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1. Introduction. Throughout this paper we shall find it convenient to

use the word ring in the sense of not-necessarily-associative ring. A ring in

the usual sense, that is, a ring in which multiplication is assumed to be

associative, may be referred to as an associative ring.

An ideal P in the arbitrary ring R is said to be a prime ideal if ABQP,

where A and B are ideals in F, implies that AQP or BQP. In this definition

it does not matter whether AB is defined to be the set of all finite sums

zZai°i (o-iEA, biEB), or the least ideal of F which contains all products

a,6i, or merely the set of all these products. Behrens [4] has used the second

of these definitions and Amitsur [l] the third. Throughout the present paper,

if A and B are ideals or, more generally, any sets of elements of a ring R, by

AB we shall mean the set of all elements of F of the form ab, where aEA and

bEB.
The purpose of this paper is to introduce and study certain classes of

prime ideals in an arbitrary ring. Before summarizing our results, it will be

necessary to introduce an appropriate notation.

Let Xi = x, x2, • • • be a denumerable set of indeterminates which we may

use to form nonassociative products in a formal way. Henceforth we let 21

denote the set of all these indeterminates together with all finite formal

products of these indeterminates in any association. If w£2I and u does not

contain x„+i, xn+2, • • • , we may write u(xi, x2, ■ • ■ , xn). If u(xi, x2, • • • , x„)

G2I, then u(x, x, ■ ■ ■ , x) is a well-defined element of 21 which we may denote

by w*(x). For example, if w(xi, x2, x3) = ((x2Xi)x3)xi, then w*(x) = ((xx)x)x. We

henceforth denote by S3 the set of all elements of 21 which do not contain

xi, x3, • • ■ ; that is, an element of SB is either x or some product of x with

itself. It follows that if u(xx, x2, • ■ • , x„)£2l, the mapping u(xi, x2, ■ • • , xn)

—>w(x, x, • • • , x) =re*(x) is a mapping of 21 onto 53.

Now let u(xi, Xi, • • - , xn) be a fixed element of 21. An ideal P in F may

be said to be u-prime if u(Ai, Ai, ■ ■ ■ , An)QP implies that some AiQP,

where the Ai are ideals in R. In the special case in which re = XiX2, a re-prime

ideal is just a prime ideal and a re*-prime ideal is a semi-prime ideal. In

any ring and for any re £21 which contains at least two different indetermi-

nates, a re-prime ideal is necessarily prime, and a w*-prime ideal is semi-prime.

However, the converses need not be true, as examples given in the next sec-

tion will show. In an associative ring the concepts of prime and re-prime coin-

cide for any such u, as do also the concepts of semi-prime and re*-prime.

In analogy with the ire-systems introduced in [7], we shall call a subset
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M of R a u-system if whenever Ai (i = \, 2, ■ ■ ■ , n) are ideals of R, each of

which meets M, then u(Ai, A2, ■ ■ ■ , An) meets M. If A is an ideal in R, the

u-radical Au oi A is the set of all elements r oi R with the property that every

M-system which contains r meets A. We shall prove that .4" is the intersection

of all M-prime ideals which contain A. This, of course, generalizes the cor-

responding theorem for the associative case which was established in [7].

The special case for prime ideals (u = xix2) in a general ring has also been

proved by Amitsur [l] and by Behrens [4].

In §3 we shall show that always Au — Au'. In case u = xix2, this reduces

to a result of Amitsur [l]. Of course, in an associative ring this specializes

to the well-known theorem of Levitzki [6] and Nagata [8] which states

that the lower radical of Baer [2] coincides with the prime radical. Our

method of proof is an adaptation of that of Nagata.

The w-radical of the zero ideal may naturally be called the u-radical of

the ring R. This concept is discussed in §4 where it is indicated that several of

the expected properties of a radical hold for the w-radical.

Corresponding to each element v of S3, there is an appropriate concept of

v-nilpotence, and the sum of all D-nil ideals is a greatest z>-nil ideal. These

concepts will be presented in §5.

The radical defined by Jacobson for an associative ring has been general-

ized by Brown [5] to the nonassociative case. If / is this radical of the ring

R, we show in §6 that / is i/-prime for each zj£93 and, more precisely, that a

primitive ideal is itself M-prime for each wGSI- In the final section we briefly

indicate the relation of the results of this paper to a radical studied by

Smiley [9].

2. The w-prime ideals and the w-radical of an ideal. In this section we let

w = w(xi, Xi, • • • , xn) be a fixed but arbitrary element of SI. We define the

degree of u in the obvious way, and we shall assume that the degree of u is

greater than one, that is, that u is not just one of the indeterminates xt. The

integer n may be any positive integer. If P is an ideal in R, we shall use

C(P) to denote the complement of P in P. If aGR, the ideal in R generated

by a will be denoted by (a).

Definition 1. An ideal P in R is said to be u-prime if it satisfies any one

(and hence all three) of the following equivalent conditions:

(i) If Ai (i=l, 2, • • • , n) are ideals in R such that u(Ai, Ai, • • • , A„)

£P, then some AtQP.

(ii) If Ai (i=l, 2, • • • , n) are ideals in R, each of which meets C(P),

then u(Ai, A2, • • • , An) meets C(P).

(iii) If aiGC(P) (i = l, 2, • • • , n), then u((ai), (a2), ■ • • , (a„)) meets

C(P).
Definition 2. A subset M of R is a u-system if it has one (and hence both)

of the following equivalent properties:

(i) If Ai (i = l, 2, ■ ■ ■ , n) are ideals of R, each of which meets M, then

u(Ai, A2, ■ ■ ■ , An) meets M.
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(ii)  If a,-£Af (t = l, 2, • • • , re), then u((af), (o2), • • • , (o„)) meets M.

Clearly an ideal is re-prime if and only if its complement is a re-system.

Definition 3. If A is an ideal in F, the u-radical A" of A is the set of all

elements r of F such that every re-system which contains r meets A.

We may now prove the following theorem.

Theorem 1. If A is an ideal in R, A" is the intersection of all u-prime ideals

which contain A.

Let us denote by X the intersection of all re-prime ideals which contain

A, and show that AU = X.

First, we verify that A"QX. If P is a w-prime ideal such that 4CP

and 6£.4", then C(P) is a w-system which does not meet A, and hence

6£C(P). That is, 6£P, and hence A"CP. It follows that 4"CI, as we

wished to show.

Next we show that XQA". Suppose that cEA". Then there exists a re-

system M which contains c and does not meet A. By Zorn's Lemma, there

exists an ideal P maximal in the class of ideals which contain A and do not

meet M. We prove as follows that P is re-prime. Suppose that Ai

(i — l, 2, • • • , re) are ideals, each of which meets C(P). The maximal prop-

erty of F implies that each of the ideals P+At meets M. By Definition 2(i)

it follows that u(P+Au P+Ai, ■ • ■ , P+An) meets M. But clearly

u(P + Ai, P + Ai, ■ ■ ■ , P + An) £ P + u(Ai, At,--, An).

Since P does not meet Af,re(^4i,^42, • • • ,-4„)C£P and hence u(Ai,Ai, • • • ,An)

meets C(P). By Definition l(ii), we see that P is a re-prime ideal. Now since

c£P, cEX, and it follows that XQA", completing the proof.

Remark. Let us write Mi<re2 if ux and re2 are distinct elements of 21 such

that Mi is contained as a factor in re2. That is, re2 is a product of Mi and certain

of the indeterminates Xi in some association. For example, Mi<re2 if Wi

= (xiXi)x3 and re2 = Xi(((xiX2)x3)x2). If Mi<m2, then an ideal which is w2-prime

is also Mi-prime; hence AulQAut. Under what conditions this inclusion will

be proper is an unsolved problem. The examples which we now give will shed

a little light on this, and also illustrate the concept of M-prime ideal.

Example 1. Let R be the algebra over an arbitrary field F, with basis

elements z0, Z\, Zi, Zi, having the following multiplication table.

Zo Zi z2 z3

Zo    Zo Zi z2 z3

Zi    Zi 0 0 z2

Zi Zi 0 z3 z3

Z3    z3 z2 0 0
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Clearly Zo is the unit element of P. If atGR (i = l, 2, •••,»), we denote by

[alt a^, • • • , a„] the set of all linear combinations zZaiai< &iGF; hence we

may write R= [zo, Zi, z2, z3]. It is easy to verify that the only proper ideals of

P are M= [zu z2, z3] and N= [z2, z3]. Now 7V2= [z3], NN2= [z3], and 7V27V = 0.

If we set Ui=(xiX2)x3 and u2 = Xi(xiX3), by using the fact that N is contained

in every nonzero ideal of R, it follows that the zero ideal is prime and

also w2-prime, but is not Mi-prime.

Example 2. Let P be the algebra over a field F, with basis elements

z0, Zi, • • • , z„ (n>3) whose multiplication is defined as follows. The multi-

plication is assumed to be commutative, z0 is the unit element of P,

2 2 2 2

ZlZ2  =  Z3,   ZxZn  =  Z3;   Z3 =  Zi,   Z4  =  Z6,   •   •   •  , Zn-1  =  Z„,   Z„  =  Zi,

and all other products are zero. It is easy to verify that the linear sets M

= [zx, z2, ■ ■ • , zn] and N= [z2, z3, • • ■ , zn] are ideals in P. We proceed to

verify that these are the only proper ideals.

If r = a0Zo+aiZi+ • • • -\-anzn is an element of R with ao^O, we show that

the ideal (r) generated by r is P itself. We have (rz2)zi=aoZ3 and, since P has

z0 as unit element, it follows that z3G(r). Then from the multiplication table,

we see in turn that z4, • • • , zn, z2 are in (r). Since rG(r), it follows that

a0Zo+aiZiG(r) and hence Zi(a0Zo+aiZi) =«0Zi£M and ZiG(r). Finally, then,

z0G(r) and (r)=R.

Now let 5 = p\zi + • • • + Bnzn be an element of P with Bi^O. Then

5z2 = j31z3 and z3G(s). In turn, z4, • • • , zn, z2 are in (s), and finally ZiG(s).

Hence (s) = M.

We now let t=y2Zi+ • ■ ■ +7„z„, where some one of the Yij^O, and show

that (t) =N. If 7n5^0, te„=7nz2 implies that z2G(t), and it follows easily that

(t) =N. Suppose then that 7B = 0, 72^0. Then tzi=y2z3 and again (t) =N. Ii

72 = 7„ = 0 but 7,f^0 for some i (2<i<n), the same conclusion is easily ob-

tained. This shows that M and TV are the only proper ideals in P.

If we define W» = N, and generally iV**'= 7V<*-»7V, we find that N™

= [zi, z^ z6, • • • , zn], W»=[z2, *,.•••, Zn], • • • , 7V("-1>= [z2], 7V« = 0.

We now define elements of 21 as follows. Let Ui = Xi, m2 = wjx2, • • • , w*+i

= UkXk+x, ■ ■ ■ ■ Since iV is contained in every nonzero ideal of R, it follows

that in R the zero ideal is w<-prime for i<n, but is not «„-prime.

3. Equivalence of w-radical and w*-radical. If u = u(xl} x2, • • ■ , xn) is an

element of 21, we shall use the notation given in the introduction and set

u* = u*(x) =u(x, x, • • • , x) with x=Xx. Thus w*GS3£2l, and hence the

general definitions and results of the preceding section can be applied with u

replaced by u*. Moreover, the examples given above show that in the non-

associative case, the concepts of prime and M-prime need not coincide, and

neither do the concepts of semi-prime and «*-prime.

We next establish the following theorem.

Theorem 2. If A is an ideal in R and wG2l, then AU = AU'.
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It is obvious that an ideal which is re-prime is also re*-prime, and hence

that A"'CI A". Inclusion the other way will follow easily from the following

lemma.

Lemma. If a is an element of a u*-system S, there exists a u-system M such

that aEMCZS.

Let M = {Ci, a2, • • • }, where Oi = a and the other elements of M are

defined inductively as follows. Since Oi£5, by Definition 2(ii), m((oi), (af),

• • ■ , (af)) meets S. Let a2£M((oi), (ci), • • • , (cti))P\5. Then let, in general,

akEu((ak-i, (ak-i), • • • , (ak~i))r\S. Thus M is defined, and it remains to

show that M is a M-system. Since, for each k, ahE(dk-i), it follows that if

div a,„ • • • , ainEM with iigi2g • • • gi„, then a,-n+i£«((o,-,), (a,-„), • • ■ ,

(o.n))£M((fl«i), (fl««)> - " " , (°<„))- This establishes the lemma.

Now to show that AUC.A"', let a£.4" and let 5 be a re*-system which

contains a. By the lemma, there exists a M-system M such that aEMCZS.

By the definition of A", it follows that M meets A and therefore S meets A.

Hence we have aEAu", and therefore AU<Z\AU", completing the proof of the

theorem.

For the special case in which u = XiX2, this theorem states that the prime

radical of an ideal coincides with its lower radical. This has been established

by Amitsur [l ]; and if R is an associative ring, it is a well-known result of

Levitzki [6] and Nagata [8].

It is clear that re*-prime ideals are closed under arbitrary intersection and

hence that Au' is the smallest re*-prime ideal which contains A. We therefore

have the following immediate corollary of Theorems 1 and 2.

Corollary. If A is an ideal in R, then A=AU* if and only if A is an inter-
section of u-prime ideals.

4. The re-radical of a ring. We now make the following definition.

Definition 4. The re-radical of the zero ideal in a ring F may be called

the u-radical of the ring R.

We shall find it convenient to denote the re-radical of R by F".

Definition 5. A ring F is said to be a u-prime ring if in R the zero ideal is

re-prime.

It is now clear that if P is an ideal in a ring R, then R/P is a re-prime ring

if and only if P is a re-prime ideal.

Inasmuch as the proofs follow easily by the methods of [7], we state the

following two theorems without proof.

Theorem 3. A necessary and sufficient condition that a ring R be isomorphic

to a subdirect sum of u-prime rings is that R" = 0.

Theorem 4. The ring R/R" has zero u-radical.

We next prove the following result.
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Theorem 5. Let Pu and Su be the respective u-radicals of the rings R and S.

If R is contained in S in such a way that each ideal in R is also an ideal in S,

then R" = S"C\R.

We show first that if P is a w-prime ideal in S, then PI\R is a w-prime

ideal in P. Suppose that u(Au A2, • ■ • , A„)QPC\R, where the Ai are ideals

in P. Since P is a w-prime ideal in 5 and the A < are also ideals in S, it follows

that some AiQPr\R. This shows that PH\R is a w-prime ideal in R. Theorem

1 then implies that Pu£SMf\R.

To prove inclusion the other way, let aGSur^R. Then every w-system in

S which contains a contains 0. Since a w-system in R is also a w-system in S,

it follows that every w-system in R which contains a contains 0; hence that

aGR". This completes the proof.

In the associative case the conclusion of Theorem 5 is true without the

requirement that any ideal in R be an ideal in 5. However, if associativity is

not assumed, there is at least one case of some interest in which this require-

ment is met. In any of the usual methods of imbedding a ring P in a ring 5

with unit element, the construction yields a ring 5 such that the hypotheses

of Theorem 5 are satisfied. We may therefore state the following corollary.

Corollary. The ring R may be imbedded in a ring S with unit element in

such a way that for every w£2l we have R" = SU(~\R.

If R is an arbitrary ring, we shall denote by Rm the ring of all square

matrices of order m with elements in P. We next prove the following result.

Lemma. The ring S with unit element is a u-prime ring if and only if Sm is a

u-prime ring.

First we assume that S is not w-prime. Suppose that w((ai), (ai), • • • .

(a„)) =0 where each a< is a nonzero element of 5. If e,y is the element of Sm

with 1 in the (i, j) position and zeros elsewhere, it follows, for example, that

w((aien), (a2exx), • • • . (anen))=0 since each element of the left member is a

matrix having in each position a sum of elements of u((ai), (a2), • • ■ , (an)).

Now each a.-Cn^O and we see tht Sm is not w-prime.

Conversely, suppose that Sm is not w-prime and that u(Alt A2, ■ ■ ■ , An)

= 0 where each Ai is a nonzero ideal of Sm. Let Ti be a nonzero matrix in Ait

and suppose that Ti is the matrix having tfq in the (p, q) position, with

t^^O. Then eip.Tieqii = tiPmeiiGAi. Moreover, if at is any element of the

ideal in 5 generated by t{p.qi, we have aidiGAi. It follows that

w(cuen, a2en, • • • , o„en) = w(a1; a2, ■ ■ • , a„)en = 0.

Hence w(ai, a2, • • • , a„) =0. This shows that S is not w-prime since a,- is an

arbitrary element of the nonzero ideal in 5 generated by tP]q.. The lemma is

therefore established.

The following theorem follows easily from this lemma by the method of
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proof of the corresponding theorem in the associative case. In the proof, our

Theorem 5 above is used in place of the stronger result available in that

case [7, Theorem 4].

Theorem 6. If R is any ring and re£2l, then (Rm)" = (Ru)m.

5. Nil ideals and n-nil ideals. There are available various concepts of

nilpotence when multiplication is not associative. The weakest of these is

the following.

Definition 6. An element a of the ring F is nilpotent if there exists an

element v(x) of S3 such that v(a) =0. An ideal is a nil ideal if each of its ele-

ments is nilpotent.

This is equivalent to the definition used by Behrens [3], who proved that

the sum of all nil ideals is a nil ideal and hence that there exists a unique

greatest nil ideal. This ideal we may denote by N(R). It is easy to see that

N(R) is v-prime for each w£93. For let A be an ideal in R such that v(A)

QN(R). It aEA, then in particular we have v(a)EN(R)- Hence there exists

w£33 such that w(v(a))=0. This shows that a is nilpotent, and it follows

that AC.N(R), completing the proof.

We now introduce a different concept of nilpotence which bears the same

relation to an arbitrary fixed element v(x) of S3 that solvability does to the

element xx of 93. Let us introduce a sequence of elements of 93 as follows:

v™(x) = x, v™(x) = v(x), ■ - ■ , »«•«(») = v(v™(x)),

We now make the following definition.

Definition 7. An element a of F is said to be v-nilpotent if v{-m)(a) =0 for

some nonnegative integer m. An ideal is a v-nil ideal if each of its elements is

fl-nilpotent.

The next theorem will show how z>-nilpotence is related to other concepts

of this paper.

Theorem 7. The sum of all v-nil ideals of the ring R is a greatest v-nil ideal

NV(R), and if u(xx, x2, • • • , x„) is any element of 21 such that u*(x) =v(x),

then RuC1Nv(R)c:N(R). Moreover, NV(R) is a v-prime ideal.

As a first step in the proof, we show that for nonnegative integers r and s,

(1) »<'>(»<•>(*)) = »<*-•>(*).

If r = 0, 1, and s is arbitrary, this is true by definition. Assume (1) for arbitrary

5 and for the nonnegative integer r — 1. Then, by use of this induction hypoth-

esis and by definition, we have

»<■■>(»<•>(*)) = *(»<-»(»<'>(*))) = v(v(r+*-»(x)) = »<•+•>(*).

This establishes (1).

To show the existence of NV(R), we shall limit ourselves to proving that
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if (a) and (b) are D-nil ideals, then (a — b) is a K-nil ideal. Any element of

(a — b) is of the form c-\-d, where cG(a) and dG(b). Since cG(a), there exists

a nonnegative integer s such that ow(c)=0. But then w(s)(c+d) =D(a)(c)+e

= e, where e£(d)£(o). Since (o) is a a-nil ideal, there exists a nonnegative

integer r such that n(r)(e) =0. Using (1), we now have

j,(r+»)(c + rf)   = VM(vU)fc + J))  = „(r)(e)   = o,

and c-\-d is u-nil. This proves the existence of the greatest z>-nil ideal NV(R).

It is obvious that NV(R)CN(R), so we now prove that P"£7V„(P). Since

7?" = P»* = P° by Theorem 2, we shall show that RVQNV(R). We show first

that if aGR, the set M=[v^\a); k = 0, 1, 2, • • • } is a n-system. Let b

=i<"W£M. Then v(b) =vV*+»(a)GM and v(b)Ev((b)). Since »((&)) meets

M, Definition 2(ii) shows that M is a ^-system. Suppose now that aGR"-

Then the ^-system M contains a and therefore contains the element 0. It

follows that a is n-nilpotent and hence that P" is a D-nil ideal. Thus P°£ A7„(P)

and the proof is complete.

There remains only to prove that NV(R) is fl-prime. If A is an ideal in R

such that v(A)QN,,(R) and aGA, then v(a)GNv(R). Hence v(a) is ^-nil-

potent, that is, for some nonnegative integer r, D(r)(i>(a)) =0. But by (1), this

implies that n(r+1){a) =0 and hence that a is »-nilpotent. This proves that

A QNV(R), which shows that NV(R) is a w-prime ideal.

6. The Jacobson radical. The definition of the Jacobson radical of an

associative ring has been extended by Brown [5] to the nonassociative case.

The present treatment is in terms of the right radical, which for nonassocia-

tive rings need not coincide with the left radical. If aGR, we shall let Q(a)

be the right ideal of R generated by the set of all elements at —t, with tGR-

The element a is quasi-regular if aGQ(a), and an ideal is quasi-regular if each

of its elements is quasi-regular. The Jacobson radical of P is the greatest

quasi-regular ideal of R. We denote this radical by / or by J(R).

We proceed to give an elementary proof of the following result.

Theorem 8. For any ring R, J(R) is v-prime for each i;£S3. Moreover,

N(R)QJ(R).

We begin by proving two lemmas.

Lemma 1. For each v(x)G%5 and each aGR, v(a)=a — c for some cGQ(a).

This is obvious if v(x) — x and also follows easily for v(x) =x2 by use of the

equation a2 = a—[a(—a)—(—a)]. We use induction on the degree of v(x)

and let v(x) be an element of S3 of degree w>2. We assume the truth of the

lemma for all elements of 93 of degree less than n. Now it is always possible

to express v(x) as a product of two elements of S3, say v(x) =Vx(x)v2(x), where

Vx(x) and v2(x) have degrees less than w. By the induction hypothesis, we may

write Vx(a) =a — d and v2(a) =a — e, with d, eGQ(a). Hence
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v(a) = Vi(a)vi(a) = (a — d)(a — e) = a2 — ae — da + de.

Since dEQ(o), we have daEQ(&) and deEQ(a)- Moreover, aeEQ(a) since

ae = (ae—e)+e. Also, as pointed out above as a special case of the lemma,

a2 = a—f, fEQ(a). Combining all of these, we see that v(a)=a — c, cEQ(a),

and the lemma is established.

Lemma 2. Ifv(a) is quasi-regular, then a is quasi-regular.

By the preceding lemma, we have v(a) —a — c where cEQ(a). Under the

assumption that v(a) is quasi-regular, we thus have a — cEQ(a — c). A lemma

of Brown [5] shows that Q(a — c)C.Q(a)+(c)r, where (c)r is the right ideal

in R generated by c. Since c£(?(o), we have (c)rQQ(a), so finally aEQ(a).

This establishes the lemma.

It is now easy to show that / is f-prime for each zj£93. If A is an ideal in

F such that v(A)C.Jand aEA, then v(a)EJand hence v(a) is quasi-regular.

By Lemma 2, a is then quasi-regular. Hence AC.J, which shows that / is

n-prime. The first statement of the theorem is therefore proved.

If 6£Af(F) and a£(6), there exists z>£93 such that v(a)=0. Lemma 2

then shows that a is quasi-regular. Hence (6) is a quasi-regular ideal and

(b)QJ. It follows that N(R)C1J, completing the proof.

This theorem shows that J = JU* for each w£2l and, by the Corollary to

Theorem 2, it follows that Jis an intersection of re-prime ideals for each re£2l.

In what follows we shall sharpen this result, but first we introduce the nec-

essary terminology.

Following Brown [5], we say that a right ideal I in R is modular if there

exists an element e of R such that er — rEI for all rER. A ring R is primitive

if it contains a modular maximal right ideal M which contains no nonzero

ideal of F. We say that an ideal A of R is primitive if the ring R/A is primi-

tive. Brown [5, Theorem l] has shown that J(R) is an intersection of primi-

tive ideals, and we shall show below, as a corollary to the next theorem, that

a primitive ideal is actually re-prime for each u £21.

Theorem 9. Let M be a modular maximal right ideal in the ring R, and

u(xi, x2, • • • , x„) an arbitrary element of21. If Ai(i = l,2, • ■ ■ , re) are ideals

in R such that u(Ax, A2, ■ ■ • , An)QM, then some AiCZM.

The proof is by induction on the degree of u, and we begin by considering

the special case in which re = XiX2. Suppose then that Ai, Ai are ideals such

that AiAiQM with Ai%M. Since M is a maximal right ideal, we have

F = Af+^4i. Let e be an element of F such that er — rEM for rER- Then

we may write e = m+a, where mEM and aEAi. If a2£^42, we have therefore

eai = mai+aai. But maiEM since mEM, and aaiEM in view of our assump-

tion that ^4i^42CAf. Hence ea2£Af and the modularity of M implies that

aiEM. Thus AiQM, as required.

We now return to the general case. There is no loss of generality in hence-
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forth assuming that in u(xlt x2, • • • , x„) each of xu x2, • • • , xn appears

exactly once. We therefore let u(x\, x2, ■ ■ ■ , xn) be such a product of degree

n>2 and, for convenience of notation, suppose that Xi appears on the left,

no matter what the association. Let us define w'(x2, • ■ • , x„) to be the element

of 21 obtained from u(xi, x2, • • • , xn) by erasing xx and any superfluous

parentheses. For example, if w = (xxx2) (x3xi), then w' = x2(x3x4). We now as-

sume the desired result for all elements of 21 of degree less than n. Suppose

that u(Ai,A2, ■ ■ ■ , An) CM with AiQM. As above, we have R = M+Ai and

e = m-\-a, mGM, aGAi. Let atGAi (i = 2, •••,«). Then

u(e, a2, ■ ■ ■ , a„) = u(m, a2, ■ ■ ■ , an) + u(a, a2, • • • , a„).

But u(m, a2, ■ ■ ■ , an)GM since m appears on the left. Moreover,

u(a,a2, • • • , an)GMin view of our assumption that u(Ax,A2, • ■ ■ ,An)QM.

Hence u(e, a2, ■ ■ ■ , an)GM. But since er — rGM for rGR, this implies that

u'(a2, • ■ ■ , an)GM. This shows that u'(A2, • ■ ■ , An)QM, and since w'

has degree n — 1, our induction hypothesis shows that some j4,-£ M

(i = 2, • • • , n), and the proof is completed.

If R is a primitive ring, there exists in R a modular maximal right ideal

M which contains no nonzero ideal of P. Hence, in this case, we can be sure

that u(Ai, 42, • • • , -4n)=0 implies that some Ai = 0. This shows that a

primitive ring is w-prime for each w£2l. Moreover, since an ideal 5 is a it-

prime ideal if and only if R/B is a w-prime ring, we have the following result.

Corollary. A primitive ideal is u-prime for each w£2I.

Of course, it follows at once from this result that / is u-prime for each

!J(ES3, and this is another proof of the first statement of Theorem 8.

Added in proof. San Soucie [10] has proved that a primitive ring is a

prime ring. In particular, the special case of the preceding corollary in which

w = xiX2 follows immediately from this result.

7. Relation to a radical of Smiley. Let us say that an ideal I is modular if

the ring R/I has a unit element. It is then easy to verify that the proof of

Theorem 9 carries through if M is a modular maximal ideal. Hence a modular

maximal ideal is u-prime for every uG^i- Now Smiley [9] has studied a radical

S(R) of a ring R, which coincides with the intersection of all modular maximal

ideals. It follows that S(R) is an intersection of w-prime ideals, and hence is

»-prime for every i/£S3. By the definition of S(R) given in [9], it is clear that

J(R)QS(R). Combining this with other results in this paper, we have, for

each ring P and for each w£2I,

P« = R»' £ AV(P) £ N(R) £ J(R) £ S(R).

Furthermore, P" and NU*(R) are w*-prime; while N(R), J(R) and S(R) are

v-prime for every w£S3.
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