ERRATA, VOLUME 85

Page 421. First line of Lemma 3.1: • ■ • , and let u be a normal basis element defined by (3.4).

Page 422. Lemma 3.4 (IV): • • the element \(u = u^* + (1 - \delta_i)\xi \) generates • • • .

ERRATA, VOLUME 88

A new class of continued fraction expansions for the ratios of Heine functions. By Evelyn Frank. Pages 288–300.

Page 289. First line of formula (2.1) should read:

\[
\frac{\phi(a, b, c, q, z)}{\phi(a + 1, b, c + 1, q, z)} \sim 1 + \frac{d_1 z}{f_1 z + 1} + \frac{d_2 z}{f_1 z + 1 + f_2 z + 1} + \frac{d_3 z}{f_1 z + 1 + f_2 z + 1 + f_3 z + 1} + \cdots = K_1,
\]

Page 290. First line of formula (2.3) should read:

\[
\frac{\phi(a, b, c, q, z)}{\phi(a + 1, b, c + 1, q, z)} \sim 1 + \frac{d_1 z}{f_1 z + 1} + \frac{d_2 z}{f_1 z + 1 + f_2 z + 1} + \frac{d_3 z}{f_1 z + 1 + f_2 z + 1 + f_3 z + 1} + \cdots = K_2.
\]

Page 296. The paragraph following Theorem 3.1 should read:

"In order to investigate the convergence of (2.3), the roots of the auxiliary equation one finds are \(q^a z \cdots \)" (not \(z^a \)).

Page 297. The first line of formula (3.6) should read:

\[
\frac{1}{q^a z} [K_2 - 1] + 1 = \frac{\phi(b - c, b - a, q, q^{c-a-b}/z)}{\phi(b - c + 1, b - a, q, q^{c-a-b}/z)}
\]

Page 298. First formula in Theorem 3.3, the numerator should read:

\[
(1 - q^{a-c}) \cdot \phi(a, a - c + 1, a - b + 1, q, q^{c+1-a-b}/z)
\]