, o) if gc; = ¢y,
Qle, £1) = (e, &),

Qle, M) = (e, M),
Wue,m) = (eym’ ).

Since 7; = 8 we have ¢; =£"/%. Hence Qu(e, ¢1) = (¢, ¢1). It follows that Q2 maps
both G and A* onto themselves. Hence Q2€4d by the last statement of
Lemma 15.

2. Suppose n1>m,>n;. In this case let G, be the group generated by
(c1, P2), (cz, $1), and Ny .. Then G, is isomorphic to G and GN\G. is the charac-
teristic subgroup of G generated by c}, c3, and N, ... Let F be the set of all ele-
ments of G that do not belong to G; and have order divisible by #; but not by

(33)
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n1. For any element a of G whose order is divisible by #; let ¢4 be the unique
automorphism of G such that ¢,a =a and ¢.f=hf for all fEF, where k is the
nonidentity element of J. The group G, consists of the elements of GN\G;, the
elements of H of the form (f, ¢1), fEF, and the elements of H of the form
(a, ¢a) where n; divides the order of a. It follows that G, is an invariant
subgroup of H. Thus G, is an invariant subgroup of H isomorphic to G and
every element of G occurs exactly once as the first component of an element
of G. Let w; be the isomorphism of G onto G, such that

wyer = (c1, $2), wacs = (Ca, $1),

and wyg =g for all g& Ny ,,. Then w. leaves every element of GG, fixed. Let
Q. be the automorphism of H that extends w, and maps 4* onto itself. By
(32) we have

(34) {92(6) 0) = (6, ‘7) if a1 E Cly

92(6) 7’1) = (8, 771¢1)'

[t follows from (34) that Q:(e, ¢1) = (e, ¢1) and Qu(e, ¢2) = (e, ¢2). Therefore YA
acts as the identity on G. Since Q3 maps 4 * onto itself it follows from Lemma
15, with G*=G, that Q=1, the identity automorphism of H.

3. Suppose #:=8 and n;>n;3. In this case let G; be the group generated
by (c1, p192), (c2, ¢3), and Ny,.. Then G; is isomorphic to G and every element
of G occurs exactly once as the first component of an element of Gs. Further-
more GNG; is the characteristic subgroup of G generated by ¢, ¢, and N .
We now consider two cases:

3a. Suppose 7:=8 and #,>n;>n;3. In this case Gi, Gz, &, and £ are de-
fined. Moreover ¢3=¢, and

GNG;=GNG CGNGh.

Hence €92, and 2,2, both leave GN\G; fixed elementwise. Furthermore

14+n,/4

©Qc; = (1 , $102) = Dy

and

D1Qace = (2, $1) = 2Qyce.

It follows that ;2 and ©,Q; map G onto Gj, that their restrictions to G are
identical, and that they both map 4 * onto itself. Since {2, is an automor-
phism of H it follows that G, is an invariant subgroup of H isomorphic to G.
Hence Q,Q, = by Lemma 15. In this case we put Q5 =2,{,.

3b. Suppose 7;=8 and n;=n,>n3. For any ¢ €G whose order 7, is divisi-
ble by #; let 8, be the unique automorphism of G such that 8.a =a, 8.g’ =g’ for
all ¢’ €G’, and 0,g =a"/?g for every g&G of order 7, that is independent of a.



1957] THE HOLOMORPH OF A FINITE ABELIAN GROUP 29

Then Gs consists of the elements of G'N\G; and the elements of H of the form
(a, 6.9;) where n; divides the order of a. It follows that G; is an invariant sub-
group of H isomorphic to G. Let w; be the isomorphism of G onto G; such that

) ¢l¢2)y w3l = (C;+nl“7 ¢3):

and wyg =g for all gEN,,;. Then w; leaves GNG; fixed elementwise. Let Q3
be the automorphism of H that extends ws and maps A* onto itself. By (32)
we have Qs(e, ¢:) = (e, ¢:), 1=1, 2, 3. It follows that Q5 maps both G and 4*
onto themselves. Hence @2€ 9 by Lemma 15. In this case we do not need to
know (e, o) for all c&A4. However if g* denotes the first component of
(Osg, then g*g~! is a square. Therefore if ¢* is the automorphisms of G such
that Q;(e, o) =(e, 0*) and if

14n,/4
w3l = (61

k k *
L' 23] a5
oc; = [] ¢i¥, o¥c; = ¢, 1
—1 =1

IIA
<.
IIA
K

then it follows from (32) that
*
(35) gi; = ¢sj (mod 2).

4. Suppose #1=4 and n;=k=2. Then I'; and Q; are both defined, and T;
can be regarded as an automorphism of I by (2). Referring to §4 we have
ar=cy, by=cp, I';=T",

-1 - -
TiQe¢ = Ti(a l, ¢2) = Ti(cx 1, 01) = (c, 61),
TiQe¢: = Ti(cs, ¢1) = Ti(ez, M) = (e, \),

and I'iQg’ =g’ for all g €G’ = N,,5. Since T'; and Q, are automorphisms of H,
it follows that (cz, 61), (e, A1), and G’ generate an invariant subgroup of H
isomorphic to G. We designate this subgroup by G,. The automorphism
T'iQ: of H maps G onto G,.

Conversely it has been shown [6] that if G* is an invariant subgroup of H
isomorphic to G, and G* #G, then either

1. n,=8, n1>n,, and G*=G,, or

2. ni1>ny>n3 and G*=G,, or

3. ﬂ1§8, n2>n3, and G*=G3, or

4. m1=4,n,=k=2, and G*=G,.

For each of the groups G, 1 Sw=<3, we have an automorphism Q,, of H
that maps G onto G, leaves GG, fixed elementwise, maps 4 * onto itself,
and satisfies Q2€49. Furthermore Q, is defined if the first two of the in-
equalities

(36) n = 8, ny > Na, #ne > N3

hold, € is defined if the last two of the inequalities (36) hold, and Q; is defined
if the first and third of these inequalities hold. Therefore if more than one of
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these ., is defined, then all three of them are and we have Q;=Q;Q = 2Q;.

Let ® be the subgroup of © that is generated by the cosets 2,9, where w
runs over those values for which @, is defined, 1 Sw=<3. If all three of the
inequalities (36) hold, then @ is the four group. If exactly two of these in-
equalities hold, then @ has order 2. If less than two of them hold, then @ is
trivial.

8. The outer automorphism group of H. The group G is an invariant
subgroup of H. Hence any automorphism £ of H maps G onto a group G*,
where G* is an invariant subgroup of H isomorphic to G. As indicated in
§7 there are five possibilities for G*, namely G, Gy, G, Gs, and G4. If G*=G,
then QE®. If G*=G, with w=1, 2, or 3, then ;'Q€®. If G*=G,, then
)@ and T,E2Z1(4, G) C®. It follows that @ is generated by & and
those @, that are defined, 1 Sw=<3.

In §1 we showed that H'(4, G) is isomorphic to ®/d under the natural
isomorphism I'B!(4, G)—TI'd. In this section we will identify I'(4, G) and
®/9 by means of this isomorphism. Then 0 is generated by ® and (4, G),
and ®NH (4, G) consists of the identity alone. We must now study the rela-
tions between the elements of ® and those of H'(4, G). In other words we
must study the relations, modulo 4, between the £, and the cocycles of
ZY (4, G).

Henceforth w will denote an integer such that Q, is defined, 1 Sw =3. For
any ¢ €4, o* will denote the element of 4 such that Q.(e, 0) = (e, ¢*), and
for any g &G, g* will denote the first component of Q,g. This is in agreement
with the notation of Lemma 15.

LEMMA 16. If Q, 15 defined and T €Hom (4, J), then
I, = 2, (mod 9).

Proof. If ny=m,, then J is trivial and so is Lemma 16. Hence suppose
n1>n.. Then if Q5 is defined we have Q; =QQ. Thus without loss of generality
suppose that w=1 or 2. Since JCG, it follows that I' maps G, onto itself.
Now Q2 E9 and hence Q, permutes G and G,. Therefore (2,I')2 maps G onto
itself. For all e €A we have

(37) (QuD)?(e, o) = ((To)(Te*), a**),

since I'e and T'o* are elements of J and hence left fixed by Q,. We distinguish
two cases:

Case 1.Tp1=e. If w=1, then n, =8, n"*is a square, and it follows from (33)
that To=T0o* for all c EA. If w=2 it follows from (34) that T'c =T¢* for all
o EA. In cither case (2,I')2 maps 4 * onto itself by (37). It now follows from
Lemma 15 that (Q,I')2&4 which is equivalent to I'Q,=Q,I' (mod 9).

Case 2. T'p,%e. Here Ty =% If ny =2, then Tpy=e by Lemma 11 with
g=1+n;/2 and j=1. Hence ny=1. Therefore ©Q, is undefined, w=1, and
n;=8. By (33) we have
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n1/2

(TA)(TNY) = (TA)H(Tgy) = Ty = 1",
and
(To)(Te*) = (Ta)2 = e

for all cE A4’ and for o =£;. Since ne=1 it follows that A4 is generated by Ay
&, and A’. Therefore (Q,I')2I,, maps 4* onto itself, where a;=c""* as usual.-
Clearly I,, maps G onto itself. Therefore (Q,I')%l,, also maps G onto itself,
and Lemma 15 yields (2,I')%L,,&9. Hence (2,I')2€9d and Lemma 16 is estab-
lished.

We now come to the relations between the special cocycles ', of §4 and

the Q,. The key to these relations is the following:

LEMMA 17. Suppose that T, and Q.,, are defined. Let G be the characteristic
subgroup of G used to define T'y. Then we have 1, =8 and GGG, with the
exception of the case ni>n,=k=2, w#1, v=i.

Proof. We recall that if v=1i, then either #;>%,>n; and G is generated by
ay and b, or n;=n,=4n; and G is generated by a; and a,. If v=ii or iii, then
ng>ny and G is generated by by, by, and bs. If v=iv then n,=4n, and G is
generated by a;.

Suppose that #;<4. Then w=2 and #,>ny>n;. This implies n,=4,
ny =k =2, and v=1i. Thus 7, £4 can occur only in the exceptional case.

Now suppose that #; = 8. If =1, then none of the I, are defined. There-
fore n,=2. Now ¢, 2, and ¢; are elements of G,. Hence a; and b, are elements
of G,. Furthermore if n3>#n4, then #3=2 and b;EG,,. If %1 =n,, then a.EG.,.

Now suppose that #; =8 and that GEGNG,,. Since G is a subgroup of G
we have GLG,. Then v54iv, n,=2, and b, &G,. If ny =4, then b,EG.,. Hence
n,=2. If w=1, then b,=¢,EG,. Hence w#1. If ny=mn;, then w=1. Therefore

ceptional case mentioned in the statement of Lemma 17.

LeEmMA 18. Suppose that 'y and Q. are defined and that the exceptional case
of Lemma 17 does not hold. Let sEA and (a, ¢)EG,. Then Q.0 =T,0,
T'o*=T,0, and I'yp =e.

Proof. By Lemma 17 we have #;=8 and GCGNG,,. It follows from the
construction of T, that I',d €G. Since Q, leaves every element of GNG,
fixed we have @,I'y0 =T',0. To prove the remaining statements of Lemma 18
we distinguish two cases.

Case 1. v=iii. Here n, =n, so that w=3. We recall that T';;;c depends only
on the residue classes of the numbers ¢;; modulo 2, where

oc; = [] ¢,

Hence T';ii¢;=e¢ for those ¢; that are defined, 1 <j=<3. Now ¢ is contained in
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the group generated by these ¢;. Hence I'i;ip =e. Furthermore I'iji0*=T';;i0
by (35).

Case 2. v#iii. In this case I',c depends only on the restriction of ¢ to G.
Since G, is abelian it follows that ¢ leaves every element of GG, fixed.
Therefore ¢ leaves every element of G fixed and we have I',p =e. Now
Q,g=¢ for all &G and G is a characteristic subgroup of G. Hence, by (32)
we have

o*g = o*g* = (0@)* = of
for all §&G. Therefore I'yo* =T, and Lemma 18 is established.

LemMA 19. Suppose that I'y and Q. are defined. Then T',Q, =Q,T, with the
exception of the case my>ny=k=2, w1, v=1i.

Proof. Suppose that the exceptional case n1>n,=k=2, w1, v=1i does
not hold. Then Lemma 18 applies. Hence for any g&G we have

TQug = Tu(g* ¢) = (g% ¢) = Qug = Ql'g
for suitable ¢ 4. Applying Lemma 18 again we have, for any 6 €4,
T',Qu(e, 0) = (Tyo*, 6*) = (Tya, o)
and
Q.T.(e, 0) = Qu(Tyo, ) = (Lo, o*).

Therefore I',Q2, =Q,I', and Lemma 19 is established. We will see that ©,, and
T', do not commute in the exceptional case.

It follows from Lemmas 16 and 19 that, except for the case n;>n,=k=2,
the elements of ® and H'(A, G) commute with each other. Thus ©
=®XH' (A4, G) except for this exceptional case.

We now come to the case n;>n,=k=2. The existence of Gy, if n;=4,
indicates that the cases #;=8 and n;=4 behave differently. We treat them
separately.

Suppose #,=8 and ny=k=2. In this case we need to determine (Q.I';)?
modulo 9. We see that Q,I'; maps G onto G,. Since G, Gi, G, and G; are the
only invariant subgroups of H isomorphic to G it follows that Q.I'; maps G,
onto one of these groups. Now (c1, ¢2) = (c1, 61) EG» and
14+3n,/4

QTi(cy, 1) = (a1 2, ¢1)

which is an element of G;, but not of G, G;, or G;. Hence Q,I'; maps G, onto
G, and (.I';)? maps G onto G;. Since ny=k =2 it follows that 4 is generated
by Ay, &, 61, 71, and the elements of 4’. We have

(Q2Pi)2(er )‘l) = (8, ¢1>\1)v
(L) e, 02) = (¢, $164),
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and
(2T1)%(e, 0) = (e, 0)

for all e EA’, for o =£;, and for o =n;. Hence I, (2I';)2 maps A * onto itself.
Since G is an invariant subgroup of H it follows that I., maps G; onto itself,
and hence I,(2I;)? maps G onto Gi. Therefore I.,(2I')2=Q, (mod 9) by
Lemma 15. Thus we have (,I';)2=Q; (mod 9). We see at once that the cosets
I'ig and Q9 generate a group Os of order 8, and that O3 is the octic group.
Since £ =2, neither T';; nor I';;; is defined. Furthermore I';, is defined if #,=8
and undefined if #;=16. If #, 216 we put © =Hom (4, J)9/9, while if n;=8
we let 0’ be the group obtained from Hom (4, J)d9/d by adjoining I';y9. Then
O is the direct product of groups of order 2, and ©=03X0’. Referring to
Lemma 14 we see that a set of representatives of a basis of Hom (4, J)d9/9
can be obtained by deleting A; and ©, from the basis of Hom (4, J) given
by Theorem 2.

There remains only the case #n1=4, n,=k =2 to be treated. In this case
the invariant subgroups of H isomorphic to G are G, G,, and G4. We observed
in §7 that I'i maps G onto G4. Furthermore Q, maps G; onto G so that
T'iQ, also maps G, onto G. It follows immediately that I';Q maps G4 onto G,
and that (I'i{2;)® maps G onto itself. In this case 4 is generated by Ay, 61, 1,
and the elements of 4’. We have

(T322)%(e, 62) = (c1, OiM),
and
(T:22)¥(e, o) = (e, 0)

for all e &€A4’, for 0 =\, and for ¢ =7;. It follows that I.,(I'iQ,)® maps both G
and A4* onto themselves. Hence I,(I'i:)3C9g by Lemma 15. Therefore
(T'i2)*E 9 and we see that the cosets I'id and Q9 generate a group O iso-
morphic to the symmetric group of order 6. In fact if we regard 0 as a per-
mutation group on G, Gs, Gy, then it is exactly this symmetric group. In this
case I'ii, Tiii, Tiv, 1, and ©; are undefined and we have

0 = 0s X Hom (4, J)d/9.

In this case A, is undefined and we can obtain a set of representatives of a
basis of Hom (4, J)d/9 by deleting O, from the basis of Hom (4, J) given by
Theorem 2. This set consists of ¥; and the T,, where m runs through the odd
prime power invariants of G.

We summarize our results in a final theorem:

THEOREM 4. If G is the direct product of a cyclic group of order four, a group
of order two, and an abelian group of odd order, then O is the direct product of
the symmetric group of order six and a finite number of groups of order two,
0=0sXHom (4, J)9/9. If G is the direct product of a cyclic group of order 2~,
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n=3, a group of order two, and an abelian group of odd order, then O is the direct
product of the octic group and a finite number of groups of order two, O =05X0’.
For all other finite abelian groups G, O is the direct product of a finite number of
groups of order two, in fact ©=C X H'(4, G).
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