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In 1908 G. A. Miller [4] proved that the holomorph of a finite abelian

group of odd order has only inner automorphisms. The group of automor-

phisms of the holomorph of an arbitrary group was studied by Gol'fand [3]

who found some cases in which the outer automorphism group has order one

or two. In the present paper I determine explicitly the outer automorphism

group 0 of the holomorph if of an arbitrary finite abelian group G. If G is the

direct product of a group of odd order, a group of order two, and a cyclic

group of order 2n where «Si2, then 0 is the direct product of a finite number

of groups of order two and a non-abelian group 0* of order six or eight. If

w = 2 then 0* is isomorphic to the symmetric group of order six, and if n Si 3

then 0* is the octic group. In all other cases 0 is either trivial or the direct

product of a finite number of groups of order two.

Let A be the group of all automorphisms of the finite abelian group G,

let (B be the group of all automorphisms of H that map G onto itself, and let

d be the group of all inner automorphisms of H. Then (&/g can be identified

with the first cohomology group Hl(A, G). Thus Hl(A, G) can be regarded

as a subgroup of 0. Now G is an invariant subgroup of II, and it is known [6]

that H has at most four invariant subgroups isomorphic to G. It follows that

ff'(^4, G) has index at most four in 0.

In Part I the first cohomology group H^A, G) is determined explicitly—

it is either trivial or the direct product of groups of order two. In Part II the

results of Part I are combined with the results of [6] to determine 0 explicitly.

l.H\A, G)

1. The role of H](A, G). Let G be a finite abelian group and A its group

of automorphisms. The holomorph H of G is defined^) to be the semi-direct

product of A and G. Thus H is the group of all ordered pairs (g, a), gEG,

aEA, with multiplication given by

(g, <r)(a, t) = (goa, or).

The first eight lower case Roman letters will be used to denote group
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(') There are two other well known definitions of the holomorph. It has been defined as the

group of one-to-one mappings of G onto itself that is generated by the automorphisms of G and

the left multiplications g—>ag. Suppose G is represented as a regular permutation group on n

letters. Then, according to the original definition, the holomorph is the normalizer of G in the

symmetric group S„. These three definitions are equivalent up to isomorphism.
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elements (usually elements of C7), and the remaining ones to denote non-nega-

tive integers. Lower case Greek letters will be used to denote homomorphisms

of groups (usually automorphisms of G), and capital Greek letters will be

used to denote automorphisms of the holomorph H and one dimensional co-

cycles.

We denote the identity of G by e, and that of A by e.

The elements of the form (g, e) form an invariant subgroup of H, the

mapping g—>(g, e) is an imbedding of G in H, and we will henceforth identify

the element g in G with the element (g, e) in H. On the other hand we will

distinguish carefully between the element a in A and the element (e, a) in H.

Let I(0,„) denote the inner automorphism of H corresponding to (g, a).

Thus

lu.oK t) = (g, a)(a, r)(g, tr)'1.

In particular I<.,,,-yg = <rg, so that every automorphism of G can be extended

to an inner automorphism of H.

Let (J be the group of all automorphisms of H, and let S be the group of

all inner automorphisms of H. Let 03 be the group of all automorphisms of H

that map G onto itself, and let & be the group of all automorphisms of H that

act as the identity on G. Then ($2®2© and 8 is an invariant subgroup of

both ft and 03. Let 0= 0,/S be the outer automorphism group of H. Our ulti-

mate goal is the determination of 0, and we will begin with the study of <$>/$.

Suppose fl£G3. The restriction of fi to G is an automorphism <x of G, and

we have ftI(e,<o_1g=g for all gEG. Hence QI(.,a)~lEG. It follows that 03 = 64.

Suppose T£e. Let V be the mapping of A into G and a—>cr the mapping

of A into itself such that T(e, a) = (Y'a, a) for all o-£yl. If g is an arbitrary

element of G we have (e, a)g = ag(e, a),

T((e, a)g) = (rV, c)g = <rg(rV, a),

and

T(og(e, c)) = og(T'<x, a).

Hence ag=ag for all gEG. Therefore <r = a. Furthermore (r'cr, er)(r'T, r)

= r((e, a)(e, r)) =T(e, or) =(r'(<rr), ar). Comparing first components we ob-

tain

(1) (T'o)(oT'r) = rV)

for all a, t in A. We note that (1) is the condition that V he an element of

ZX(A, G), the group of one dimensional cocycles or crossed homomorphisms

of A into G. Conversely if T'EZ1(A, G), then the mapping T given by

(2) T(g, a) = (gT'ff, o-)

is an automorphism of H and hence an element of G. The mapping r—+r' is
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an isomorphism of C onto Z1(A, G). Henceforth we will identify the cocycle

T' with the element T of 6 given by (2). Then we have Q = Zl(A, G).

Suppose now that I(a,r)£C Then

g  =   l(a.r)g  =   Ucog  =   Tg

for all gEG. Hence r = e and (a, r)=a. Furthermore

la(e, a) = a(e, o-)arl = (acar1, a).

It follows that if TEZ1(A, G), then the condition that T be an inner auto-

morphism of H is that it be of the form Ta, where

(3) Tacr = aaa~l,

a a fixed element of G. Now this is the condition that T be an element of

Bl(A, G), the group of one dimensional coboundaries or splitting homomor-

phisms of A into G. Thus SC\Q=B1(A, G) and we have

<B/tf = Gg/g ̂ e/jne = z\a, g)/b\a,g) = h1(a, g),

the first cohomology group of A acting on G. The first cohomology group

Hl(A, G) is thus isomorphic to <&/$ under the natural isomorphism

TB1(A,G)-^Tg.

We are now faced with the problem of explicit determination of IP(A, G)

to which we devote the remainder of part I.

2. Additional notation and preliminary lemmas. We will write

(4) Q = Qx X Q2 X ■ ■ ■ X Qm,

or Q =XI<2>, if the Qi are subgroups of the group Q, and Q is the direct product

of the Qi. Suppose (4) holds, let 5 be a subset of  {l, 2, • • • , m}, and put

qs = n q^
,-es

If a is any automorphism of Qs we identify a with the automorphism a' of Q

such that
,   =j<7g if g £ Qs,

°g~   \ g if g E Qj, j E S.

This identification does not depend on Qs and Q alone, but also on the groups

Qi, J&S. However we will not have occasion to deal with two decompositions

of the same group simultaneously, except in cases where they have a common

refinement. Hence we can identify a with a' without danger of ambiguity, and

we will do so freely.

We need to know a set of generators for the group of automorphisms of

G. It is sufficient to settle this question for the prime power case, which is

treated in the following lemma.
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Lemma 1. Let G(p) be a finite abelian group whose order is a power of the

prime number p. Let G(p)=DiXD2X ■ ■ ■ XDt, where Di is cyclic of order mi

and mi^m2 — • • • ^rai;> 1. Let di be a generator of D(, and let At be the group

of automorphisms of Di. For 1 ^j^l — l, let Sj = mj/m,+i, and let y, and d, be

the automorphisms of D,XD,+i such that

y,d, = d,d,+i,        y,dj+i = dj+1,

8,d, = d,, o,dj+i = d,d,+i.

Then the group of all automorphisms of G(p) is generated by the automorphisms

yi, Sj, 1 ̂ j<l, and the groups Ai, 1 ̂ i^l.

Proof by induction on /. Lemma 1 is trivial if 1=1. Suppose that l>l and

that Lemma 1 holds for the subgroup G = D2XD3X • ■ ■ XDh Let A he the

group generated by the automorphisms y,, 8,, 1 £j < i, and the groups A,-,

Ig^i^l. By the induction hypothesis any automorphism co of G belongs to A.

Let a he an arbitrary automorphism of G(p). We write

i

nU{di .
«=i

We begin by constructing an automorphism ypEA such that ypdi=adi. There

are two possibilities to be considered: (I) p\ui. Here for some j 5; 2 we must

have p\u, and Wi = m,. Therefore Wi = m2, Si = 1, and there is an automorphism

p oi G such that

pd2 = YI di'.
i-2

For such a p we have

poi    yidi = p5i     (did2) = p(di d2) = odx,

and we put ^ = p5"I_17i, which belongs to A. (II) p\ui. In this case there

exists an automorphism r of Di such that rdi = d"1 and an automorphism p'

of G such that

p'd2 = d2 JI di\
t=3

where p' is understood to he e it 1 = 2. Then

T7!*- p'yidi = ryi     p'(d}d2) = ryi      \did2 \\ dtj

= rldiYldi'l = crdu

and we put yp = Typ"2~1'yi, which is an element of A.
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Thus in both cases we have found an automorphism ^£^4 such that

\f/dx = adx. Put ax=^~la. Then axdx = dx. We now write

i

<rxdj = TT d7, 2£j£L
i—l

Let \pi be the endomorphism of G given by

tidj = II di", 2gj£l.
t'=2

Since aidx = dx it follows that ypi has a trivial kernel. Therefore \pi is an auto-

morphism of G. Hence ^i£^4 and we put a2=\pi1oi. Then a2dx = dx and

0-20",- = dx dj, 2 5> j S» /.

Now put Vj=vxjmj/mx. Since (a2dj)m>=e it follows that Vj is an integer. For

/Si3 let Tj be the automorphism of D2XDj such that

Tjd2 = d2 ,        Tjdj = d2      dj.

Then (Tjhi)2dj = dntl'nidj and (t,-5i)2d{= di for tVj. It follows that

».-a?II(Tiao,"€iI.

Therefore a=4^xa2EA. This completes the proof of Lemma 1.

We write the finite abelian group G in the form G = G'XG(2), where G' has

odd order, and the order of G(2) is a power of 2. Let A' and A{2) be the groups

of automorphisms of G' and G(2) respectively. Then A =.4'X.4(2). We write

G<2> = Ci X C2 X ■ • • X C*.

where d is cyclic of order «<, «iSi«2Si • • • Si w^ Si 2, and each of these w,- is

a power of 2. Let c,- be a generator of C,-. For_;>& we let Cj be the trivial group,

Cj = e, and Wj• = 1. Furthermore we put rj = «,/«<+i which must be a non-nega-

tive power of 2. If G has odd order, then G(2) is trivial and & = 0. We will use

the decomposition

G = G' XCiX ■ ■• XCk

to identify automorphisms of such groups as G', G(2), C,-, dXCi+i with ele-

ments of A. Let X, X', and X" be the automorphisms of G, G', and G(2) respec-

tively such that

x? - r1.     x'«' = g'~\     x'Y' = g"-1

for all gEG, g'EG', g"£G<2>. Clearly X=X'X".
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Now let Xj and f< be the automorphisms of d such that

-1 5

hiCi Ci   , %iCi  =   Ci.

Let rji and 0< be the automorphisms of C,-XC,-+i such that

t)\Ci =  CiCi+i, Vici+l =  ci+h

did = Ci, "t'Ct+i = Ci Ci+i.

We note that X,- and & generate the group of automorphisms of C<. Hence,

according to Lemma 1, the automorphisms X,-, £<, 1 ̂ i^k, and ijy, 8,, 1 ̂ j<k,

generate .4(2). It is clear that X<=£, = e for i>k, and rj, = 6, = e for j^k.

Let / be the center of H. Then (a, cr) £Z if and only if

(a, o) = g(a, o-)g_1 = (agT1, °)

and

(a, cr) = (e, r)(a, c)(e, t)-1 = (ra, tot-1)

for all gEG, tEA. It follows that (a, a)ET if and only if a = e and ra=a for

all t£^4. Thus we have the following result:

Lemma 2. The center J of H is the group of all characteristic elements of G.

Lemma 3. If G has a nontrivial characteristic element h, then n\>n2 and

h=c"l/2. Conversely if rai>«2, then c"l/2 is a characteristic element of G.

Proof. Let h be a nontrivial characteristic element of G. We have h=\h

= h~l and hence h has order 2. Therefore hEG(2) and rai^2. If h^c"1'2 then

there is an automorphism t of G(2) such that Th = hc"l/2p^h. Thus h = c11'2. If

«i = ra2 then interchanging the roles of Ci and C2 we obtain h = c'212, a contra-

diction. Therefore ni>n2.

Conversely if Mi>»2, then c"l/2 is the only element of G of order 2 of the

form g"1'2, gEG. Thus rai>«2 implies that c"l/2 is a characteristic element of

G.
Combining Lemmas 2 and 3 we obtain / explicitly:

Lemma 4. The center J of H is trivial if ni = n2. If' Wi > ra2 then J has order two

and is generated by c"l/2.

Now put

N,. = G' X II Ci, N,,,. = G' X  n Cf.
•vi ivy.j'

Let /', J(2), ICy, and ZCy.y be the groups of characteristic elements of G',

G(2>, Nj, and TVy,^ respectively. Applying Lemma 3 to these various groups

we obtain the following information:

Lemma 5. J' is trivial and Ji2)=J. If 3^j<j', then Kj = Kj,j<=J. If



1957] THE HOLOMORPH OF A FINITE ABELIAN GROUP 7

2 ^j <j', then Kj and Kjj, are subgroups of Cx of order at most two. If 2 ^j <j'

and nx>n2, then Kj = Kjj>=J. Furthermore KxQC2 and Kx,2^Cz. If n2 = ns

then Kx is trivial, and if n2>n% then Kx has order two. If n% = n\ then Kx,2 is

trivial, and if n3>ni then Ki,2 has order two.

Lemma 6. Suppose that G = QiXQ2 and that J is the group of characteristic

elements of Qx. Let r be an automorphism of Q2. IfYEZl(A, G),thenYrEJXQ2

and T(t2)EQ2- Furthermore if Z is the group of all cocycles T such that TtEQ2,

then [Zl(A, G):Z], the index of Z in Zl(A, G), is at most two.

Proof. Let a be any automorphism of Qx. Then or = ra and hence

(Ta)(aTr) = (Tr)(rTc).

Since G is abelian this can be written

(IYj-KrfY) = (Tay^rTa).

Now g-'agEQx and g~1rgEQ2 for all gEG. Therefore (Tr)-l(aTT)EQir\Q2,

which consists of e alone. Hence oTT = rT. Since this holds for any automor-

phism a of Qx we must have YtEJXQ2. We may write Tr = hg2, h~EJ, g2EQi-

Now / is the group of characteristic elements of a finite abelian group. There-

fore, by Lemma 3, J has order 1 or 2. Hence hrh = h2 = e for any h~EJ■ It

follows that T(t2) = (rr)(rrr) =g2Tg2EQi-

Finally we note that the mapping r—>h is a homomorphism of Z1(A, G)

into J with kernel Z. Hence [Z1(A, G):Z] is at most the order of /, which in

turn is at most 2.

Lemma 7. If G = QxXQ2, if r and X are automorphisms of Q2, and if %g2=g21

for all g2EQ2, then

(5) (iv)2 = (rx)(rrx)-1

forallTEZl(A, G).

Proof. As in Lemma 6 let J be the group of characteristic elements of Qx.

Since / has order one or two it follows that \h = h = h~1 for all hEJ• Hence

^g=g~1 f°r ah gEJXQ2. We have rr£/X(?2 by Lemma 6, and therefore

Xrr = (rr)_1. Now X is in the center of the group of automorphisms of Q2.

Therefore rX = Xt,

(rr)(rrx) = rx(xrr) = (vxyvr)-1,

and (5) follows at once.

If we apply Lemma 7 to the case Q2 = G, Qx trivial, then we obtain

(6) r2r = (iv)2 = (rx)(rrx)-1

for all r£^4, r£Z1(^4, G). It follows from (6) that the square of every ele-
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ment of Z1(A, G) is a coboundary. Therefore every nontrivial element of

Zf'f^l, G) has order two.

Lemma 8. Z/rai^8, then (T\i)ny'2 = e for all TEZX(A, G).

Proof. Let r be the automorphism of G such that rci = c}+"l/2. Then

r2 = e. By Lemma 6, TXi and Tt are elements of CiXlCi. For any g£CiXlCi

we have Tg=g1+ni/2. It follows that tFXi= (TXi)l+ni/2 and

e = T(r2) = (rr)(rrT) = (rr)2+"i/2.

Now rai is a power pf 2 and rai^8. Hence 2+rai/2 is not divisible by 4. Fur-

thermore Ft£G(2) so that the order of Tt is a power of 2. Hence (Tr)2 = e.

Applying Lemma 7 to the case Qi = Ni, Q2 = Ci, A=Xi, we obtain

e = (Yt)2 = (rXiXrrXi)-1 = (rx,)-«i'2,

which is the desired result.

3. The group Horn (A, TjB^A, G). Let Horn (A, J) be the group of all

homomorphisms of A into J, the center of H. Since J is the group of character-

istic elements of G it follows that Horn (A, J) is a subgroup of Z1(A, G). In

this section and the next we determine the factor group Z1(A, G)/Hom (A, J)

■B1(A, G). We need the following characterization of the group Horn (A, J)

•B\A,G).

Theorem 1. Let TEZ\A, G). Then T£Hom (A, J)Bl(A, G) if and only
if the following conditions hold:

(i) rx,£Ci.
(ii) T6iECiXC2.
(iii) TV2EJXC2XC3.
(iv) Either «i?^4ra2 or T(\iini)ECXC3, where C is the cyclic group gener-

ated by c\c2x.

Proof. Throughout this proof i and j will always denote positive integers.

We have JQCi. Furthermore if wi = 4ra2, then J=dr}CQC. It follows that

(i), (ii), (iii), and (iv) hold for any r'£Hom (A, J). LetV'EB^A, G). Then

there is a fixed a£G such that r"cr = a<ra_1 for all aEA. Now gXig_1£Ci,

g0ig-1£Ci, gi?2g_1£C3, and gXiTjig-^C for all gEG. Hence (i), (ii), (iii), and

(iv) hold for any T"EB1(A, G). Now the conditions (i), (ii), (iii), and (iv)

are of such a nature that if they hold for two cocycles T' and T", then they

hold for their product TT". It follows that (i), (ii), (iii), and (iv) hold for

every element of Horn (A, J)Bl(A, G).

To prove the converse let T£Z1L4, G) and suppose that (i), (ii), (iii), (iv)

hold. According to Lemma-6 we can write, for 1 i*i<k,

ui   vi

Tdi = et d+ihi,

where hiEKi,i+i and w,-, z/t- are integers. We have hi = e by (ii). Now TX,-
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ECiXCj for_/Si2 by Lemmas 6 and 5. Furthermore rXi£G by (i). Therefore

0,rX, = rX< for all i. We observe that \i = 9ik,<9i. Hence

TK = (Tei)(diT\i)(diKiYd)

which reduces to

e = (Tei)(6ihiTei) = cT'c^i.

Thus «j|rt«,- which is equivalent to n,-+i[vi. Therefore c\\x = e and we have

(7) T6i = c-hi.

It follows at once that 9T9i = Y9i. Combining this with 9li/r' = e we obtain

e = T(6V/Ti) = (T6i)ni/ri.

Therefore c"iUi/u = e and we have r<|«*.

By Lemmas 6 and 5 we have rX'£/(2)XG' = JXG'. Every element of G'

has odd order. Therefore every element of G' is a square and we have

rx' = hg'\

where hEJ and g'EG'.

By Lemmas 6 and 5 we can write

r   *-

IV   =   CxC2h,

where hEKx^^Cz. By (i) we have rXi=c'x for some integer t. By Lemma 8,

t is even if «iSi8«2. Now put

I   s       if   «i g 4«2,

\-t/2    if    nx Si &n2,

and

j- /-i  *   TT   u,/r(
/ = g    %Cl   II Ci+x   -

i-1

Let Tf be the element of B1(A, G) corresponding to/, i.e. Tfa=faf~~1 for

all aEA. Put ri = rr/. To prove Theorem 1 it is sufficient to show that

ri£Hom (A, J). As a result of the choice of/ we have

(8) rix' = hEJ,

(9) rA = hi = e,

and

(10) Tidj = hj E Kjj+i C Ci for all;' Si 2.

Furthermore
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(11) T^i = cjt if Mi g 4«2

and

(12) TjXi = e if rai = 8ra2.

We note also that (i), (ii), (iii), and (iv) hold for Ti since they hold for both

T and Tf.

Let t'EA'. Applying Lemma 7 to the case Q2 = G', Qi = G{2), X=X' we ob-

tain

(13) (Tit')2 = (r1X')(rTiX')-1 = Hr'h)-1 = e.

Now rir'£/(2)XG' = /XC7' by Lemmas 6 and 5. Combining this with (13)

we see that Pit'£/ for all t'EA'.

Since A=A'XA'-2) and since the automorphisms Xi, £,, 0,, rji generate

Am, it is sufficient to show that TiXi, Tifi, Tid,, and Tin, are elements of / for

l=i^k, l^j<k.
Now let u be an odd integer and let r,- be the automorphism of Ci such

that Tid = c". Since h2 = e and 6ihi = h, we have Pi(0?) = (V1di)u = h" = h{. It fol-

lows that Ti+iFi(0") =ri0,:. Hence if we apply Ti to both sides of the identity

0tTi+i = Ti+i6i, we obtain 6iT1Ti+i = TiTi+i. Now riT,+i£ZC,+iXC,+i, Ki+iQCi,

and e is the only element of Ct+i left fixed by di. Therefore riT<+i£ZC,+i. In

particular

(14) TiXy £ ZCy    and    T£, £ K, for all j ^ 2.

We have Fi0i = Fi(0f) =e. Therefore if we apply Ti to both sides of 0?£i

= £i0i, we obtain

0*irifi = ri£i.

Since Fi£i£GX1CiCCiXC2 this implies that

(15) r1|1£C1.

Now we study Tirji. By Lemma 6 we have

Tiiji £ Ci X Ci+i X Kiti-\-i.

Applying Ti to both sides of 7?,+i0i=0,i7i+i and noting that i7i+iFi0i = ri0i, we

obtain Tini+i= 6iTini+i. It follows that

(16) TlVi E Cj+i X K,,j+i CCiX C/+, for all j ^ 2.

Nowputi/'i+i=(0i+iX,+i0i)2. By (9), (10) and (14),Fi(0i+iXi+i0i) is an element

of & of order at most 2. Hence ri^i+i = e. Now

lc, iij^i + 2,
Yi+lC]   —    i   rir,+1

id      Ci+2 iij=i+2.



1957] THE HOLOMORPH OF A FINITE ABELIAN GROUP 11

It follows that 4>i+ig=g if and only if gEN,+z- Furthermore g~hpi+xgECi for

all gEG. Now

ti+lVi+1 =  Vi+lSi'    $i+l-

We apply Ti to both sides and get

fi+iTxrii+x = (rxr;,+i)jj,+iri(0,'+1) = (TxVi+i)hi'+1.

Hence h\i+l is of the form g^ipi+ig- Therefore &J'+1£C,-. Since hi = e and

hjECx for jSi2, we have h\i+l = e for all i. Therefore TxVi+iENi+2. Combining

this with (16) we have

Yxvi <£ Ki.i+i £ Ci for all j Si 2.

By Lemma 5 we have Kjii+i = J if/Si3. Furthermore Txrj2EJXC2XC3 by

(iii). Therefore

(17) ri7jy£J for all/St 2.

If we apply Ti to both sides of the identities X2 = 171X2171 and 92vx = V\92 we

obtain

(18) (riXaXijiriXj)-1 = (r^,)(7,iX2ri7,i)

and

(19) (r19,)(ij,r1fl,)-1 = (YxmWtYxrii)-1.

Next we will establish:

(20) TiX2 £ J,        Yx62 E J

and

(21) r„7i EJXC2.

There are two cases to be considered.

(I) «i>«2. Here K2,Z = K2 = J by Lemma 5. Hence (20) follows from (14)

and (10). We have TxVx = crxC2'h, where r and s" are integers and hEKi^QCa,

h2 = e. It follows from (20) that the left hand sides of both (18) and (19) are

equal to e. Therefore

e = (ri7)i)(i7iX2ri77i) = cx c2

and

e = (Txvi)(e2Txvi)-1 = h(e2h)-\

Therefore cf = h = e which implies (21).

(II) »i = «2- In this case let f be the automorphism of GXC2 such that

£cx = c2, fc2 = ci. We have f2 = e and rji = £9i{. Applying Ti to these two equali-

ties we obtain Tif = f(Fif)-1 and
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r,i?, = (rrfXjTrfOdvir-rf) = rlffiD-Wrf)},

since Ti0i = e by (9). Now g-10ig£Ci and hence f(g-l0ig)£C2 for all gEG.

Therefore FiT7i£C2 and (21) is established. It follows from (21) that the right

hand sides of both (18) and (19) are equal to e. Hence FiX2 = 17^1X2 and

ri02 = 7?iFi02. Since we already have FiX2£Ci by (14) and TAECi by (10)
these last two equalities imply (20).

We have established that (20) and (21) hold in all cases.

We will next establish:

(22) Ti\i E J,

(23) either «i = ra2 or T^ £ J,

and

(24) Tm E J.

If ri^8 then (22) follows from (12). If rx^4 then (24) follows from (11)

and (21). We will now show that (22), (23) and (24) are equivalent. Then

it will follow that all three hold in all cases.

Suppose (22) holds. We apply Lemma 7 with Q2 = Ci, Qi = Nu and A=Xi.

Then (5) yields (r^i)2 = e. Combining this with (15) we see that r^i£/ if

rai>ra2. Thus (22) implies (23).

Next suppose (23) holds and that ri^8. We specialize t,- to be the auto-

morphism of d such that Tid = c\+H. Since S\ri it follows that n is an even

power of £,-. Furthermore, since «i>ra2, it follows from (14) and (23) that

r^i£/ for all i. Therefore Fir,- = e for all i. Now

(l?lXaT20l)2   =   TlTj.

We apply Ti to both sides of this identity, noting that T{K2EK2 = J, Ti0i

= rrri=riT2 = e, and Ti-qi = c\c2, where c\EJ by (21). This gives us

e = (riiji) (niKiTtfiTiTu) = ci    .

Therefore rai|ri5", ra2|5", c2 =e, and Ti7)i = c\EJ- Thus (23) implies (24).

Suppose (24) holds. Then applying Ti to (Xii;i)2 = e, we obtain

e = (riX1)(Xiinr1x,) = ci,

where riXi = cf. If ri^2, then cf2 = e implies c{EJ- If n = 4 then ri(Xii7i)

ECX&by (iv), and, sinceXTt^EJQC, we have Ti\iE(CXC3)nCi = J. We
already know that (22) holds if n = 8. Therefore (24) implies (22).

It follows that (22), (23), and (24) hold in all cases.

Combining (17) and (24) we have

TiV, EJ, 1 S i < *.
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From (9), (10), and (20) we obtain

Ti6j EJ, l^j<k.

From (14), (20), and (22) we obtain

Ti\i EJ, 1 £ * S *,
and

rifc EJ, 3^i^k.

Furthermore (14) and (23) imply: If «i>m2, then r^i£/ and Yi^2EJ. To

complete the proof of Theorem 1 we need only show that Yx^xE J and r^2£/

for the case «i = n2.

Suppose «i=M2- In this case J consists of e alone. As above let J" be the

automorphism of C1XC2 such that %cx = c2 and fc2=Ci. Since f =Xi?ji0r17/i it

follows that Txt = «• Hence, if we apply Ti to both sides of the identity

fc-ftif we obtain r^-fT^i. Now, by (14) and (15), T&ECi and fT&eC,.
Hence Ti^x=Tx^,2 = eEJ and the proof of Theorem 1 is complete.

Let Z; be the set of all cocycles that satisfy condition (i) of Theorem 1.

Clearly Z, is a subgroup of Zl(A, G) and we put m-,= [Zl(A, G):Z\], the index
of Zi in Zl(A, G).

Lemma i. m-,^2. If m-, = 2, then either ni>n2>n3 or nx=n2^4n3.

Proof. The inequality m,^2 follows at once from Lemma 6. Suppose

m-, = 2 and let TEZl(A, G), T£Zi. Then rXi£G. From Lemma 6 we have

rXi£CiXi£i- Hence Kx is not trivial and Lemma 5 yields n2>n3. Thus

«iSiW2 = 2w3. If Wi>2«3 then either nx>n2>n3 or «i = ra2Si4«3. Thus we need

only eliminate the case «i = 2n3.

Suppose Mi = 2w3. Then XiX3=<7>2, where <f> is the automorphism of C1XC3

such that <f>ci = cic3 and <pc3 = cr2c3l. It follows from Lemma 6 that

(rx1)(x1rx3) = T(\x\t) = t(<j>2) ECxX c,.

Now rX3£A'3XC3CZCiXC3. Hence XiPX3£GXC3 and we have rXi£GXC3.

Now rXi£CiX-rM^CiXC2 by Lemmas 6 and 5. Therefore rXi£G, a contra-

diction. This contradiction establishes Lemma i.

Let Zn be the group of all cocycles V satisfying the conditions (i) and (ii)

of Theorem 1. Put mn= [Zi'.Za],

Lemma ii. mn^2. If ma = 2 then n3>n4.

Proof. By Lemma 6 the set of all cocycles that satisfy (ii) form a subgroup

Z" of Z1(A, G) of index at most two. We have Zji = Zjr"\Z" and hence

oth = [Zi\ZiC\Z"} = [ZiZ":Z"] g \p{A,G)\Z"\ ^ 2.

If n3 = n4, then (ii) is satisfied by all T£Z1(^4, G) by Lemmas 6 and 5. Hence

if wii = 2 then n3>n4.
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Let Za, he the group of all cocycles T satisfying conditions (i), (ii), and

(iii) of Theorem 1. Put mm = [Zu'.Zm].

Lemma iii. mm^2. If mm = 2 then ni = n2>n3>nt.

Proof. By Lemma 6, r7;2£C2XC3XTC2,3 for all FEZ1 (A, G). If m>n2,

then K2,3 = J, (iii) holds for all r£Z1L4, G), and mm = l. Thus without loss

of generality we suppose «i = ra2. Then J is trivial. It follows from Lemma 6

that the set of all cocycles that satisfy (iii) form a subgroup Z'" of index at

most two in Zl(A, G). We have

mm = \ZmZv,C\Z"'} = [ZV,Z'":Z'"] g [Z\A,G):Z"'] g 2.

Now suppose w3 = ra4. Then ■q2=<pi where c/> is the automorphism of

C2XC3XC4 such that <pc2 = c2Ci, <pc3 = c3, 4>d = c3crl. It now follows from

Lemma 6 that (iii) is satisfied by all TEZ1(A, G), and mui = l. Thus n3 = m

implies mm= 1.

Suppose Wi = w2 = ra3. Let TEZn and let f be the automorphism of C1XC3

such that fci = c3 and {~c3 = Ci. Then f2 = e and r]2=£6i£. Applying V to these

two equalities we obtain rf =(frf)_1 and

Tm = (rr)(fr0,)(f01rr) = rtfr-flOOrr-Wr)}.

Now r0i£GXC2 by (ii). Furthermore g_10ig£G for all gEG. Therefore

(r01)(rr)-1(0irr) ecxc,

and Tr]2EC2XC3. Thus mui=l if ni = n2 = n3.

It follows that if mui>T then «i = ra2>ra3>ra4, and Lemma iii is estab-

lished.

Now put miv=[Ziii:Hom (A, J)B\A, G)].

Lemma iv. m-,v^2. If m-,v = 2 then n\ = kn2.

Proof. If raiF^4«2, then m-,v = l by Theorem 1, and Lemma iv holds. Sup-

pose «i = 4ra2 and let TEZm- By Theorem 1, r£Hom (A, J)Bl(A, G) if and

only if r_(Xiiji)ECXC3. Since r(\iT)i)ECiXC2XKi,2 we have r(X1i?i)

= c\(c\c21)*h, where r and 5 are integers and h is an element of C3 such that

h2 = e. Now (XiT7i)2 = e. Hence

e = r(Xi7ji)X1i7ir(Xi7ji) = c2,

and we have n2\r. Now in the case under discussion Cr\Ci = J and / is the

cyclic group generated by c2"2. Let D he the group generated by-cj2 and

clef1. Then T—*c\C is a homomorphism of Zm into D/C with kernel

Horn (A, J)Bl(A, G). Hence raxiv^ [D:C] = 2, which establishes Lemma iv.

Clearly [ZX(A, G):Hom (A, J)BX(A, G)]=m;m\\m\ilm-„. It follows from

Lemmas iii and iv that mm and miv cannot both be two. Therefore

[Zl(A,G):Rom (A, J)Bl(A,G)] ^ 8.
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It will follow from the results of §4 that this index can actually assume any

of the four possible values 1, 2, 4, 8.

4. Special cocycles. The four lemmas of §3 give us necessary conditions

for mv = 2, v = i, ii, iii, or iv. In this section we will show, by actual construc-

tion of suitable cocycles, that these conditions are also sufficient. This will

provide us with a set of generators of the factor group

Z\A, G)/Hom (A, J)B\A,G).

Let G be a characteristic subgroup of G, and let A be the group of auto-

morphisms of G. For any aEA we let a denote the restriction of a to G. Since

G is a characteristic subgroup of G it follows that aEA. In particular e is the

identity of A. If FEZl(A, G), then there is a corresponding element T

EZ\A, G) such that

(25) Ta=Ta for all a £ A.

Let ati, a2, ■ ■ ■ , am be a set of generators of A and let T be a mapping of

this set of generators into G. We will say that T satisfies the relation(2)

a^ait ■ ■ ■ ctiT = I

if

(Taii)(ailTaii) ■ • ■ (ahah • ■ ■ ctir_xtair) = e.

Let

ah ■ • • atr = I,

(26)

agi   •   •   •  Ctgu  =   f

be a set of relations between ax, ■ ■ ■ , am that is complete in the sense that

any other relation can be deduced from it. The following lemma is due to

Anne P. Cobbe [l, pp. 43-45].

Lemma 9. If t satisfies each of the relations (26), then V can be extended to

an element r£Z1(^l, G). The extension T is uniquely determined by f.

Throughout the remainder of the paper we will use the following addi-

tional notation:

n,/4
a,- = Ci

for those i for which w,-Si4, and

bj = cj"'\ lgjgk.

We are now in a position to proceed to the construction of special cocycles.

(2) For our present purposes it is sufficient to consider only relations in which no negative

powers of the ai occur.
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(i) By Lemma i, if m-, = 2, then either nx>n2>n3 or «i = w2Si4n3.

(i') Suppose nx>n2>n3. Here we take G to be the characteristic subgroup

of G generated by ai and 62. Then G is the direct product of a cyclic group of

order 4 and one of order 2. Hence A is the octic group. Let a and 0 be the

automorphisms of G defined by

2
aax = aj>2,       ab2 = aib2,

3
0ai = aib2,        f3b2 = b2.

Then a2 = %x and afS = 6x, the restrictions of Xi and 9x respectively to G. Fur-

thermore a and 0 generate A and a complete set of relations is

(27) a4 = 02 = (a0)2 = 6.

The mapping f of the set {a, 0} into G given by

fa = axb2,        f'0 = e

satisfies (27). Hence, by Lemma 9, f can be extended to an element T' of

ZX(A, G). This in turn corresponds to an element T'EZ1(A, G) by the cor-

respondence (25). Now

T'Xi = r'(a2) = (T'a)(aY'a) = b2 £ Cx.

Thus r'£Zi.
(i"). Suppose «i = »2Si4w3. Here we take G to be the characteristic sub-

group of G generated by ai and a2. In this case G is the direct product of two

cyclic groups of order four. Hence A has order 96. Let 7 and 5 be the auto-

morphisms of G such that

2 2

yax = axa2, ya2 = axa2,

Sax = a2,       and    8a2 = a\a2.

Then 7 has order 2, 5 has order 6, and 752 has order 4. The symmetric group

of order 24 is characterized, as an abstract group, by the property that it is

generated by an element of order 2 and an element of order 3 whose product

has order 4. Hence 7 and 52 generate a group A24 of order 24 isomorphic to

the symmetric group. Now (7s3)2 = e. It follows that 53 commutes with every

element of ^424. Therefore 53£.424. It follows that 7 and 5 generate a group

Atg of order 48 and that a complete set of relations (3) for this group is

(28) 72 = <56 = (y82Y = (y53)2 = i.

Now

(29) (Xi7)253 = e.

(') The group An is isomorphic to the direct product of the symmetric group of order 24

and the group of order 2. The set of relations (28) for this group is due to G. A. Miller [5].
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It follows that (Xi7)2£^424, and hence XiEAis- Therefore 7, 5, and Xi generate

A. A complete (though redundant) set of relations for A, with respect to this

set of generators, is (28), (29), and

—2      _   _

Xi = Xi5Xi7C>7 = e.

This set of relations is satisfied by the mapping f" of {7, 5, X\} into G given

by

f "7 = f"Xi = alal,       T"8 = e.

By Lemma 9, f" can be extended to an element F"£Z'(.<4, G), and F" in

turn corresponds to a cocycle Y"EZ1(A, G). Clearly

r"X! = r"Xi = alal E Ci.

Hence r"£Zi.
Combining Lemma i with the existence of V and T" we see that

12 if «! > ra2 > ra3,
2 if «i = n2 ^ 4ra3,

1 otherwise.

Put

IT'   if «i > ra2 > n3,

Pi =  \
lr" if »i = »2 ^ 4«3.

Then T-, is an element of Z1(A, G), defined whenever raii = 2, such that

ri£Zi.
(ii) By Lemma ii, if w?ii = 2, then n3>ni. Suppose ra3>«4. We now take

G to be the characteristic subgroup of G generated by bit b2, and b3. This G

is the direct product of three groups of order two, and the corresponding A

has order 168. Let <b and p be the automorphisms of G such that

<pbi = bib3, <pb2 = b3, 4>b3 = bib2b3,

pbi = bib2, pb2 = b2b3, pb3 = b2.

We note that d>p = 6i, the restriction of 0i to G. Furthermore pqy'bi = b3,

pd>bb2 = bib2, and pq9b3 = bi. Hence

(30) 4? = p3 = (c6p)2 = (pc66)< = i.

It is known(4) that (30) and <f>?±i are sufficient to insure that d> and p

generate the simple group of order 168. Therefore <f> and p are a set of gener-

(4) This set of generators and relations for the simple group of order 168 is due to Dyck

[2, p. 4l] and confirmed by Miller [5].
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ators for A and (30) is a corresponding complete set of relations. Let tn be

the mapping of {<p, p} into G given by

f uqi = e,        f hp = b2.

It can be readily verified that Tu satisfies (30). Hence Tn can be extended to

an element TnEZl(A, G). By the correspondence (25), r;i corresponds to a

cocycle YiiEZ1(A, G). Now X/ = e. Hence PuXi = e. Furthermore

ru0i = Tn(<t>p) = 4,riiP = b3ECxX c2.

Thus we have constructed a cocycle Tn, defined whenever w3>«4, such that

In £ Zi,        la £ Zjj.

Combining the existence of Yn with Lemma ii we obtain

(2 if «3 > »4,

U if n3 = M4.

(iii) By Lemma iii, if mm = 2, then nx = n2>n3>n\. Suppose «i = M2>«3

>K4. In this case again we take G to be the group generated by b\, b2, and b3.

Let Fn be the element of Zl(A, G) defined above. Let ir be the projection

of G onto G X C2 such that

=   (g if gECxX C2,

\e if g E Nx,2.

Let x be the homomorphism of G onto G such that

(bi if i ^ 3,

XC< =  i   if i > 3,

and xg'=e if g'EG'. The kernel of x is generated by G' and the elements

c\, Cj, l^i^3, j>3. Since «3>«4 it follows that the kernel of x is a char-

acteristic subgroup of G. Therefore if aEA, then

oxg = X<rg

gives a single valued mapping a of G onto itself. Now <?£yl, cr—><? is a homo-

morphism of .4 into A, and we put

(31) Tmo- = irFii(r.

We must now show that Tin is a cocycle. Since nx = n2>n3 it follows that

7rxg=gni'2 for all gEGi2). Hence for any g£G(2) we have

o*Xg = (ffg)n'/2 = irxag = iraxg.

Therefore awg = irdg for all gEG. Now let <r and t be arbitrary elements of A.

Since Fiif£G, we have o-7rFiif = 7roTiif. Hence
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(riiioXffrmr) = (irTiiaKffirTiif)

=  (irriicr)(7rcrriif)

= ir{(riic?)(c?riif)}

= rVu(Sf)

= ria(<rr).

Thus riii£Z1(^, G). We note that if

k

ac = IJ c"i'» 1 ̂  3 = k>
1=1

then Tiiicr depends only on the residue classes of the #,-, modulo 2, since these

residue classes determine c? completely. Hence r;iiXi = e. Furthermore Tincr

£GXC2 for all <r£.4. In particular rm0i£CiXC2. Finally ij2=<£2p<66pc65,

Fnrj2 = bib3, and hence

TmV2 = biEC2XC3 = J XC2XC3.

Thus we have a cocycle Tin, defined whenever rai = ra2>ra3>ra4, such that

1 iii CZ ^ii, l iii v£ ^iii>

It follows that

(2 if «i = n2 > n3 > nt,
wui =  <        ,

(1 otherwise.

(iv) Suppose Mi = 4ra2. We now take G to be the characteristic subgroup of

G of order 4 generated by ai. In this case A has order two and is generated by

Xi. A complete set of relations is

-2
Xi = i.

It follows from Lemma 9 that there is a cocycle Fiv£Z1(^4, G) such that

riVXi=ai. By (25), TiV corresponds to a cocycle TlvEZ1(A, G) such that

(e  if crdi = ai,
PivCr =   { -i

{ai if crai = ai  .

We have rivXi = ai, Piv0i = riv?72 = e, and riv(Xi?7i) =ai£CXC3. Thus we have

a cocycle T^, defined when Mi = 4ra2, such that

riv£Ziii,        riv£Hom(4,Z)£!^.G).

It follows that

(2 if Mi = 4w2,
Wiv =   I

(I if Mi j* 4m2.
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We have determined all m„ i^v^iv, and constructed a cocycle Yv for

each v such that mv = 2. Z1(A,G) can be obtained from Horn (A, J)Bl(A, G) by

adjoining these rt;ff1(^4,G) can be obtained from Hom(^4, J)B1(A,G)/B1(A,G)

by adjoining the corresponding cosets TVB1(A, G).

5. Horn (A, J). Our next goal is the determination of the group

Horn (A, J). We will discuss the slightly more general problem of the deter-

mination of Horn (A, T), where T is an arbitrary group of order two.

We let e denote the identity of T as well as that of G. Let h be the other

element of T. We write

g = nc('>,
V

where p runs over all prime numbers dividing the order of G, and G(p) is the

Sylow subgroup of G whose order is a power of p. Now

A = \\A^\
V

where A(p) is the group of automorphisms of G(p). Under suitable identifica-

tion Horn (Aip), T) can be regarded as a subgroup of Horn (A, T) and we

have

Horn (A, T) = II Horn (A<*\ T).
V

Now let p be a fixed prime dividing the order of G. We will use the nota-

tion of Lemma 1. By Lemma 1, A^ is generated by the automorphisms 7,-,

Sj, 1 Hij<l, and the automorphisms of £>,-, l£i£l.

In the sequel i andj will always denote positive integers.

Lemma 10. Let T£Hom (A, T). If p is odd, or if mj+1 = mj+2, or if j^2 and

mj-x = mj, then Tyj = YSj = e. If mj = mi+x then Yyj = Tdj.

Proof. Since T£Hom (A, T) it follows that r<r2 = e for all aEA.

Suppose p is odd. Then y, and Sj have odd order and hence they are

squares. Thus in this case r7/=rSy = e.

Next suppose mj+x = mj+2. Then 7i=o"2 and Sj = a\, where ox and a2 are the

automorphisms of DjXDj+xXDj+2 such that

axdj = djdj+2, oidj+x = dj+1, o~idj+2 = dj+idj+2~l,
tj

a2dj = dj, a2dj+x = dj+xdj+2, a2dj+2 = dj dj+2~ .

Hence r7;=rS;=e.
Now supposej?i2 and mj-i = ntj. Then yj = a\ and hj=o\, where <r3 and o-4

are the automorphisms of Dj-xXDjXDj+1 such that

o~3dj-x = dj^xdj+x, <r3dj = dj_xdj, a3dj+i = dj+l,
— X »,-

o-idj-x = dj-xdj, aidj = dj, Oidj+x = dj-xdj+\.
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It follows that ry,=T6,=e.

Finally suppose m, = m,+i. Then 5, = 1 and y,S, = aa, where cr5 is the auto-

morphism of DjXD,+i such that

Oidj = d,+i,        o~f,dj+i = d,d,+i.

Hence (Tyj)(TSj)=e which implies r7J=r5J.

Lemma 11. Let r£Hom (A, T). Let q be an integer relatively prime to p,

and let p., be the automorphism of D,XD,+i such that

q q
p,d, = d,,       Ujdj+i = d,+i.

U Q — l (mod sj), then Tpt, = e.

Proof. Suppose q = l (mod s,). Then p.,=v2 where v is the automorphism

oi D,XD,+1 such that

vd, = d, d,+i        vd,+i = d,   dj+1.

Hence Tp.,■ = (Tv)2 = e, which establishes Lemma 11.

For p odd let u(p) denote the number of distinct integers in the set

ran, m2, • • • , mi.

Lemma 12. If p is odd, then the order of Horn L4(p), T) is at most 2u(p).

Proof. Since p is an odd prime, the group Ai of automorphisms of D, is

cyclic. Let T\ be a generator of Ai. Then Tidi = d\ for some integer q relatively

prime to p. For arbitrary i let t, be the automorphism of Di such that ndi

= d\. Then r,- is a generator of the cyclic group Af. By Lemma 1, Aip) is gen-

erated by the automorphisms r,-, y,, 8,, l^i^l, l^j<l. Let T£ Horn (Alp\T).

Then r7,- = r5j=e for all j by Lemma 10. If mi = m, then TTi=Tr, by Lemma

11. Let ji, jt, • ■ ■ , ju(p) be a set of indices such that m,v • • • , m, is the

complete set of distinct values of m^ Then T is completely determined by

the Tr,f, l^i^u(p). Since there are only two possible values for Tt, ior each

j, the order of Horn (A(p), T) is at most 2u(p). This completes the proof of

Lemma 12.

Let m be one of the numbers mu • ■ • , mi. Thus m is a power of p. Let

D„ Ds+i, • • • , Dt be those Di of order m. For cr£^4 we write

<rd,= U£'\ Sgj£t.
i-l

Let Hi, denote the residue class of uy modulo p, and let u„ be the value of the

t — 5 + 1 rowed determinant | «,-,-|, s^i^t, s^j^t. Then cr—m, is a homomor-

phism of A onto the multiplicative group of residue classes modulo p. We

now define the mapping Tm of A into T as follows:
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(e if u, is a square modulo p,

\h otherwise.

Then Tm£Hom (ACp), T). If p is odd, then as m runs through its u(p) pos-

sible values, Tm runs through u(p) independent homomorphisms of A onto T.

Combining this with Lemma 12 we obtain:

Lemma 13. If p is an odd prime dividing the order of G, then the order of

Horn (AM, T) is 2u(p). Furthermore Horn (A(p), T) is generated by the u(p)

homomorphisms of the form Tm, where mis a power of p and an invariant of the

Unite abelian group G.

It can be shown that Tm depends only on G, T, and m.

We now study Horn (^4(2), T). We know that .4(2) is generated by X,-, £,-,

9j, Vi, l=i = k, 1 ̂ j<k. We will put «o = ro= °° in the following in order to

insure that «0>«i and ro = 8.

Let m(4) denote the number of positive values of i such that r,Si4, and

let u(8) denote the number of positive values of i such that r,-Si8. Let u(rj)

be the number of values of i such that Wj_i>«,- and «,-+!> «,-+2. Let u(9) be

the number of values of i such that w,-_i>w,->«i+i>«1+2. Let T£Hom (^4(2),

T).
We note that X* = e if «i = 2, and that £* = « if tt*^4. From Lemma 11 it

follows that

rx< = rx,-+i if n < 2

and

ri< = rti+x if ri ^ 4.

It follows that at most u(4) of the TX,- are independent and that at most u(8)

of the r£,- are independent. From Lemma 10 it follows that Yrn = Y9i = e if

either nt+x = ni+2 or «,_i = «,-. Furthermore r77< = r0,- if «, = «,+i. It follows

that at most u(rj) of the Yrjt are different from e, and that Y9j is independent

of r?7y for at most u(9) values of j. Thus the order of Horn (yl(2\ T) is at most

2"(2\ where

«(2) = «(4) + m(8) + u(rf) + u(8).

We shall now construct u(2) independent homomorphisms of ^4(2) onto T.

For any a EA we write

k

*cj = He*'', i ^/^ k.
t-i

Let r = 4 or 8. Choose 5 and / such that s^t, rj<r if s^j<t, r,-x~<^r,

rt^r. For each r there are u(r) possible choices of s and t. Let 3,7 denote the

residue class of qa modulo r. Let q, be the value of the t — s + 1 rowed deter-
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minant |g,y|, s^i^t, s^j^t. The mapping <r—>g„ is a homomorphism of A

onto the multiplicative group of odd residue classes modulo r. For r=4 we

put

(e if q„ = 1 (mod 4),
A(cr =  <

\h if q„ = — 1 (mod 4).

For r = 8 we put

(e if q. s ± 1 (mod 8),

U if ?, = ± 3 (mod 8).

Thera(4) mappings A( and the m(8) mappings Si are elements of Horn (^4(2),F).

Furthermore

A(£y = At0, = Atr]j = e for all/,

and

(hit sgjg l,

l.e otherwise.

Moreover

S(Xy = E<0y = EtVi = « for all /,

and

(h it s < j < I,

(e  otherwise.

Now let 5 be one of the m(t;) integers such that w8_i>m, and ras+i>ra,+2.

Let 5»y denote the residue class of c/y modulo 2, and let 9}?,, be the 2X2 matrix

(<}ij), s^i^s + l, s^j^s + l. Then cr—»9Wff is a homomorphism of A into the

group of nonsingular 2X2 matrices over the field of two elements. This group

of 2X2 matrices is isomorphic to the symmetric group of order 6 and has an

invariant subgroup 5 of order 3 consisting of

C ")•   C !)' "d G J)-
Put

(e if 5D?„ £ S,

\h if SR, £ 5.

The u(rj) mappings ^f, are elements of Horn (.4<2), T). For each of them we

have

^.Xy = ^.i, = e for all j,

¥,9, = y,y, = e for j ^ s,
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and <kaiis = h, while 4i%0, may be either e or h.

Finally let 5 be any positive integer such that ra8_i>ra,>ra,+i>ra,+2. We

put

ie if 2r, | q,.,+u
@.cr =  <

Kh otherwise.

Then 08£Hom (.4(2), T). There are u(6) such 6, and for each one

0,X; = ©,£/ = ®,rj, = e for all j

and

ie if ;' 7^ 5,

\h if j = 5.

We see that the u(2) homomorphisms A(, Si, ^„ 0, are independent. There-

fore the order of Horn L4(2), 7") is 2"(2> and the homomorphisms At, Sj, SF,, ©»

form a basis for it.

It can be shown that the homomorphisms A,, St, S?,, 0, are independent

of the decomposition of G(2) into the direct product of cyclic groups d and

of the choice of generators c,-.

Summarizing the results of this section we obtain:

Theorem 2. The order of Horn (A, T) is 2", where u= zZu(P), the sum

being taken over all primes dividing the order of G. There is a basis for Horn (A, T)

consisting of the elements Tm, where m runs over the odd prime power invariants

of G, At for those positive t such that r,^4, S</or those positive t such that r(^8,

ty, for those s such that w„_i>«, and ras+i>ra,+2, and 0, for those s such that

ras_i > ms > ms+i > ras+2.

6. H^A, G). In §2 we showed that every nontrivial element of ^(A, G)

has order 2. Therefore ZFL4, G) is either trivial or the direct product of cyclic

groups of order 2. It follows that ^(A, G) is isomorphic to the direct product

of the two factor groups

Z\A, G)/Hom (A, J)B\A, G) and Horn (A, J)B1(A,G)/B1(A, G).

The first of these two factor groups was determined in §3 and §4, while the

latter is isomorphic to Horn (A, J)/Horn (A, J)(~\B1(A, G).

Now if rai = ra2, then / is trivial and hence

H\A, G) = Z\A, G)/Hom (A, J)B\A, G).

If «i>ra2, then J has order 2 and Horn (A, J) is given by Theorem 2 with

T = J. Thus to complete the determination of F'(j4, G) we need only deter-

mine the intersection Horn (A, J)(~\Bl(A, G) under the assumption rai>M2.

If «i>ra2, then we use the notation of §5 with 7" = /and h = bi = c"il2. We

note that if Ai is defined, then ri^4, Ai<t = aio-af1 for all aEA, and hence
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Ai = r0l £ Horn (A, J) f~\ Bl(A, G).

Similarly if @i is defined, then nx>n2>n3 and

©i = I\ £ Horn (A,J)C\ B\A, G).

Conversely we have:

Lemma 14. If Y is a nontrivial element of Horn (A, J)C\Bl(A, G), then Y is

either Kx, ©i, or Ai@i.

Proof. If nx = n2 then Lemma 14 is trivial. Suppose nx>n2 and let a be an

element of G such that ra£Hom (A, J). Then aaa~lE J for all aEA. Letting

a run through the automorphisms of Nx we obtain aECiXKi. If o£G, then

Ki is not trivial, n2>n3, a is of the form a'b2 with a'ECi, and ro = Pa'©i.

Hence without loss of generality we may suppose a£G. Then a2 = a\ia~lEJ

and thus ai = e. Now a = c\ for some integer q. Hence avia~l = c2'EJQCi.

Therefore n2\q and nx\rxq. Hence a'l = e. Thus if a£f, then a29£e, r]Si4, Ai

is defined, aai1EJ, and r„ = rai=Ai. On the other hand if aEJ, then Ya is

the identity element of the group Horn (A, J). Thus Lemma 14 is established.

It now follows that if «i>«2, then a set of representatives of a basis of

Horn (A, J)Bl(A, G)/Bl(A, G) can be obtained from the basis of Horn (A, J)

given in Theorem 2 by deleting Ai and ©i (if they are defined). We now sum

up in the following theorem.

Theorem 3. Let G be a finite abelian group and A its group of automor-

phisms. Let S be the set of all v for which Yv is defined, i ^v^iv. If »i = n2, then

the cosets YvBl(A, G), vE&,form a basis of Hl(A, G). If nx>n2, then there is a

set of representatives of a basis of HV(A, G) that consists of the elements Yt for

all vE&, ymfor all odd prime power invariants m of G, Atfor all t>l such that

r(Si4, St for all positive t such that r<=i8, St', for all s such that n,-x>n, and

n,+x>ns+2, and 0, for all s>l such that n,-x>n3>na+x>n,+2. In both cases

Hl(A, G) is either trivial or the direct product of groups of order two.

II. The outer automorphism group of II

In Part II we will complete the determination of the outer automorphism

group of H. Throughout Part II we will use the notation of Part I. In particu-

lar H is the holomorph of the finite abelian group G, 0 and $ are the outer and

inner automorphism groups of H respectively, fi is the group of all automor-

phisms of H, and 05 is the group of all automorphisms of H that map G onto

itself.

7. Invariant subgroups of H isomorphic to G. In this section we will col-

lect certain results(B) about the invariant subgroups of H isomorphic to G.

(6) Most of these results can be found in [6] in somewhat different form. We will appeal to

[6] only for the result that there are no invariant subgroups of H isomorphic to G other than

the ones listed in this section.
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In particular we will list all these subgroups and, for each such subgroup G*,

we will construct an automorphism of II that maps G onto G* and leaves

GC\G* fixed elementwise.

Let A * be the group of all elements of H of the form (e, a), aEA.

Lemma 15. Let G* be an invariant subgroup of H isomorphic to G and sup-

pose that every element of G occurs as the first component of an element of G*.

Let co be any isomorphism of G onto G*. For any gEG let g* denote the first

component of cog. Then there exists a unique extension & of a to an automorpism

of H that maps A* onto itself. For any aEA we have fl(e, a) = (e, a*) where

(32) C*g*   =   (ag)*.

Furthermore if fl' is any automorphism of H that maps G onto G* and A * onto

itself, then fl_1fl'££. If fl* is any automorphism of H that maps both G and A *

onto themselves, then fl*£#.

Proof. Since G and G* are finite and have the same order it follows that

every element of G occurs exactly once as the first component of an element

of G*. Hence the mapping g-^g* is a one-to-one mapping of G onto itself.

Suppose that fl is an automorphism of H mapping A* onto itself such that

co is the restriction of fl to G. For any aEA we put fl(e, a) = (e, a*). Now

Qog = Q{(e, o)g(e, cr)"1}  = (e, o*)(g*, «,)(«, a*)'1

where cog = (g*, c/>„). Comparing first components we obtain (32), which de-

termines cr* uniquely. Since fl is completely determined by its effect on G

and A* it follows that there is at most one automorphism of H with the re-

quired properties.

We must now prove the existence of fl. For any aEA let [cr] denote the

automorphism of G* induced by the inner automorphism I(«,,„) of H. Since

every element of G occurs as the first component of an element of G* it fol-

lows that the mapping cr—>[<r] is one-to-one of A into the group of automor-

phisms of G*. Since A and the group of automorphisms of G* have the same

finite order it follows that a—*[<r] is an isomorphism of A onto this group of

automorphisms. Let cr* be the automorphism of G such that [a*] =cocrco-1.

Then the mapping fl given by

Q(g, <r) = wg(e, cr*)

is a one-to-one mapping of H onto itself. Clearly flg=cog for all gEG and fl

maps A* onto itself. Furthermore

{Q(a, cr)} {U(b, t)}  = coa { [cr* ]co6} (e, o*t*)

= oi(aob)(e, o*t*)

= Q[(m)(J,t)).

Hence fl is an automorphism with the desired properties.
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Now fl' maps G onto G*. Hence for suitable 4>EA we have fl'0g=wg for

all gEG. Then fl'I(..« is an extension of co to an automorphism of H that

maps^l* onto itself. Hence fl'I(e,*) = flby the uniqueness of fl. Thus fl-1fl'£^.

Finally putting G* = G, fi = I, the identity automorphism of H, and fl' = fl*

this becomes fl*£tf, which completes the proof.

If «iSi4 let 0i denote the automorphism of G(2) such that

'big = g1+"l/2

for all g£G(2). Clearly <px belongs to the center of A and 02 = e.

If «2Si2 put 02= 9T/2. Thus

m/2
<p2Cx — Cx, <p2c2 — Cx    c2.

Furthermore <pl = e.

If «iSi4put03=0i?7il/2. Thus

l+n!/2  n!/2 l+ni/2
03^1   =   Ci C2       , <b3C2   =   C2

We have <p% = e.

We will now list the invariant subgroups of H isomorphic to G.

1. Suppose «iSi8 and «i>«2- In this case let Gi be the group generated

by (ex, 4>i) and Ai. Then Gi is isomorphic to G. The group Gi consists of those

elements of H of the form (a, 4>i) where «i divides the order of a and of those

elements of G whose order is not divisible by «i. It follows that G is an invari-

ant subgroup of H isomorphic to G, that every element of G occurs exactly

once as the first component of an element of Gx, and that GPiG is generated

by c\ and A^. Let coi be the isomorphism of G onto Gi such that

t 1+ni/4   j. \
oiCi = (ci       , <bi)

and o>ig=g for all gENx. Then Wi leaves every element of GC\Gx fixed. By

Lemma 15 there exists an automorphism fli of II that extends a>i and that

maps A* onto itself. By (32) we have

®i(e, <r)  = (e, a) if <rCi = Ci,

Me, fi) = (e, O),

Qx(e, \i) = (e, Xi0i),

l^i(e, vi) = (e, Vi       )•

Since WiSi8 we have 0i = £il/8. Hence fli(e, 0i) = (e, (pi). It follows that fl? maps

both G and A* onto themselves. Hence fl?£fT by the last statement of

Lemma 15.

2. Suppose nx>n2>n3. In this case let G2 be the group generated by

(cx, 02), (c2, 0i), and A?^. Then G2 is isomorphic to G and GC\G2 is the charac-

teristic subgroup of G generated by c2, c2, and Ai^. Let F be the set of all ele-

ments of G that do not belong to G2 and have order divisible by n2 but not by
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«i. For any element a of G whose order is divisible by «i let c6a be the unique

automorphism of G such that <paa=a and <paf = hf tor all/£F, where h is the

nonidentity element of /. The group G2 consists of the elements of GC\G2, the

elements of H of the form (/, <j>i), /£F, and the elements of H of the form

(a, <pa) where rai divides the order of a. It follows that G2 is an invariant

subgroup of H. Thus G2 is an invariant subgroup of H isomorphic to G and

every element of G occurs exactly once as the first component of an element

of G2. Let co2 be the isomorphism of G onto G2 such that

co2Ci = (ci, c>2),        co2c2 = (c2, <pi),

and co2g = g for all g£TVi,2. Then co2 leaves every element of Gf\G2 fixed. Let

fl2 be the automorphism of II that extends co2 and maps A * onto itself. By

(32) we have

(Q2(e, o-) = (e, <r) if <rci £ G,
(34) <

\fti(e, i?i) = (e, vi<t>i)-

ft follows from (34) that fl2(e, </>i) = (e, <pi) and fl2(e, <f>2) = (e, <j>2). Therefore fls

acts as the identity on G. Since A2, maps A * onto itself it follows from Lemma

15, with G* = G, that fl2 = I, the identity automorphism of II.

3. Suppose rai^8 and m2>m3. In this case let G3 be the group generated

by (ci, <pi<f>2), (c2, <f>3), and TVi,2. Then G3 is isomorphic to G and every element

of G occurs exactly once as the first component of an element of G3. Further-

more GC\G3 is the characteristic subgroup of G generated by c\, c\, and TVi|2.

We now consider two cases:

3a. Suppose rai^8 and Mi>ra2>ra3. In this case Gi, G2, fii, and fi2 are de-

fined. Moreover <p3 = <pi and

G C\G3 = G C\G2 EG C\Gi.

Hence fiifl2 and fl2fli both leave GP1G3 fixed elementwise. Furthermore

l+ni/4
fii02Ci = (ci        , 0i02) = 02f2iCi

and

V.iV,2c2 = (c2, cpi) = fl2fiiC2.

It follows that flifl2 and fi2fii map G onto G3, that their restrictions to G are

identical, and that they both map A* onto itself. Since fiifi2 is an automor-

phism of H it follows that G3 is an invariant subgroup of H isomorphic to G.

Hence fiifi2 = fi2fii by Lemma 15. In this case we put fl3 = flifl2.

3b. Suppose rai=^8 and rai = ra2>w3. For any aEG whose order ra„ is divisi-

ble by rai let 0„ be the unique automorphism of G such that 6aa=a, 6ag' =g' for

all g'EG', and Qag = ana,2g for every gEG of order wi that is independent of a.
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Then G3 consists of the elements of G(~\G3 and the elements of H of the form

(a, 8a4>i) where wi divides the order of a. It follows that G3 is an invariant sub-

group of H isomorphic to G. Let co3 be the isomorphism of G onto G3 such that

l+n,/4 l+n,/4
03Ci  =   (Ci ,   0102), W3C2  =   (C2 ,   03),

and u>3g=g for all gENi,2. Then co3 leaves GT\G3 fixed elementwise. Let fl3

be the automorphism of H that extends w3 and maps ^4 * onto itself. By (32)

we have fl3(e, 0.) = (e, (pi), i = l, 2, 3. It follows that flf, maps both G and A*

onto themselves. Hence fl|£jf by Lemma 15. In this case we do not need to

know fl3(e, cr) for all aEA. However if g* denotes the first component of

£l3g, then g*g~l is a square. Therefore if cr* is the automorphisms of G such

that tt3(e, a) = (e, a*) and if

it k .

ocj = n ci",   a*cj = n ci",        i ^ j ^ k,
»=i »=i

then it follows from (32) that

(35) qi} = qa (mod 2).

4. Suppose «i = 4 and n2 = k = 2. Then Y, and fl2 are both defined, and r;

can be regarded as an automorphism of II by (2). Referring to §4 we have

ai = ci, b2 = c2, ri = r',

TiOjcI1 = ri(c71, 02) = Y^d1, di) = (c2, ei),

TiQ2c2 = Ti(c2, 0i) = ri(c2, \i) = (e, \x),

and rifl2g'=g' for all g'EG' = Nx,2. Since Y-, and fl2 are automorphisms of H,

it follows that (c2, 9i), (e, Xi), and G' generate an invariant subgroup of H

isomorphic to G. We designate this subgroup by G4. The automorphism

r;fl2 of H maps G onto G4.

Conversely it has been shown [6] that if G* is an invariant subgroup of H

isomorphic to G, and G* 9^G, then either

1. WiSi8, nx>n2, and G* = G, or

2. nx>n2>n3 and G* = G2, or

3. wiSi8, «2>«3, and G* = G3, or

4. Mi = 4, n2 = k = 2, and G* = Gt.

For each of the groups G„, l^w^3, we have an automorphism fl„, of H

that maps G onto Gw, leaves Gr\Gw fixed elementwise, maps A* onto itself,

and satisfies fl25££f. Furthermore fli is defined if the first two of the in-

equalities

(36) m Si 8,       «i > n2,       «2 > «3

hold, fl2 is defined if the last two of the inequalities (36) hold, and fl3 is defined

if the first and third of these inequalities hold. Therefore if more than one of
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these A„ is defined, then all three of them are and we have fl3 = flifl2 = fl2fli.

Let (P be the subgroup of 0 that is generated by the cosets Q,wd, where w

runs over those values for which A„, is defined, l^w^3. If all three of the

inequalities (36) hold, then (P is the four group. If exactly two of these in-

equalities hold, then (P has order 2. If less than two of them hold, then 6° is

trivial.

8. The outer automorphism group of H. The group G is an invariant

subgroup of II. Hence any automorphism fl of H maps G onto a group G*,

where G* is an invariant subgroup of II isomorphic to G. As indicated in

§7 there are five possibilities for G*, namely G, Gi, G2, G3, and G4. If G*=G,

then fl£ffi. If G* = GW with w = l, 2, or 3, then fl^1fl£03. If G* = GA, then

(rifl2)-1fl£(B and TiEZ^A, G)C(B. It follows that ft is generated by (B and

those fl,„ that are defined, 1 5^w±S3.

In §1 we showed that IP(A, G) is isomorphic to ($>/$ under the natural

isomorphism TBl(A, G)—>T$. In this section we will identify IP (A, G) and

($>/8 by means of this isomorphism. Then © is generated by (P and IP(A, G),

and (?rMP(A, G) consists of the identity alone. We must now study the rela-

tions between the elements of (P and those of Hl(A, G). In other words we

must study the relations, modulo 6, between the fi„ and the cocycles of

Z\A, G).
Henceforth w will denote an integer such that A„, is defined, l^wg3. For

any aEA, a* will denote the element of A such that ilw(e, a) = (e, a*), and

for any gEG, g* will denote the first component of fl,„g. This is in agreement

with the notation of Lemma 15.

Lemma 16. If Qw is defined and r£Hom (A, J), then

TQW = fi„r (modtf).

Proof. If n\ = n2, then J is trivial and so is Lemma 16. Hence suppose

Mi>m2. Then if fl3 is defined we have fl3 = flifl2. Thus without loss of generality

suppose that w = l or 2. Since JEGW it follows that T maps Gw onto itself.

Now S?WE$ and hence fl„ permutes G and G„. Therefore (AuT)2 maps G onto

itself. For all cr£^4 we have

(37) (a„T)2(e, <r) = ((IVXIV*), «**),

since Tcr and Ta* are elements of J and hence left fixed by fi„,. We distinguish

two cases:

Case 1. T<pi = e. If w = l, then Mi 2^ 8,i^'^isasquare, and it follows from (33)

that rcr = Fcr* for all cr£.4. If w = 2 it follows from (34) that Fcr = rcr* for all

oEA. In either case (A„F)2 maps A* onto itself by (37). It now follows from

Lemma 15 that (A,„r)2£tf which is equivalent to rfl^AuT (mod $).

Case 2. Tcpi^e. Here T<pl=cnll12. If ra2^2, then T<pi = e by Lemma 11 with

q = l+m/2 and j = l. Hence w2 = l. Therefore A2 is undefined, w = l, and

«i^8. By (33) we have
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(rxi)(rx*) = (rxi)2(r0i) = r0i = cl1'2,

and

(iv) (ro = (IV)2 = e

for all <t£^4' and for cr = £i. Since n2 = l it follows that A is generated by Xi>

ifi, and A'. Therefore (fl„,r)2Iai maps A* onto itself, where a1 = c"l/i as usual-

Clearly Iaj maps G onto itself. Therefore (fl„r)2Ia, also maps G onto itself,

and Lemma 15 yields (fiwr)2Iai£#. Hence (fl«,r)2££ and Lemma 16 is estab-

lished.

We now come to the relations between the special cocycles Yv of §4 and

the flw. The key to these relations is the following:

Lemma 17. Suppose that Yv and fl,„ are defined. Let G be the characteristic

subgroup of G used to define Yv. Then we have ni^8 and G^GC^Gw with the

exception of the case ni>n2 = k = 2, w^l, v = i.

Proof. We recall that if v = i, then either ni>n2>n3 and G is generated by

ax and b2, or Wi = «2Si4w3 and G is generated by «i and a2. If z» = ii or iii, then

«3>«4 and G is generated by bx, b2, and b3. If v = iv then Wi = 4«2 and G is

generated by ax.

Suppose that «i^4. Then w = 2 and ni>n2>n3. This implies «i = 4,

n2 = k = 2, and v = i. Thus n1 = 4: can occur only in the exceptional case.

Now suppose that «iSi8. If n2 = l, then none of the r„ are defined. There-

fore «2Si2. Now c\, c2., and c3 are elements of Gw. Hence ai and bi are elements

of Gw. Furthermore if w3>«4, then «3Si2 and b3EG„. If ni=n2, then a2EGw.

Now suppose that «iSi8 and that GQGC^Gy,. Since G is a subgroup of G

we have GQGw. Then v^iv, «2Si2, and 6>2£Gu,. If «2Si4, then b2EGw. Hence

n2 = 2. If w=l, then b2 = c2EGw. Hence w¥^l. If n2 = n3, then w=l. Therefore

n2>n3 and we have «a = l, k = 2, and t;^ii, iii. Thus v = i and we have the ex-

ceptional case mentioned in the statement of Lemma 17.

Lemma 18. Suppose that Yv and fl„ are defined and that the exceptional case

of Lemma 17 does not hold. Let aEA and (a, 4>)EGW. Then SlwYva =r„cr,

r„cr* = r„cr, and Yv(p = e.

Proof. By Lemma 17 we have «iSi8 and GQGr^Gu,. It follows from the

construction of Yv that r„cr£G. Since flw leaves every element of GC\GW

fixed we have flu,r„cr = r„<r. To pr-ove the remaining statements of Lemma 18

we distinguish two cases.

Case 1. v = iii- Here ni=n2 so that w = 3. We recall that Tincr depends only

on the residue classes of the numbers q,j modulo 2, where

ccj = n cr.

Hence r;ii0j=e for those 0y that are defined, 1 ̂ j^3. Now 0 is contained in
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the group generated by these cp,. Hence rinc6 = e. Furthermore Finer* = rUicr

by (35).
Case 2. u^iii. In this case r,cr depends only on the restriction of a to G.

Since Gw is abelian it follows that <j> leaves every element of GP\GW fixed.

Therefore c/> leaves every element of G fixed and we have Tv<p=e. Now

Au,f = g for all |£G and G is a characteristic subgroup of G. Hence, by (32)

we have

<T*I =  <T*g*  =   (erg)*  =  ffg

for all gEG. Therefore r,cr*=rpcr and Lemma 18 is established.

Lemma 19. Suppose that Tv and A„ are defined. Then r,fl„=QJ, with the

exception of the case ni>n2 = k = 2, wj^l, v = i.

Proof. Suppose that the exceptional case ni>n2 = k = 2, W9^l, v=i does

not hold. Then Lemma 18 applies. Hence for any gEG we have

TvQ«,g = Tv(g*, cp) = (g*. <p) = nwg = o„r„g

for suitable <pEA. Applying Lemma 18 again we have, for any aEA,

Tv£lw(e, cr) = (IV*, <r*) = (IV, <7*)

and

QwTv(e, cr) = fi„(IV, cr) = (Tvcr, cr*).

Therefore r„A„ = A„,r, and Lemma 19 is established. We will see that A„, and

Tr do not commute in the exceptional case.

It follows from Lemmas 16 and 19 that, except for the case «i>ra2 = ife = 2,

the elements of (P and H^A, G) commute with each other. Thus 0

= (5>XH1(A, G) except for this exceptional case.

We now come to the case ni>n2 = k = 2. The existence of G4, if «i = 4,

indicates that the cases raiS:8 and «i = 4 behave differently. We treat them

separately.

Suppose rai=i8 and n2 = k = 2. In this case we need to determine (A2r;)2

modulo 8. We see that A2r; maps G onto G2. Since G, Gi, G2, and G3 are the

only invariant subgroups of H isomorphic to G it follows that A2Fi maps G2

onto one of these groups. Now (ci, <p2) = (ci, 0i) £G2 and

,   l+3n,/4

n2Ti(cu 6i) = (a      c2, <pi)

which is an element of Gu but not of G, G2, or G3. Hence A2Fi maps G2 onto

Gi, and (A2ri)2 maps G onto Gi. Since n2 = k = 2 it follows that A is generated

by Xi, fi, 0i, 171, and the elements of A'. We have

(Q2Td2(e, Xi) = (e, tf>iXi),

(n»r,)*(e, Oi) = (d1*, epidi),
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and

(Sl2Ti)2(e, a) = (e, a)

for all aEA', for <r=£i, and for cr = 771. Hence L2(fl2r;)2 maps A* onto itself.

Since Gi is an invariant subgroup of H it follows that L2 maps Gi onto itself,

and hence L2(fl2Fi)2 maps G onto G. Therefore L2(fl2ri)2 = fl1 (mod 3) by

Lemma 15. Thus we have (fl2Pi)2 = fli (mod 3). We see at once that the cosets

Yid and A2# generate a group 03 of order 8, and that 03 is the octic group.

Since k = 2, neither Yn nor Ym is defined. Furthermore riv is defined if «i = 8

and undefined if »i Si 16. If «i Si 16 we put 0' = Horn (A, J)3/3, while if «i = 8
we let 0' be the group obtained from Horn (A, J)$/d by adjoining YiY3. Then

0' is the direct product of groups of order 2, and 0 = 08X0'. Referring to

Lemma 14 we see that a set of representatives of a basis of Horn (A, J)3/3

can be obtained by deleting Ai and ©1 from the basis of Horn (A, -7) given

by Theorem 2.

There remains only the case «i = 4, n2 = k = 2 to be treated. In this case

the invariant subgroups of II isomorphic to G are G, G2, and G4. We observed

in §7 that rifl2 maps G onto G4. Furthermore fl2 maps G2 onto G so that

r;fl2 also maps G2 onto G. It follows immediately that r;fl2 maps G4 onto G2,

and that (Pifl2)3 maps G onto itself. In this case A is generated by Xi, 81, vi,

and the elements of A'. We have

(Tin2)3(e, el) = (a, 6x\i),

and

(rifi2)3(e, cr) = (e, a)

for all <j£^4', for cr=Xi, and for a = t]i. It follows that IC2(Fifl2)3 maps both G

and A* onto themselves. Hence L2(rjfl2)3££r by Lemma 15. Therefore

(rjfl2)3£if and we see that the cosets Ytf and A2tf generate a group 06 iso-

morphic to the symmetric group of order 6. In fact if we regard 06 as a per-

mutation group on G, G2, G4, then it is exactly this symmetric group. In this

case Tii, Ym, Y-,v, fli, and fl3 are undefined and we have

0 = 06 X Horn (A, J)3/3.

In this case Ai is undefined and we can obtain a set of representatives of a

basis of Horn (A, J)$/3 by deleting ©i from the basis of Horn (A, J) given by

Theorem 2. This set consists of ^1 and the Tm, where m runs through the odd

prime power invariants of G.

We summarize our results in a final theorem:

Theorem 4. If G is the direct product of a cyclic group of order four, a group

of order two, and an abelian group of odd order, then 0 is the direct product of

the symmetric group of order six and a finite number of groups of order two,

0 = 06 XHorn (A, J)d/$. If G is the direct product of a cyclic group of order 2",
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n =5 3, a group of order two, and an abelian group of odd order, then 0 is the direct

product of the octic group and a finite number of groups of order two, 0 = SsX©'.

For all other finite abelian groups G, 0 is the direct product of a finite number of

groups of order two, in fact Q = (?XIP(A, G).
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