LINEAR OPERATORS ON QUASI-CONTINUOUS FUNCTIONS

BY
RALPH E. LANE

1. Introduction. In this paper we study a class of linear transformations for each of which the transform of a function is a function. This special class of transformations has such applications as the smoothing of experimental data, the prediction of outputs of a physical system for various inputs, and the estimation of the velocities and accelerations of an object from observations of its positions at various times.

By the statement that \(f \) is a function, we imply that if \(t \) is a real number, then \(f(t) \) is a number. By the statement that \(f \) is quasi-continuous\(^{(1)}\), we mean that \(f \) is a function such that if \(t \) is a real number then the limits \(f(t-) \) and \(f(t+) \) exist. Some lemmas on quasi-continuous functions appear in §2.

Definition 1.1. The statement that \(T \) is a Q operator over the interval \([a, b]\) means that \(T \) is a transformation such that

(i) if \(y \) is quasi-continuous, then \(Ty \) is a function; if \(g = Ty \) and \(s \) is a real number, then we denote the number \(g(s) \) by \(Ty(s) \),

(ii) if \(y_1 \) is quasi-continuous and \(y_2 \) is quasi-continuous, then \(T(y_1 + y_2) = Ty_1 + Ty_2 \),

(iii) if \(y \) is quasi-continuous and \(k \) is a number, then \(T(ky) = k(Ty) \),

(iv) if \(y \) is quasi-continuous, \(c \) is a real number, and \(z(t) = y(t+c) \) for each real number \(t \), then \(Tz(s) = Ty(s+c) \) for each real number \(s \), and

(v) if \(s \) is a real number, then there is a positive number \(B_s \) such that if \(y \) is quasi-continuous and \(M > |y(s-t)| \) for each number \(t \) in \([a, b]\), then \(|Ty(s)| \leq MB_s \); by the norm, \(|T(s)| \), of \(T \) at \(s \) we mean the greatest lower bound of the set of all such numbers \(B_s \).

It will be observed that if \(T \) is a Q operator over the interval \([a, b]\) and \(T_0y = Ty(0) \) for each quasi-continuous function \(y \), then \(T_0 \) is a bounded linear transformation from the set of all quasi-continuous functions to the set of all numbers (i.e., \(T_0 \) is a bounded linear functional operation as defined in [2] and [3]). We give the following example of a Q operator.

Example 1.1. Suppose that if \(y \) is quasi-continuous and \(s \) is a real number, then

\[
Ty(s) = \frac{[-y(s-2) - 3y(s-1) + 76y(s) + 76y(s+1) - 3y(s+2) - y(s+3)]}{144}.
\]

Presented to the Society April 21, 1956; received by the editors August 16, 1956.

\(^{(1)}\) Except for the use of the word "quasi-continuous," we use the terminology and notation of [1]. In particular, "integral" is defined as in [1].

378
It follows that T is a Q operator over the interval $[-3, 2]$ and that $|T(s)| = 10/9$ for each real number s. Moreover, if y is a polynomial of degree 3 or less, then $Ty(s) = \int_{s^-}^{s^+} y(t) \, dt$. This operator is designed for use with experimental data, for which the values used for y in the formula may include errors of observation. In effect, the operator smooths the raw data, interpolates, and gives the integral of the smoothed and interpolated data; it is derived from Jenkins' modified osculatory interpolation formula [4].

In §3 we show that if T is a Q operator over the interval $[a, b]$, then Ty is quasi-continuous, of bounded variation, or continuous, according as y is quasi-continuous, of bounded variation, or continuous. In §4 we show that if T is a Q operator and y is a quasi-continuous function then Ty is the sum of two integrals.

We adopt the following notation. If y is quasi-continuous, then y_L and y_R denote the functions such that $y_L(t) = y(t^-)$ and $y_R(t) = y(t^+)$ for each real number t.

Definition 1.2. The statement that T is a Q_1 operator over the interval $[a, b]$ means that T is a Q operator over $[a, b]$ such that if y is quasi-continuous then $Ty(s^+) - Ty(s^-) = 2[Ty_R(s) - Ty_L(s)]$ for each real number s; i.e., if $Ty = x$, $Ty_L = u$ and $Ty_R = v$, then $x(s^+) - x(s^-) = 2[v(s) - u(s)]$ for each real number s.

In §5 we show that a Q_1 operator T is a Q operator such that if y is a quasi-continuous function then Ty is an integral. In §6 we find conditions sufficient to assure that a Q_1 operator T has various properties which may be desirable in applications. For example, we find a condition sufficient to assure that if y is quasi-continuous then Ty has a derivative, and we exhibit a Q_1 operator T' such that $T'y$ is the derivative of Ty. In §7 we give a family of Q_1 operators, one of which is a limit of the "most powerful" smoothing operators given in [4].

2. **Lemmas concerning quasi-continuous functions.** The following results will be used later in this paper.

Lemma 2.1. For the function f to be quasi-continuous, it is necessary and sufficient that if $[a, b]$ is an interval and $\epsilon > 0$ then there is a step-function s such that $|f(t) - s(t)| < \epsilon$ for each number t in $[a, b]$.

For a proof, see Lemma 4.1b of [1]; see [5] also.

Lemma 2.2. For the function f to be quasi-continuous it is necessary and sufficient that if $[a, b]$ is an interval and $\epsilon > 0$ then there is a subdivision t_0, t_1, \ldots, t_n of $[a, b]$ such that if p and q are in one of the segments (t_i, t_{i+1}) then $|f(p) - f(q)| < \epsilon$.

Proof is omitted.

Lemma 2.3. If f_1, f_2, f_3, \ldots is a sequence of quasi-continuous functions which converges uniformly to a function f, then f is quasi-continuous. Moreover,
if \(f_n(t+) = f_n(t) \) for each positive integer \(n \) and each real number \(t \), then \(f_R = f \); likewise, if \(f_n(t-) = f_n(t) \) for each positive integer \(n \) and each real number \(t \), then \(f_L = f \).

Proof is omitted.

Lemma 2.4. If \(f_1, f_2, \ldots \) is a sequence of functions which converges uniformly to a function \(f \), and \([a, b] \) is an interval, and \(V > 0 \), and \(V_a^b(f_n) \leq V \) for each positive integer \(n \), then \(V_a^b(f) \leq V \).

For a proof, see Lemma 4.2a of [1].

Lemma 2.5. If \(f \) is a quasi-continuous function, then there are a quasi-continuous function \(g \) and a quasi-continuous function \(h \) such that

(i) \(g_L = g \) and \(h_R = h \),
(ii) \(g + h = f \), and
(iii) if \([a, b] \) is an interval and \(|f(t)| \leq M < M_1 \) for each number \(t \) in \([a, b] \), then \(|g(t)| \leq 1.5M_1 \) and \(|h(t)| \leq 1.5M_1 \) for each number \(t \) in \([a, b] \).

Proof. We introduce the following notation. Suppose that \([a, b] \) is an interval, \(z \) is quasi-continuous, and \(D \) is a subdivision \(t_0, t_1, \ldots, t_m \) of \([a, b] \). Then \(L_Dz \) and \(R_Dz \) denote the pair of functions such that \(2L_Dz(a) = z(a) \), \(2R_Dz(b) = z(b) \), and for \(i = 0, 1, \ldots, m - 1 \),

\[
2(t_{i+1} - t_i)L_Dz(t) = (t_{i+1} - t_i)[2z(t_{i+1}) - z(t_i)] + (t - t_i)z(t_{i+1}) \quad \text{if} \quad t_i < t \leq t_{i+1},
\]

and

\[
2(t_{i+1} - t_i)R_Dz(t) = (t_{i+1} - t_i)z(t_i) + (t - t_i)[2z(t_{i+1}) - z(t_i)] \quad \text{if} \quad t_i \leq t < t_{i+1}.
\]

We make the following three observations. First, if \(|z(t)| \leq M \) for each number \(t \) in \([a, b] \), then \(|L_Dz(t)| \leq 1.5M \) and \(|R_Dz(t)| \leq 1.5M \) for \(a \leq t \leq b \). Second, if \(\epsilon > 0 \) and it is true that \(|z(p) - z(q)| \leq \epsilon \) if \(p \) and \(q \) are in one of the segments \((t_i, t_{i+1}) \), then \(|z(t) - L_Dz(t) - R_Dz(t)| \leq \epsilon \) for \(a \leq t \leq b \). Finally, \(L_Dz(t-) = L_Dz(t) \) if \(a < t \leq b \), and \(R_Dz(t+) = R_Dz(t) \) if \(a \leq t < b \).

Now suppose that \([a, b] \) is an interval and \(|f(t)| \leq M < M_1 \) if \(a \leq t \leq b \). Let \(\epsilon \) denote a positive number less than \(M_1 - M \). We now construct a sequence \(f_1, f_2, f_3, \ldots \) of functions and a sequence \(D_1, D_2, D_3, \ldots \) of subdivisions of \([a, b] \) in the following manner. Let \(f_1 \) denote the function \(f \), and let \(D_1 \) denote a subdivision \(t_0, t_1, \ldots, t_m \) of \([a, b] \) such that if \(p \) and \(q \) are in one of the segments \((t_i, t_{i+1}) \) then \(|f_1(p) - f_1(q)| < \epsilon/2 \). For each positive integer \(n \), let \(f_{n+1} = f_n - L_{D_n}f_n - R_{D_n}f_n \), where \(D_n \) denotes a subdivision \(t_0, t_1, \ldots, t_m \) of \([a, b] \) such that if \(p \) and \(q \) are in one of the segments \((t_i, t_{i+1}) \) then \(|f_n(p) - f_n(q)| \leq \epsilon/2^n \). Suppose that \(a \leq t \leq b \). Then \(|f_1(t)| \leq M \), and therefore \(|L_{D_1}f_1(t)| \leq 1.5M \) and \(|R_{D_1}f_1(t)| \leq 1.5M \); moreover, \(|f_2(t)| = |f_1(t) - L_{D_1}f_1(t) - R_{D_1}f_1(t)| \leq \epsilon/2 \). By induction, if \(n \) is an integer greater than 1, and \(a \leq t \leq b \), then \(|L_{D_n}f_n(t)| \leq 1.5\epsilon/2^{n-1} \), \(|R_{D_n}f_n(t)| \leq 1.5\epsilon/2^{n-1} \), and
\[
\left| f_1(t) - \sum_{p=1}^{n} L_{D_p}f_p(t) - \sum_{p=1}^{n} R_{D_p}f_p(t) \right|
= \left| f_{n+1}(t) \right| = \left| f_n(t) - L_{D_n}f_n(t) - R_{D_n}f_n(t) \right| \leq \varepsilon/2^n.
\]
But \(\sum_{p=1}^{n} L_{D_p}f_p \) converges uniformly in \([a, b]\) to a function \(g \); and if \(a \leq t \leq b \), then \(|g(t)| \leq \sum_{p=1}^{n} |L_{D_p}f_p(t)| \leq 1.5(M+\varepsilon) < 1.5M_1 \). Similarly, \(\sum_{p=1}^{n} R_{D_p}f_p \) converges uniformly in \([a, b]\) to a function \(h \); and if \(a \leq t \leq b \) then \(|h(t)| < 1.5M_1 \). Moreover, if \(a \leq t \leq b \) then \(g(t) + h(t) = f(t) \). From Lemma 2.3, it follows that if \(a < t \leq b \) then \(h(t-) \) exists and \(g(t-) = g(t) \), and that if \(a \leq t < b \) then \(g(t+) \) exists and \(h(t+) = h(t) \). This completes the proof.

Lemma 2.6. Suppose that \([t_0, t_1]\) is an interval, \(\varepsilon > 0 \), and \(f \) is a function such that

(i) if \(t_0 \leq t \leq t_1 \), then the derivative \(f'(t) \) exists, and

(ii) if \(s_1 \) and \(s_2 \) are in \([t_0, t_1]\), then \(|f'(s_1) - f'(s_2)| < \varepsilon. \) Then

\[
\left| \frac{f(t_1) - f(t_0)}{(t_1 - t_0)} - f'(t) \right| < \varepsilon(2)^{1/2}
\]

for each number \(t \) in \([t_0, t_1]\).

Proof is omitted, since this lemma can be obtained by applying the theorem to the real part and the imaginary part of \(f \).

Lemma 2.7. If \(f \) has a quasi-continuous derivative \(f' \), then \(f' \) is continuous.

Proof is omitted, since the lemma follows readily from well-known results and can be derived from Lemma 2.6.

Lemma 2.8. Suppose that \([a, b]\) is an interval, \(y \) is a function which is bounded in \([a, b]\), and \(x \) is a function whose derivative, \(x' \), is continuous in \([a, b]\). If \(\int_a^b y(t)x'(t)dt = I \) or \(\int_a^b y(t)x'(t)dt = I \), then \(\int_a^b y(t)x'(t)dt = \int_a^b y(t)x'(t)dt \).

Proof is omitted, since this lemma follows with little difficulty from Lemma 2.6.

Lemma 2.9. Suppose that \(f \) is a function whose derivative, \(f' \), is of bounded variation in the interval \([a, b]\), \(h \) is a real number other than zero, and \([c, d]\) is an interval such that if \(t \) is in \([c, d]\) then \(t \) and \(t+h \) are in \([a, b]\). If \(g(t) = \frac{[f(t+h) - f(t)]}{h} \) for each number \(t \) in \([c, d]\), then \(g \) is of bounded variation in \([c, d]\), and \(V'_f(g) \leq V^b_f(f') \).

Proof. Suppose that \(t_0, t_1, \ldots, t_n \) is a subdivision of \([c, d]\), and let \(S \) denote the sum \(\sum_{i=0}^{n-1} |g(t_{i+1}) - g(t_i)| \). Now

\[
h[g(t_{i+1}) - g(t_i)] = \int_0^h 1df(t_{i+1} + t) - \int_0^h 1df(t_i + t)
= \int_0^h [f'(t_{i+1} + t) - f'(t_i + t)]dt.
\]
It follows that if $h > 0$, then
\[\frac{h}{n} \sum_{i=0}^{n-1} \left| f'(t_{i+1}) - f'(t_i + h) \right| dt \]
and
\[hS \leq \int_0^h \sum_{i=0}^{n-1} \left| f'(t_{i+1} + h) - f'(t_i + h) \right| dt \leq \int_0^h V_a^b(f')dt = hV_a^b(f'), \]
so that $S \leq V_a^b(f')$. By a similar argument, if $h < 0$, then $S \leq V_a^b(f')$. Hence g is of bounded variation in $[c, d]$, and $V_a^b(g) \leq V_a^b(f')$. This completes the proof.

3. Some properties of Q operators. In this section we suppose that there are given an interval $[a, b]$ and a Q operator T over $[a, b]$.

Lemma 3.1a. Suppose that f is a real number and y and z are quasi-continuous functions such that $y(s - t) = z(s - t)$ if $a \leq t \leq b$. Then $Ty(s) = Tz(s)$.

Proof. Let $w = y - z$. By (ii) and (iii) of Definition 1.1, $Ty(s) - Tz(s) = Tw(s)$. But $w(s - t) = 0$ if $a \leq t \leq b$; and by (v) of Definition 1.1, if $\epsilon > 0$ then $\| Tw(s) \| \leq \epsilon \| T(s) \|$; hence $Tw(s) = 0$, or $Ty(s) = Tz(s)$. This completes the proof.

Theorem 3.1. If s is a real number, then $\| T(s) \| = \| T(0) \|$.

Proof. Suppose that s is a real number. Now if y is quasi-continuous and $z(t) = y(t - s)$ for each real number t, then $z(s - t) = y(-t)$ for each number t in $[a, b]$; by Lemma 3.1a and (iv) of Definition 1.1, $Tz(s) = Ty(0)$. It follows from (v) of Definition 1.1 that $\| T(s) \| = \| T(0) \|$. This completes the proof.

Remark. In view of Theorem 3.1, we shall hereafter refer to the norm of T as $\| T \|$; i.e., if s is a real number, then $\| T \| = \| T(s) \|$.

Theorem 3.2. If $a < c < b$, then there are a Q operator T_1 over $[a, c]$ and a Q operator T_2 over $[c, b]$ such that

(i) if y is quasi-continuous then $Ty = T_1y + T_2y$, and

(ii) $\| T_1 \| + \| T_2 \| \leq \| T \|$.

Proof. If y is quasi-continuous and s is a real number, then we define numbers $T_1y(s)$ and $T_2y(s)$ in the following manner. Let $u(s - t) = 0$ if $t > c$ and $u(s - t) = y(s - t)$ if $t \leq c$ and let $T_1y(s) = Tu(s)$. Let $v(s - t) = y(s - t)$ if $t > c$ and $v(s - t) = 0$ if $t \leq c$; and let $T_2y(s) = Tv(s)$. By Definition 1.1, T_1 is a Q operator over $[a, c]$, and T_2 is a Q operator over $[c, b]$; moreover, if y is quasi-continuous, then $T_1y + T_2y = Ty$.

We now show that $\| T_1 \| + \| T_2 \| \leq \| T \|$. Suppose that $\epsilon > 0$, s is a real number and y is a quasi-continuous function such that $\| T_y(s) \| > \| T \| - \epsilon$ and $\| y(s - t) \| \leq 1$ for each number t in $[a, b]$. Now $\| T_1 \| + \| T_2 \| \leq \| T_y(s) \| + \| T_2y(s) \| \leq \| T_1y(s) + T_2y(s) \| = \| Ty(s) \| > \| T \| - \epsilon$. Hence $\| T_1 \| = T_1 + \| T_2 \| \leq \| T \|$.

Finally we show that $\| T_1 \| + \| T_2 \| \leq \| T \|$. Suppose that $\epsilon > 0$, s is a real
number, and \(z \) is a quasi-continuous function such that \(T_1 z(s) = |T_1 z(s)| > |T_1| - \epsilon, T_2 z(s) = |T_2 z(s)| > |T_2| - \epsilon, \) and \(|z(s - t)| \leq 1 \) if \(t \) is in \([a, b]\). Now \(|T| \geq |T_1| + |T_2| \). This completes the proof.

Lemma 3.3a. There is a number sequence \(c_1, c_2, c_3 \) such that if \(s \) is a real number and \(y \) is a step-function such that \(y(s - p) = y(s - q) \) for each pair \(p, q \) of numbers between \(a \) and \(b \), then \(Ty(s) = c_1 y(s - b) + c_2 y(s - b +) + c_3 y(s - a) \); moreover, \(|T| \geq |c_1| + |c_2| + |c_3| \).

Proof. Let functions \(u, v, w \) be defined as follows:

\[
 u(-t) = 1 \text{ if } t \geq b \text{ and } u(-t) = 0 \text{ if } t < b;
\]

\[
 v(-t) = 1 \text{ if } a < t < b \text{ and } v(-t) = 0 \text{ if } t \geq b \text{ or } t \leq a; \text{ and}
\]

\[
 w(-t) = 1 \text{ if } t \leq a \text{ and } w(-t) = 0 \text{ if } t > a.
\]

Let \(c_1 = Tu(0), c_2 = Tv(0), \) and \(c_3 = Tw(0) \). Now if \(s \) is a real number, \(a \leq t \leq b \), and \(y \) is a step-function such that \(y(s - p) = y(s - q) \) for each pair \(p, q \) of numbers between \(a \) and \(b \), then \(y(s - t) = y(s - b)u(-t) + y(s - b +)v(-t) + y(s - a)w(-t) \), and therefore \(Ty(s) = c_1 y(s - b) + c_2 y(s - b +) + c_3 y(s - a) \).

Now let \(d_1, d_2, d_3 \) denote a number sequence such that \(|d_1| = |d_2| = |d_3| = 1 \) and \(c_1 d_1 \geq 0, c_2 d_2 \geq 0, \) and \(c_3 d_3 \geq 0 \). For each real number \(t \), let \(z(t) = d_1 u(t) + d_2 v(t) + d_3 w(t) \). Now if \(a \leq t \leq b \), then \(|z(-t)| = 1 \), so that \(|Tz(0)| \leq |T| \); but \(Tz(0) = c_1 d_1 + c_2 d_2 + c_3 d_3 = |c_1| + |c_2| + |c_3| \); so \(|T| \geq |c_1| + |c_2| + |c_3| \). This completes the proof.

Lemma 3.3b. Suppose that \(t_0, t_1, \ldots, t_{2n} \) is a subdivision of \([a, b]\). There is a number sequence \(c_0, c_1, \ldots, c_{2n} \) such that if \(s \) is a real number and \(y \) is a step-function such that \(y(s - p) = y(s - q) \) for each pair \(p, q \) of numbers between \(t_i \) and \(t_{i+2}, i = 0, 1, \ldots, n - 1 \), then \(Ty(s) = \sum_{i=0}^{2n} c_i y(s - t_i) \); moreover, \(|T| \geq \sum_{i=0}^{2n} |c_i| \).

Proof. is omitted, since this lemma follows from Theorem 3.2 and Lemma 3.3a.

Lemma 3.3c. If \(y \) is a step-function and \([c, d]\) is an interval, then \(Ty \) is of bounded variation in \([c, d]\), and \(V^*_c(Ty) \leq |T| \cdot V^*_{c-y}(y) \).

Proof. Let \(s_0, s_1, \ldots, s_m \) denote a subdivision of \([c, d]\). Let \(t_0, t_1, \ldots, t_{2n} \) denote a subdivision of \([a, b]\) such that if \(j \) is one of the integers \(0, 1, \ldots, m \), and \(i \) is one of the integers \(0, 1, \ldots, n - 1 \), and \(p \) and \(q \) are numbers between \(t_i \) and \(t_{i+2}, n - 1 \), then \(y(s_j - p) = y(s_j - q) \). By Lemma 3.3b, there is a number sequence \(c_0, c_1, \ldots, c_{2n} \) such that \(Ty(s_j) = \sum_{i=0}^{2n} c_i y(s_j - t_i) \) for \(j = 0, 1, \ldots, m \), and \(|T| \geq \sum_{i=0}^{2n} |c_i| \). Now if \(j \) is one of the integers \(0, 1, \ldots, m - 1 \), then \(Ty(s_j + 1) - Ty(s_j) = \sum_{i=0}^{2n} c_i [y(s_{j+1} - t_i) - y(s_j - t_i)] \). Hence
\[\sum_{j=0}^{m-1} | Ty(s_{j+1}) - Ty(s_j) | = \sum_{j=0}^{m-1} \left| \sum_{i=0}^{2n} c_i [y(s_{j+1} - t_i) - y(s_j - t_i)] \right| \leq \sum_{j=0}^{m-1} \sum_{i=0}^{2n} | c_i | \cdot | y(s_{j+1} - t_i) - y(s_j - t_i) | \leq \sum_{i=0}^{2n} | c_i | \cdot | V_{c-t_i}^d(y) \leq | T | \cdot V_{c-b}^{d-a}(y). \]

The lemma now follows at once.

Theorem 3.3. If \(y \) is quasi-continuous, then \(Ty \) is quasi-continuous; if \(y \) is of bounded variation, then \(Ty \) is of bounded variation; if \(y \) is continuous, then \(Ty \) is continuous.

Proof. Suppose first that \(y \) is quasi-continuous. Let \(y_1, y_2, y_3, \ldots \) denote a sequence of step-functions which converges uniformly to \(y \). By (v) of Definition 1.1, \(Ty_1, Ty_2, Ty_3, \ldots \) converges uniformly to \(Ty \). Now if \([c, d]\) is an interval and \(n \) is a positive integer, then by Lemma 3.3c, \(Ty_n \) is of bounded variation in \([c, d]\). Hence each of the functions \(Ty_1 \) is quasi-continuous; by Lemma 2.3, \(Ty \) is quasi-continuous.

Suppose now that \(y \) is of bounded variation, and that \([c, d]\) is an interval, and \(V \geq V_{c-b}^d(y) \). Let \(y_1, y_2, y_3, \ldots \) denote a sequence of step-functions converging uniformly to \(y \) such that \(V_{c-q}^d(y_n) \leq V, \quad n = 1, 2, 3, \ldots \). Then \(Ty_1, Ty_2, Ty_3, \ldots \) is a sequence of functions converging to \(Ty \) uniformly, and \(V_{c-b}(Ty_n) \leq | T | V \) for \(n = 1, 2, 3, \ldots \). By Lemma 2.4, \(V_{c-b}(Ty) \leq | T | V \); hence \(Ty \) is of bounded variation.

Suppose, finally, that \(y \) is continuous and that \([c, d]\) is an interval. Let \(\varepsilon \) denote a positive number, and let \(\delta \) denote a positive number such that if \(c - b \leq p < q \leq d - a \) and \(q - p < \delta \), then \(| y(p) - y(q) | < \varepsilon \). Now suppose that \(c \leq s_1 < s_2 < d \) and \(s_2 - s_1 < \delta \). If \(a \leq t \leq b \), then \(| y(s_1 - t) - y(s_2 - t) | < \varepsilon \); so \(| Ty(s_1) - Ty(s_2) | < \varepsilon | T | \). Hence \(Ty \) is continuous. This completes the proof.

Corollary 3.3a. If \(T_1 \) is a Q operator over the interval \([a_1, b_1]\) and \(T_2 \) is a Q operator over the interval \([a_2, b_2]\), and \(T_3y = T_1(T_2y) \) for each quasi-continuous function \(y \), then \(T_3 \) is a Q operator over the interval \([a_1 + a_2, b_1 + b_2]\), and \(| T_3 | \leq | T_1 | \cdot | T_2 | \).

Proof. By Theorem 3.3, if \(y \) is quasi-continuous, then so is \(T_2y \); therefore \(T_3y \) is a function. It can readily be verified that \(T_3 \) has the properties listed as (ii), (iii), and (iv) in Definition 1.1. Let \(s \) denote a real number, suppose that \(y \) is quasi-continuous, and that \(M \geq | y(s - t) | \) if \(a_1 + a_2 \leq t \leq b_1 + b_2 - a_2 \). Now if \(a_1 \leq a_2 \leq b_2 \), then \(a_1 + a_2 \leq s_1 + t \leq b_1 + b_2 \); hence \(| y(s - s_1 - t) | \leq M \) if \(a_1 \leq s_1 \leq b_1 \) and \(a_2 \leq t \leq b_2 \), so that \(| T_3y(s - s_1) | \leq | T_2 | M \) if \(a_1 \leq s_1 \leq b_1 \), and therefore \(| T_3y(s) | \leq | T_1 | \cdot | T_2 | M \). Hence \(T_3 \) is a Q operator over \([a_1 + a_2, b_1 + b_2]\).
1958] LINEAR OPERATORS ON QUASI-CONTINUOUS FUNCTIONS 385

Example 3.1. We give an example of Corollary 3.3a for which $|T_3| < |T_1| \cdot |T_2|$. Suppose that if y is quasi-continuous and s is a real number, then $T_1y(s) = [y(s^-) + y(s^+)]/2$ and $T_2y(s) = [y(s) - y(s^-)]/2$. Then $T_3y(s) = [y(s^-) - y(s^+)])/4$. Hence $|T_1| = 1$, $|T_2| = 1$, and $|T_3| = 1/2$.

4. Integral representation of Q operators. In this section we suppose that there are given an interval $[a, b]$ and a Q operator over $[a, b]$. We introduce the following notation:

$J(t) = 0$ if $t < 0$ and $J(t) = 1$ if $t \geq 0$,

$L(s) = TJ_L(s) \quad$ and $R(s) = TJ_R(s) = TJ(s)$ for each real number s,

$x_1(t) = 2L(t) - L(t^-)$ and $x_2(t) = 2R(t) - R(t^+)$ for each real number t.

We note in passing that $L(t) = [x_1(t^-) + x_1(t)]/2$ and $R(t) = [x_2(t) + x_2(t^+)])/2$.

Lemma 4.1a. $R(s) = L(s) = L(a) = 0$ if $s < a$; and $R(s) = L(s) = R(b)$ if $s > b$. Moreover, $R(s^-) = L(s^-)$ and $R(s^+) = L(s^+)$ for each real number s.

Proof. If $s < a$ and $a \leq t \leq b$, then $s - t < 0$, so that $J_L(s-t) = J_R(s-t) = 0$, and therefore $L(s) = R(s) = L(a) = 0$. If $s > b$ and $a \leq t \leq b$, then $s - t > 0$, so that $J_L(s-t) = J_R(s-t) = J_R(b-t) = 1$, and therefore $L(s) = R(s) = R(b)$.

Suppose now that s is a real number. Let s_1, s_2, s_3, \cdots denote a decreasing sequence which converges to s. Let a_1, a_2, a_3, \cdots denote a number sequence such that if p is a positive integer then $|a_p| = 1$ and $a_p[R(s_p) - L(s_p)] \geq 0$. For each positive integer n, let f_n denote the step-function such that if t is a real number then $f_n(t) = \sum_{p=1}^{a_p}[J_L(s_p + t) - J_L(s_p + t)]$. Then $Tf_n(0) = \sum_{p=1}^{a_p} |R(s_p) - L(s_p)|$. But if $a \leq t \leq b$, then $|f_n(-t)| \leq 1$, whence $|Tf_n(0)| \leq |T|$. Hence $\sum_{p=1}^{a_p} |R(s_p) - L(s_p)|$ converges, and therefore $|R(s_p) - L(s_p)| \to 0$ as $p \to +\infty$. It follows that $R(s) = L(s^+)$. By a similar argument, if s is a real number, then $R(s^-) = L(s^-)$. This completes the proof.

Lemma 4.1b. If s is a real number, then

$L(s) = \int_a^{b+} J_L(s - t)dx_1(t)$

and

$R(s) = \int_a^{b} J_R(s - t)dx_2(t)$.

Proof. By Lemma 4.1a, $x_1(t) = x_2(t) = x_1(a) = 0$ if $t < a$; and $x_1(t) = x_2(t) = x_2(b)$ if $t > b$. Moreover, by Theorem 3.3, R and L are of bounded variation, and therefore x_1 and x_2 are of bounded variation. Suppose that s is a real number and p is a positive number such that $p > s - b$ and $p > a - s$. Then $\int_a^{b+} J_L(s - t)dx_1(t) = \int_a^{b+} J_L(s - t)dx_1(t)$. By the integration by parts formula,
\[\int_{a-p}^{b+p} J_L(s - t)dx_1(t) = J_L(s - b - p)x_1(b + p) - J_L(s - a + p)x_1(a - p) \]
\[- \int_{a-p}^{b+p} x_1(t)dJ_L(s - t), \]
or
\[\int_{a}^{b+p} J_L(s - t)dx_1(t) = [x_1(s-) + x_1(s)]/2 = L(s). \]

By a similar argument,
\[\int_{a-p}^{b} J_R(s - t)dx_2(t) = [x_2(s) + x_2(s+)]/2 = R(s). \]

Theorem 4.1. Suppose that \(y \) is quasi-continuous and \(s \) is a real number. Let \(g \) and \(h \) denote quasi-continuous functions such that \(g_L = g, h_R = h, \) and \(g + h = y. \) Then

\[T^y(s) = \int_{a}^{b+p} g(s - t)dx_1(t) + \int_{a-p}^{b} h(s - t)dx_2(t). \]

Proof. If \(g \) is a step-function, it follows from Lemma 4.1b that \(Tg(s) = \int_{a}^{b+p} g(s - t)dx_1(t); \) if \(g \) is not a step-function, it follows from Lemmas 2.3 and 4.1b of the present paper and Lemma 4.1a of \([1]\) that \(Tg(s) = \int_{a}^{b+p} g(s - t)dx_1(t). \) Similarly, \(Th(s) = \int_{a-p}^{b} h(s - t)dx_2(t). \) The theorem now follows from (ii) of Definition 1.1.

Remark 4.1. Upon comparing Theorem 4.1 with (v) of Definition 1.1, one might suppose that \(x_1(b+) = x_1(b) \) and \(x_2(a-) = x_2(a). \) To show that this need not be so, we give the following example. For each quasi-continuous function \(y \) and real number \(s, \) let \(Ty(s) = [y(s) + y(s-1)]/2, \) so that \(T \) is a \(Q \) operator over \([0, 1].\) For this example,

\[x_1(t) = \begin{cases} 0 & \text{if } t \leq 0, \\ 1/2 & \text{if } 0 < t \leq 1, \\ 1 & \text{if } t > 1. \end{cases} \]
\[x_2(t) = \begin{cases} 0 & \text{if } t < 0, \\ 1/2 & \text{if } 0 \leq t < 1, \\ 1 & \text{if } t \geq 1. \end{cases} \]

Theorem 4.2. Suppose that \([c, d]\) is an interval and \(u_1 \) and \(u_2 \) are functions of bounded variation such that

(i) \(u_1(t) = u_2(t) = u_1(c) = 0 \) if \(t < c, \)
(ii) \(u_1(t) = u_2(t) = u_2(d) \) if \(t > d, \) and
(iii) \(u_1(t-) = u_2(t-) \) and \(u_1(t+) = u_2(t+) \) for each real number \(t. \)

If \(s \) is a real number and \(g \) and \(h \) are quasi-continuous functions such that \(g_L = g \) and \(h_R = h, \) let \(Ug(s), Uh(s), \) and \(Uy(s), \) where \(y = g + h, \) denote the numbers \(\int_c^{d+} g(s - t)du_1(t), \int_c^{d-} h(s - t)du_2(t), \) and \(Ug(s) + Uh(s), \) respectively. Then \(U \) is a
Proof. We show first that if \(y \) is quasi-continuous, then there is just one function which is \(Uy \). Suppose that \(y \) is quasi-continuous and that \(g, h, p, q \) is a sequence of quasi-continuous functions such that \(g_L = g, h_R = h, p_L = p, q_R = q \), \(g + h = y \), and \(p + q = y \). Suppose that \(f = g - p \); then \(f_L = f \). But \(f = q - h \), and therefore \(f_R = f \); so \(f \) is continuous. Now if \(s \) is a real number, then

\[
\int_{s-\infty}^{s+\infty} f(s-t)du_1(t) - \int_{s-\infty}^{s+\infty} f(s-t)du_2(t) = \int_{s-\infty}^{s+\infty} f(s-t)d[u_1(t) - u_2(t)].
\]

Since \(f \) is continuous, \(u_1 - u_2 \) is of bounded variation, and \(u_1 - u_2 \) is zero except for a countable subset of \([c, d] \), it follows that \(\int_{s-\infty}^{s+\infty} f(s-t)d[u_1(t) - u_2(t)] = 0 \), so that \(\int_{s-\infty}^{s+\infty} f(s-t)du_1(t) = \int_{s-\infty}^{s+\infty} f(s-t)du_2(t) \), or \(\int_{s-\infty}^{s+\infty} g(s-t)du_1(t) - \int_{s-\infty}^{s+\infty} p(s-t)du_1(t) = \int_{s-\infty}^{s+\infty} h(s-t)du_2(t) - \int_{s-\infty}^{s+\infty} q(s-t)du_2(t) \), or \(Ug(s) - Up(s) = Uq(s) - Uh(s) \). Hence \(Ug(s) + Uh(s) = Up(s) + Uq(s) \); i.e., there is just one function which is \(Uy \). Moreover, if \(|y(s-t)| \leq M < M_1 \) for each number \(t \) in \([c, d] \), then by Lemma 2.5 the functions \(p \) and \(q \) may be chosen so that \(|p(s-t)| \leq 1.5M_1 \) and \(|q(s-t)| \leq 1.5M_1 \) for each number \(t \) in \([c, d] \); so by Theorem 2.1 of [1], \(|Uy(s)| \leq 1.5M_1 [V_{d+}^e(u_1) + V_{d-}^e(u_2)] \). The theorem now follows from Definition 1.1 and the properties of integrals (cf. Theorem 2.1 of [1]).

Remark 4.2. Compare Theorem 4.1 with the representation given in [2]; for an expression for the norm \(|T| \), see [6].

5. \(Q_1 \) operators. In this section, we show that if \(T \) is a \(Q_1 \) operator and \(y \) is a quasi-continuous function, then \(Ty \) is an integral; and we obtain a condition sufficient for the product of two \(Q_1 \) operators to be a \(Q_1 \) operator.

Theorem 5.1. For \(T \) to be a \(Q_1 \) operator over the interval \([a, b] \) it is necessary and sufficient that there is a function \(x \) such that

(i) \(x \) is of bounded variation, \(x(t) = 0 \) if \(t \leq a \), \(x(t) = x(b) \) if \(t > b \), and

(ii) if \(y \) is quasi-continuous and \(s \) is a real number, then

\[
Ty(s) = \int_{a}^{b} y(s-t)dx(t).
\]

Proof. A. Suppose that \(T \) is a \(Q_1 \) operator over \([a, b] \), and let \(R, L, x_1, \) and \(x_2 \) be defined as in §4. By Definition 1.2, \(R(s+) - R(s-) = 2[R(s) - L(s)] \) for each real number \(s \); and by Lemma 1.4a, \(R(s-) = L(s-) \), so that \(2R(s) - R(s+) = 2L(s) - L(s-) \), or \(x_2(s) = x_1(s) \) for each real number \(s \). It follows from Theorem 3.3 that \(x_1 \) is of bounded variation, from Lemma 4.1a that \(x_1(t) = 0 \) if \(t \leq a \) and \(x_1(t) = x_1(b) \) if \(t > b \), and from Theorem 4.1 that \(Ty(s) = \int_{a}^{b} y(s-t)dx(t) \) for each quasi-continuous function \(y \) and real number \(s \).

B. Suppose that \(x \) is a function such that (i) and (ii) of the theorem are true. By Theorem 4.2, \(T \) is a \(Q \) operator over \([a, b] \). Let \(L \) and \(R \) be defined as in §4. Now if \(s \) is a real number, then \(R(s) = [x(s) + x(s+)]/2 \) and \(L(s) = [x(s-) + x(s)]/2 \), whence \(2R(s) - R(s+) = 2L(s) - L(s-) = x(s) \); since \(R(s+) = L(s+) \) and \(R(s-) = L(s-) \), it follows that \(R(s+) - R(s-) = 2[R(s) - L(s)] \) and \(L(s+) - L(s-) = 2[R(s) - L(s)] \). Now if \(y \) is a step-function and \(s \) is a real number, then there are a number sequence \(a_1, a_2, \ldots, a_{2n} \) and a real-number sequence \(t_1, t_2, \ldots, t_n \) such that
\[y(s - t) = \sum_{p=1}^{n} \left[a_{2p-1} J_R(s - t_p - t) + a_{2p} J_L(s - t_p - t) \right] \text{ if } a \leq t \leq b; \]

hence \(T y(s) = \sum_{p=1}^{n} \left[a_{2p-1} R(s - t_p) + a_{2p} L(s - t_p) \right], \) so that \(T y(s) = 2 \left[T y_R(s) - T y_L(s) \right]. \) It now follows from Lemmas 2.1, 3.3c, and 2.3 that if \(y \) is quasi-continuous and \(s \) is a real number, then \(T y(s+) - T y(s-) = 2 \left[T y_R(s) - T y_L(s) \right]. \) Hence \(T \) is a \(Q_1 \) operator over \([a, b]\). This completes the proof.

Remark 5.1. If \(T \) is a \(Q_1 \) operator over an interval \([a, b]\) then there is just one function \(x \) such that

(i) \(x(a) = 0 \) and

(ii) if \(y \) is quasi-continuous and \(s \) is a real number, then \(T y(s) = \int_{a}^{s} y(t) dt \). Moreover, \(x \) is of bounded variation.

Theorem 5.2. Suppose that \(U \) is a \(Q_1 \) operator over the interval \([a, b]\), \(V \) is a \(Q_1 \) operator over the interval \([c, d]\), and \(T y = U(V y) \) for each quasi-continuous function \(y \). Let \(u \) and \(v \) denote the functions such that \(u(a) = v(c) = 0 \) and \(U y(s) = \int_{a}^{s} y(t) dt \) and \(V y(s) = \int_{c}^{s} y(t) dt \) if \(y \) is quasi-continuous and \(s \) is a real number. If \(u_L = u_R \) or \(v_L = v_R \), then \(T \) is a \(Q_1 \) operator over \([a+c, b+d]\).

Proof. By Corollary 3.3a, \(T \) is a \(Q \) operator over \([a+c, b+d]\). Suppose that \(u_L = u_R \) or \(v_L = v_R \). Let \(R \) and \(L \) denote the functions \(T J_R \) and \(T J_L \), respectively. Now \(V J_L = (v_L + v)/2 \) and \(V J_R = (v + v_R)/2 \); hence if \(s \) is a real number, then \(2L(s) = \int_{a}^{s} [v_L(s-t) + v(s-t)] du(t) \) and \(2R(s) = \int_{a}^{s} [v(s-t) + v_R(s-t)] du(t) \), so that \(2[R(s) - L(s)] = \int_{a}^{s} [v_R(s-t) - v_L(s-t)] du(t) \). Since \(v \) is of bounded variation, so is \(v_R - v_L \); and if \(v_R \neq v_L \), then there is a countable real-number set \(K \) such that \(v_R(t) \neq v_L(t) \) if and only if \(t \) is in \(K \). Since \(u \) is of bounded variation, it follows from Theorem 3.1 of [1] and Lemma 4.2a of [1] that

\[4[R(s) - L(s)] = \sum_{(i)} [v_R(s - t) - v_L(s - t)] [u(t) - u(t-)] \]

\[+ \sum_{(i)} [v_R(s - t) - v_L(s - t)] [u(t+) - u(t)] \]

\[= \sum_{(i)} [v_R(s - t) - v_L(s - t)] [u_R(t) - u_L(t)]. \]

But by hypothesis, \(v_R = v_L \) or \(u_R = u_L \); hence \(R = L \).

Now \(2L = U(v_L + v) \), where \(U \) is a \(Q_1 \) operator; hence if \(s \) is a real number, then

\[2[L(s+) - L(s-)] = 4[U v_R(s) - U v_L(s)]. \]

But \(U v_R - U v_L = U(v + v_R) - U(v_L + v) = 2(R - L) = 0 \). Hence if \(s \) is a real number then \(L(s+) - L(s-) = 0 \); and by Lemma 4.1a, \(R(s+) = L(s+) \) and \(R(s-) = L(s-) \); hence \(R(s+) - R(s-) = 2[R(s) - L(s)] = 0 \). By the argument in part B of the proof of Theorem 5.1, it follows that \(T \) is a \(Q_1 \) operator over \([a+c, b+d]\). This completes the proof.
6. \(Q_1\) operators having specified properties. In this section we suppose that \(T\) is a \(Q_1\) operator over an interval \([a, b]\), and that \(x\) is the function of bounded variation such that \(x(t) = 0\) if \(t \leq a\), \(x(t) = x(b)\) if \(t > b\), and \(Ty(s) = \int_0^s y(s-t)dx(t)\) if \(y\) is quasi-continuous and \(s\) is a real number. We shall obtain conditions on \(x\) which are sufficient to assure that \(T\) has various ones of the properties described in the following definition.

Definition 6.1. (i) The statement that \(T\) is symmetric means that if \(y\) is quasi-continuous and \(z(t) = y(-t)\) for each real number \(t\), then \(Tz(s) = Ty(-s)\) for each real number \(s\).

(ii) The statement that \(T\) has property B means that if \(y\) is quasi-continuous, then \(Ty\) is of bounded variation.

(iii) The statement that \(T\) has property C means that if \(y\) is quasi-continuous, then \(Ty\) is continuous.

(iv) The statement that \(T\) has property D means that (a) if \(y\) is quasi-continuous, then \(Ty\) has a derivative, and (b) there is a positive number \(N\) such that if \(y\) is quasi-continuous, \(s\) is a real number, and \(M \geq |y(s-t)|\) for each number \(t\) in \([a, b]\), and \(g = Ty\), then \(|g'(s)| \leq MN\).

(v) If \(K\) is a set of quasi-continuous functions, then the statement that the members of \(K\) are invariant under \(T\) means that if \(y\) is in \(K\) then \(Ty = y\).

Theorem 6.1. For \(T\) to be symmetric, it is necessary and sufficient that \(x(-t) - x(0) = x(0) - x(t)\) for each real number \(t\).

Proof. A. Suppose that \(T\) is symmetric. If \(y\) is quasi-continuous, and \(z(t) = y(-t)\) for each real number \(t\), then \(Tz(0) = Ty(0)\), or \(\int_{-\infty}^\infty z(-t)dx(t) = \int_{-\infty}^\infty y(-t)dx(t)\), or \(\int_{-\infty}^\infty [y(t) - y(-t)]dx(t) = 0\). Hence if \(f\) is an odd quasi-continuous function, then \(\int_{-\infty}^\infty f(t)dx(t) = 0\). Suppose that if \(p > 0\) then

\[
 f_p(t) = \begin{cases}
 0 & \text{if } t < -p, \text{ or } t = 0 \text{ or } t > p, \\
 -1 & \text{if } -p \leq t < 0, \\
 1 & \text{if } 0 < t \leq p.
\end{cases}
\]

Since \(f_p\) is an odd function, it follows that \(\int_{-\infty}^\infty f_p(t)dx(t) = 0\). Integration by parts gives the equation \(\int_{-\infty}^\infty x(t)df_p(t) = 0\). By Theorem 3.1 of [1],

\[
 [x(-p-) - x(0)] + [x(-p) - x(0)] - [x(0-) - x(0)] - [x(0+) - x(0)]
 + [x(p) - x(0)] + [x(p+) - x(0)] = 0
\]

for each positive number \(p\). Consequently, upon considering a sequence of positive numbers \(p_1, p_2, p_3, \ldots\) which converges to zero, we conclude that \(x(0-) - x(0) = x(0) - x(0+)\). By a similar argument, if \(p > 0\), then \(x(-p-) - x(0) = x(0) - x(p+)\); hence \(x(-p) - x(0) = x(0) - x(p)\).

B. Suppose that \(x(-t) - x(0) = x(0) - x(t)\) for each real number \(t\). Suppose that \(y\) is quasi-continuous, \(z(t) = y(-t)\) for each real number \(t\), and \(s\) is a real number. Then
\[Tz(s) = \int_{-\infty}^{+\infty} z(s - t)dx(t) = \int_{-\infty}^{+\infty} z(s + t)dx(-t) \]
\[= \int_{+\infty}^{\infty} y(-s - t)d[x(-t) - x(0)] \]
\[= -\int_{+\infty}^{\infty} y(-s - t)d[x(t) - x(0)] = \int_{-\infty}^{+\infty} y(-s - t)dx(t) = Ty(-s). \]

This completes the proof.

Theorem 6.2. Suppose that if \([c, d]\) is an interval then there is a positive number \(N\) such that if \(s_0, s_1, \cdots, s_m\) is a subdivision of \([c, d]\) and \(t_0, t_1, \cdots, t_n\) is a subdivision of \([a - d, b - c]\), then
\[m-1 n-1 \sum \sum |x(s_{i+1} + t_{j+1}) - x(s_{i+1} + t_j) - x(s_i + t_{j+1}) + x(s_i + t_j)| \leq N. \]

Then \(T\) **has property B.**

Proof. Suppose that \(y\) is quasi-continuous, \([c, d]\) is an interval, and \(M \geq |y(s - t)|\) if \(s\) is in \([c, d]\) and \(t\) is in \([a, b]\). Let \(s_0, s_1, \cdots, s_m\) denote a subdivision of \([c, d]\), and suppose that \(\epsilon > 0\). Now if \(s\) is a real number, then \(Ty(s) = \int_{-\infty}^{+\infty} y(s - t)dx(t) = \int_{-\infty}^{+\infty} y(-t)dx(s + t)\); hence if \(I\) denotes the sum \(\sum_{i=0}^{m-1} Ty(s_{i+1}) - Ty(s_i)\), then \(I = \sum_{i=0}^{m-1} \int_{-\infty}^{+\infty} y(-t)d[x(s_{i+1} + t) - x(s_i + t)]\).

Let \(t_0, t_1, \cdots, t_n\) denote a subdivision of \([a - d, b - c]\) such that if \(i\) is one of the integers 0, 1, \cdots, \(m-1\), then
\[\int_{-\infty}^{+\infty} y(-t)d[x(s_{i+1} + t) - x(s_i + t)] \]
\[- 2^{-1} \sum_{j=0}^{n-1} [y(-t_j) + y(-t_{j+1})][x(s_{i+1} + t_{j+1}) - x(s_i + t_{j+1})] \]
\[- x(s_{i+1} + t_j) + x(s_i + t_j)] < \epsilon/m. \]

Now \(|y(-t)| \leq M\) if \(a - d \leq t \leq b - c\); hence \(I < MN + \epsilon\), and consequently \(V^* (Ty) \leq MN\). This completes the proof.

Corollary 6.2a. If \(x\) has a derivative which is of bounded variation, then \(T\) **has property B.**

Proof. Suppose that \([c, d]\) is an interval. If \(D\) is a subdivision \(s_0, s_1, \cdots, s_m\) of \([c, d]\) and \(E\) is a subdivision \(t_0, t_1, \cdots, t_n\) of \([a - d, b - c]\), let \(S(D, E)\) denote the sum \(\sum_{i=0}^{m-1} \sum_{j=0}^{n-1} x(s_{i+1} + t_{j+1}) - x(s_{i+1} + t_j) - x(s_i + t_{j+1}) + x(s_i + t_j)\). Suppose that \(D\) and \(E\) are such subdivisions and that \(\epsilon > 0\). By hypothesis, \(x'\) is of bounded variation and (by Lemma 2.7) is therefore continuous; moreover, \(x'(t) = 0\) if \(t < a\) or \(t > b\). Hence there is a positive number \(\delta\) such that if
\(p\) and \(q\) are real numbers and \(|p - q| < \delta\), then \(|x'(p) - x'(q)| < \epsilon\). Let \(u_0, u_1, \ldots, u_r\) denote a refinement \(E'\) of \(E\) such that \(u_{j+1} - u_j < \delta, j = 0, 1, \ldots, r - 1\). Now

\[
S(D, E') = \sum_{i=0}^{m-1} \sum_{j=0}^{r-1} \left| \frac{x(s_{i+1} + u_{j+1}) - x(s_{i+1} + u_j)}{u_{j+1} - u_j} \right| \left| \frac{x(s_i + u_{j+1}) - x(s_i + u_j)}{u_{j+1} - u_j} \right| (u_{j+1} - u_j);
\]

and by Lemma 2.6,

\[
S(D, E') < 2\left[(b - c) - (a - d) \right] \epsilon (2)^{1/2} + \sum_{i=0}^{m-1} \sum_{j=0}^{r-1} \left| x'(s_{i+1} + u_j) - x'(s_i + u_j) \right| (u_{j+1} - u_j)
\]

\[
< 2\left[(b - c) - (a - d) \right] \epsilon (2)^{1/2} + \sum_{j=0}^{r-1} (u_{j+1} - u_j) V^+_{\infty}(x')
\]

\[
< \left[(b - c) - (a - d) \right] [2\epsilon (2)^{1/2} + V^+_{\infty}(x')].
\]

But since \(E'\) is a refinement of \(E\), it follows that \(S(D, E) \leq S(D, E')\). Consequently, \(S(D, E) \leq \left[(b - c) - (a - d) \right] V^+_{\infty}(x')\). By Theorem 6.2, \(T\) has property B. This completes the proof.

Theorem 6.3. For \(T\) to have property C, it is necessary and sufficient that \(x\) is continuous.

Proof. Suppose that \(T\) has property C; then \(TJL\) is continuous and \(TJR\) is continuous. Since \(TJL = (x_L + x)/2\) and \(TJR = (x + x_R)/2\), it follows that \(x\) is continuous. Suppose now that \(x\) is continuous and that \(\epsilon > 0\). Since \(x(t) = 0\) if \(t \leq a\) and \(x(t) = x(b)\) if \(t > b\), there is a positive number \(\delta\) such that if \(p\) and \(q\) are real numbers and \(|p - q| < \delta\), then \(|x(p) - x(q)| < \epsilon\). Now if \(s_1\) and \(s_2\) are two real numbers and \(|s_1 - s_2| < \delta\), and \(g(t) = x(s_1 + t) - x(s_2 + t)\) for each real number \(t\), then \(|g(t)| < \epsilon\) for each real number \(t\), and \(V^+_{\infty}(g) \leq 2V^+_{\infty}(x)\). Suppose that \(y\) is quasi-continuous, \(s_1\) is a real number, and \([c, d]\) is an interval containing \(s_1\). If \(s_2\) is in \([c, d]\), then \(|T_y(s_1) - T_y(s_2)| = \int_{s_1}^{s_2} \frac{d}{dt} \int_{x(s_1 + t)}^{x(s_2 + t)} dx'(t)|\); so by Lemma 4.2a of [1], \(T_y(s_2) - T_y(s_1)\) as \(s_2 \to s_1\). That is to say, \(T\) is continuous, or \(T\) has property C. This completes the proof.

Theorem 6.4. For \(T\) to have property D, it is necessary and sufficient that \(x\) has a derivative which is of bounded variation. Moreover, if \(T\) has property D, \(y\) is quasi-continuous, and \(g = Ty\), then \(g'\) is continuous, and \(g'(s) = \int_{s-t}^{s} y(s-t) dx'(t)\) for each real number \(s\).

Proof. A. Suppose that \(T\) has property D. If \(y\) is quasi-continuous and \(g = Ty\), let \(Uy\) denote the function \(g'\). It follows from Definition 1.1 and (iv) of
Definition 6.1 that \(U \) is a \(Q \) operator over \([a, b]\). By Theorem 3.3, if \(y \) is quasi-
continuous, then \(Uy \) is quasi-continuous; and by Lemma 2.7, \(Uy \) is continu-
iuous; i.e., if \(y \) is quasi-continuous and \(g = Ty \), then \(g' \) is continuous. In par-

ticular, \(UJ_R \) and \(UJ_L \) are continuous; so by Lemma 4.1a, \(UJ_R = UJ_L \), and it
follows that \(U \) is a \(Q_1 \) operator over \([a, b]\). Let \(u \) denote the function \(UJ \).

If \(y \) is quasi-continuous and \(s \) is a real number, then \(Uy(s) = \int_a^s y(s-t)du(t) \). But
if \(R = TJ_R \), then \(u = R' \); and since \(R \) has a derivative, \(R \) is continuous
so that \(x = R \), whence \(x' = R' = u \). Consequently, if \(y \) is quasi-continuous and
\(s \) is a real number, then \(Uy(s) = \int_a^s y(s-t)dx'(t) \). Moreover, since \(U \) is a \(Q_1 \)
operator, \(x' \) is of bounded variation.

B. Suppose that \(x \) has a derivative which is of bounded variation. By
Lemma 2.7, \(x' \) is continuous; and we observe that \(x'(t) = 0 \) if \(t \leq a \) or \(t \geq b \).
Suppose that \(\epsilon > 0 \), and let \(h \) denote a real number other than zero such that
if \(p < q \) and \(q - p \leq |h| \) then \(|x'(p) - x'(q)| < \epsilon \). For each real number \(t \), let
\(g_h(t) \) denote the number \(\frac{x(t+h) - x(t)}{h} \). By Lemma 2.6, \(|g_h(t) - x'(t)| < 2\epsilon \)
for each real number \(t \); and by Lemma 2.9, the total variation of \(g_h \) is less
than or equal to the total variation of \(x' \). Now if \(y \) is quasi-continuous and
\(s \) is a real number, then \(\left[Ty(s+h) - Ty(s) \right]/h = \int_{-\infty}^{+\infty} y(-t)dx'(s+t) \); and by
Lemma 4.2a of [1], \(\left[Ty(s+h) - Ty(s) \right]/h = \int_{-\infty}^{+\infty} y(-t)dx'(s+t) = \int_a^s y(s-t)dx'(t) \)
as \(h \to 0 \). If \(y \) is quasi-continuous and \(s \) is a real number, let \(T'y(s) \) denote the
number \(\int_a^s y(s-t)dx'(t) \). Then \(T' \) is a \(Q_1 \) operator over \([a, b]\), such that if \(y \) is
quasi-continuous and \(g = Ty \), then \(g' = T'y \). Hence \(T \) has property D. This
completes the proof.

Theorem 6.5. Suppose that \(n \) is a positive integer. For all polynomials of
degree \(n \) or less to be invariant under \(T \), it is necessary and sufficient that \(x(b) = 1 \),
and \(\int_a^b px(t)dx(t) = 0 \) for \(p = 1, 2, \ldots, n \). If \(T \) is symmetric, and \(n \) is an even
integer, and all polynomials of degree \(n \) or less are invariant under \(T \), then all
polynomials of degree \(n+1 \) or less are invariant under \(T \).

Proof is omitted, since the theorem readily follows if for each polynomial
\(y \) and real number \(s \) we consider the Maclaurin expansion of \(y(s-t) \) in powers
of \(t \).

7. A family of smoothing operators and differentiating operators. In this
section we suppose that \(n \) is a positive integer and \([a, b]\) is an interval of
unit length. We shall exhibit a \(Q_1 \) operator \(T \) on \([a, b]\) such that
(i) all polynomials of degree 2 or less are invariant under \(T \), and
(ii) if \(y \) is quasi-continuous, then \(Ty \) has an \(n \)th derivative.

Let polynomials \(u, v, \) and \(w \) be defined as follows. If \(t \) is a real number, then
\[
2u(t) = 1 + \sum_{p=0}^{n} \binom{2p}{p} (t-a)^p (b-t)^p,
\]
\[
v(t) = (n+2) \binom{2n+3}{n+1} (t-a)^{n+1} (b-t)^{n+1},
\]
\[w(t) = (n + 2) \left(\frac{2n + 3}{n + 1} \right) (t - a)^{n+2} (b - t)^{n+1}. \]

Let \(A = (2n+5) [2ab+(n+1)/(2n+3)] \) and \(B = (a+b+A)/2 \). Let \(x \) denote the function such that \(x(t) = 0 \) if \(t < a \), \(x(t) = 1 \) if \(t > b \), and \(x(t) = u(t) + Bv(t) - Aw(t) \) if \(a \leq t \leq b \). If \(y \) is quasi-continuous and \(s \) is a real number, let \(T_y(s) \) denote the number \(\int_a^b s^2 y(s-t) dx(t) \), and let \(T'_y(s) = \int_a^b s^2 y(s-t) dx'(t) \).

By some rather tedious manipulation, it can be seen that \(x \) has a continuous \(n \)th derivative which is of bounded variation, and that \(x(a) = 0 \), \(x(b) = 1 \), \(\int_a^b dx(t) = 0 \), and \(\int_a^b t^2 dx(t) = 0 \), so that polynomials of degree 2 or less are invariant under \(T \). Moreover, if \(a = -1/2 \), then \(T \) is symmetric, so that polynomials of degree 3 or less are invariant under \(T \). If \(y \) is quasi-continuous and \(g = Ty \), then \(g' = T'_y \).

In particular, if \(n = 3 \) and \(a \leq t \leq b \), then
\[
x(t) = 0.5 + 0.5(2t - a - b) \left[1 + 2(1 - a)(1 - b) + 6(1 - a)^2 (1 - b)^2 \right.
+ 20(1 - a)^3 (1 - b)^3 - 140(22 + 99ab)(1 - a)^4 (1 - b)^4 \]
\[+ 315(a + b)(1 - a)^4 (1 - b)^4, \]

and
\[
x'(t) = 140 (1 - a)^3 (1 - b)^3 \left[(45 + 198ab) + 9(a + b)(a + b - 2t) \right.
- (198 + 891ab)(1 - a)(1 - b)].
\]

In particular, if \(n = 3 \), \(a = -1/2 \), and \(-1/2 \leq t \leq 1/2 \), then
\[
x(t) = 0.5 + t \left[1 + 2(.25 - t^2) + 6(.25 - t^2)^2 + 20(.25 - t^2)^3 \right.
+ 385(.25 - t^2)^4],
\]

and
\[
x'(t) = 315(.25 - t^2)^3 \left[11(.25 - t^2) - 2 \right],
\]

and \(T \) is a limit of the "most powerful" smoothing operators (i.e., operators with minimum smoothing coefficients) described, e.g., in [4]. For this instance the operators \(T \) and \(T' \) have been used with quite satisfactory results on a digital computer with experimental data, the integrals being approximated by an approximating sum as in [1], with the subdivision \(-.50, -.45, -.40, \ldots, .45, .50 \) of the interval \([-1/2, 1/2]\).

If \(n = 3 \), \(a = 0 \), and \(0 \leq t \leq 1 \), then
\[
x(t) = 0.5 + 0.5(2t - 1) \left[1 + 2t(1 - t) + 6t^2 (1 - t)^2 + 20t^3 (1 - t)^3 \right.
- 3080t^4 (1 - t)^4 \] + 315t^4 (1 - t)^4,
\]

and
\[x'(t) = \frac{2520 t^3 (1 - t)^3 (3 - 12t + 11t^2)}{3}; \]

in this instance \(T \) is not symmetric, and the application of the operators \(T \) and \(T' \) to experimental data does not give results as satisfactory as those obtained with the symmetric operator previously described.

References

The University of Texas,

Austin, Texas