A THEOREM ON TRANSLATION KERNELS
IN n DIMENSIONS(1)

BY
HAROLD WIDOM

1. In 1952, G. Szegö ([4], see also [5, §5.5]) proved the following theorem concerning Toeplitz matrices: If \(f(\theta) > 0 \) in \((0, 2\pi)\) and \(f'(\theta) \) satisfies a Lipschitz condition (with exponent \(\alpha \), \(0 < \alpha \leq 1 \)) then

\[
\lim_{n \to \infty} \frac{D_n(f)}{[G(f)]^{n+1}} = \exp \left\{ \frac{1}{4} \sum_{n=1}^{\infty} n |k_n|^2 \right\}
\]

where

\[
\sum_{n=0}^{\infty} k_n z^n = \frac{1}{2\pi} \int_{0}^{2\pi} \log f(\theta) \frac{1 + ze^{-i\theta}}{1 - ze^{-i\theta}} d\theta,
\]

\[
G(f) = \exp \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \log f(\theta) d\theta \right\}
\]

and \(D_n(f) \) denotes the determinant of the Toeplitz matrix

\[
(c_{j-k})
\]

with

\[
c_k = \frac{1}{2\pi} \int_{0}^{2\pi} f(\theta) e^{-ik\theta} d\theta.
\]

In 1954 M. Kac [3] obtained a continuous analogue of Szegö's result:

Let \(\rho(x) \) be real and even,

\[
\int_{-\infty}^{\infty} (1 + |x|) |\rho(x)| dx < \infty,
\]

and assume

\[
F(y) = \int_{-\infty}^{\infty} e^{iy\nu} \rho(x) dx
\]

belongs to \(L(-\infty, \infty) \). Then for sufficiently small \(\lambda \)

Presented to the Society, January 22, 1959, under the title On the eigenvalues of certain translation kernels; received by the editors November 24, 1958.

(1) This work was supported, in part, by a grant from the National Science Foundation.
A THEOREM ON TRANSLATION KERNELS IN n DIMENSIONS

$$
\lim_{a \to \infty} \frac{D_a(\lambda)}{\exp \left\{ \frac{a}{\pi} \int_{-\infty}^{\infty} \log [1 - \lambda F(y)] dy \right\} } = \exp \left(\int_0^\infty r \left\{ \frac{1}{2\pi} \int_{-\infty}^{\infty} \log [1 - \lambda F(y)] e^{i\pi r} dy \right\}^2 dx \right)
$$

where $D_a(\lambda)$ is the Fredholm determinant of the integral equation

$$
\int_{-a}^{a} \rho(x - y) \phi(y) dy = \lambda \phi(x).
$$

Kac noticed that Szegő's result was equivalent to a certain theorem concerning sums of discrete random variables, the analogue of this for continuous random variables being the tool Kac used to obtain his result. Both the discrete and continuous versions of the random variable theorem were consequences of the following combinatorial lemma: Let a_1, \ldots, a_n be real numbers. Then

$$
\sum_{\sigma} \max (0, a_{\sigma_1}, a_{\sigma_1} + a_{\sigma_2}, \ldots, a_{\sigma_1} + \cdots + a_{\sigma_n}) = \sum_{\sigma} \sum_{k=1}^{n} \frac{1}{k} \max (0, a_{\sigma_1} + \cdots + a_{\sigma_k})
$$

where in both sums σ runs over all permutations of $1, \ldots, n$.

In this paper we extend Kac's result to n dimensions.

Theorem. Let $\rho(x) = \rho(x^1, \cdots, x^n)$ be real and even,

$$
\int_{E_n} (1 + |x|) |\rho(x)| dx < \infty
$$

and assume

$$
F(y) = \int_{E_n} e^{ix \cdot y} \rho(x) dx
$$

belongs to $L(E_n)$. Let K be a compact subset of E_n which is the closure of its interior, and denote by $\lambda_1(a), \lambda_2(a), \cdots$ the eigenvalues of the integral equation

$$
\int_{aK} \rho(x - y) \phi(y) dy = \lambda \phi(x).
$$

Then for sufficiently small λ we have, as $a \to \infty$,
\[
\sum_{j=1}^{\infty} \log [1 - \lambda \lambda_j(a)] = a^n V(K) \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \log [1 - \lambda F(y)] dy \\
+ \frac{1}{2} a^{n-1} \int_{\partial K} d\sigma \int_{z \cdot \xi = 0} x \cdot \xi \left\{ \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \log [1 - \lambda F(y)] e^{ix \cdot \nu} dy \right\}^2 dx + o(a^{n-1}),
\]

where \(V(K) \) denotes the volume of \(K \), \(\partial K \) the boundary of \(K \), \(d\sigma \) the surface element on \(\partial K \), and \(\xi \) the unit outer normal at a point of \(\partial K \).

We shall prove the theorem under either of two additional assumptions, namely that \(K \) is a polyhedron or convex. In either of these cases integrals of the form \(\int_{\partial \mathcal{K}} f(\xi) d\sigma \), with \(\xi \) the unit outer normal at a point of \(\partial K \), are easily interpreted.

As will be seen the difficulties in extending Kac's result to \(n \) dimensions are essentially geometric; the analysis is identical and in the end it is the very same combinatorial lemma mentioned above which gives the result.

The author was aided greatly in this work by conversations with H. Pollard and F. Spitzer; in fact the theorem and its proof in the first nontrivial case, when \(K \) is a disc in two dimensions, arose out of these conversations.

2. Beginning the proof of the theorem, we note that \(\sum \lambda_j(a)^k \) converges for \(k = 1, 2, \cdots \) (that \(\sum |\lambda_j(a)| < \infty \) follows from Mercer's theorem and a simple device; see [3, pp. 506–507]) and, denoting by \(\chi_{a\mathcal{K}} \) the characteristic function of \(a\mathcal{K} \),

\[
\sum_{j=1}^{\infty} \lambda_j(a)^k = \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} \rho(x_1 - x_2) \rho(x_2 - x_3) \\
\cdots \rho(x_k - x_1) \chi_{a\mathcal{K}}(x_1) \cdots \chi_{a\mathcal{K}}(x_k) dx_1 \cdots dx_k.
\]

Setting \(R(y_1, \cdots, y_{k-1}) = \rho(y_1) \cdots \rho(y_{k-1}) \rho(y_1 + \cdots + y_{k-1}) \) we obtain from (1) by changing variables

\[
\sum_{j=1}^{\infty} \lambda_j(a)^k = \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} R(y_1, \cdots, y_{k-1}) \chi_{a\mathcal{K}}(y_0) \chi_{a\mathcal{K}}(y_0 + y_1) \cdots \\
\chi_{a\mathcal{K}}(y_0 + \cdots + y_{k-1}) dy_0 \cdots dy_{k-1}
\]

\[
= \int_{\mathbb{R}^n} \cdots \int_{\mathbb{R}^n} R(y_1, \cdots, y_{k-1}) V(a\mathcal{K} \cap a\mathcal{K} - y_1) \cdots \\
\cap a\mathcal{K} - y_1 - \cdots - y_{k-1} dy_1 \cdots dy_{k-1}.
\]

3. We consider first the case when \(K \) is a polyhedron. We denote the (closed) \(n \) dimensional simplices whose union is \(K \) by \(K_n \) and those \(n-1 \) dimensional simplices whose union is \(\partial K \) by \(K_{n-1}^\ast \); the unit outer normal to \(K_{n-1}^\ast \) we denote by \(\xi^\ast \); and \(v \) denotes \(n-1 \) dimensional volume.

Lemma 1. For any points \(x_1, \cdots, x_k \in \mathbb{R}^n \) we have
V(aK) - V(aK \cap aK - x_1 \cap \cdots \cap aK - x_k) \leq a^{n-1}v(\partial K) \max_i |x_i|.

Lemma 2. For any points $x_1, \cdots, x_k \in \mathbb{E}_n$ we have, as $a \to \infty$,

$$V(aK \cap aK - x_1 \cap \cdots \cap aK - x_k) = a^n V(K) - a^{n-1} \sum_{\nu} v(K_{n-1}^\nu) \max (0, x_1 \cdot \xi', \cdots, x_k \cdot \xi') + O(a^{n-2}).$$

Before proving the lemmas it is convenient to divide by a^n and write $\epsilon = a^{-1}$. Thus Lemma 1 becomes

$$V(K \ominus K - \epsilon x_1 \cap \cdots \cap K - \epsilon x_k) \leq \epsilon v(\partial K) \max_i |x_i|,$$

where \ominus denotes relative complement, and Lemma 2 becomes

$$V(K \ominus K - \epsilon x_1 \cap \cdots \cap K - \epsilon x_k) = \epsilon \sum_{\nu} v(K_{n-1}^\nu) \max (0, x_1 \cdot \xi', \cdots, x_k \cdot \xi') + O(\epsilon^2)$$
as $\epsilon \to 0$.

For each K_{n-1} construct the sum of K_{n-1} and the line segment joining the origin to the point $-\epsilon \max(0, x_1 \cdot \xi', \cdots, x_k \cdot \xi')\xi'$; this is just the prism with base K_{n-1}, height $\epsilon \max(0, x_1 \cdot \xi', \cdots, x_k \cdot \xi')$, and entering the (unique) K_n of which K_{n-1} is a face. The union of these prisms we call P. Let $x \in K \ominus K - \epsilon x_1 \cap \cdots \cap K - \epsilon x_k$. Then x belongs to some K_n, and for some i ($1 \leq i \leq k$) we have $x + \epsilon x_i \notin K$, so the line segment joining x with $x + \epsilon x_i$ must pierce some K_{n-1}, an $n-1$ dimensional face of K_n which is part of ∂K. It follows that the distance from x to K_{n-1} is less than $\epsilon x_i \cdot \xi'$, so that $x \in P$. Thus $K \ominus K - \epsilon x_1 \cap \cdots \cap K - \epsilon x_k$ is contained in P. Moreover since the volume of P is at most the sum of the volumes of its constituent prisms, we have (3), and so Lemma 1.

As for (4), it is not hard to see that the points of $K \ominus K - \epsilon x_1 \cap \cdots \cap K - \epsilon x_k$ not contained in P have volume at most $O(\epsilon^2)$. (The details, which are completely elementary although somewhat tedious, are left to the reader.) Moreover, with an error at most $O(\epsilon^2)$ the volume of P is the sum of the volumes of the constituent prisms. This gives (4), and so Lemma 2.

Before continuing with the proof of the theorem, we need some simple bounds. Let

$$A = \int_{\mathbb{E}_n} |\rho(x)| \, dx, \quad B = \int_{\mathbb{E}_n} |x| |\rho(x)| \, dx, \quad M = \max |\rho(x)|.$$

Lemma 3. Denote by $\rho^{(k)}(x)$ the k-fold convolution of $|\rho(x)|$ with itself. Then

$$\max \rho^{(k)}(x) \leq A^{k-1} M, \quad \int_{\mathbb{E}_n} |x| \rho^{(k)}(x) \, dx \leq (1 + \cdots + A^{k-1}) B.$$
This last lemma is trivial and its proof is omitted.

4. To continue now, we obtain from (2)

\[\sum_{j=1}^{\infty} \lambda_j(a)^k = a^n V(K) \frac{1}{(2\pi)^n} \int_{E_n} F(y)^k dy - a^{n-1} \int_{E_n} \cdots \int_{E_n} R(y_1, \ldots, y_{k-1}) \]

\[\left\{ \frac{V(aK) - V(aK \cap aK - y_1 \cap \cdots \cap aK - y_1 \cdots - y_{k-1})}{a^{n-1}} \right\}
\]

\[dy_1 \cdots dy_{k-1}. \]

By Lemma 2 the quotient appearing in the last integral approaches, as \(a \to \infty \),

\[\sum_{\nu} v(K'_{n-1}) \max (0, y_1, \xi', \ldots, y_k, \xi') \]

for all \(y_1, \ldots, y_{k-1} \). Using Lemmas 1 and 3 we see that we can in fact take the limit under the integrals, so

\[\sum_{j=1}^{\infty} \lambda_j(a)^k = a^n V(K) \frac{1}{(2\pi)^n} \int_{E_n} F(y)^k dy \]

\[- a^{n-1} \sum_{\nu} v(K'_{n-1}) \int_{E_n} \cdots \int_{E_n} R(y_1, \ldots, y_{k-1}) \]

\[\cdot \max (0, y_1, \xi', \ldots, y_k, \xi') dy_1 \cdots dy_{k-1} + o(a^{n-1}). \]

Now by the combinatorial lemma stated in §1 we have, using the fact that the \(R \) is a symmetric function of \(y_1, \ldots, y_{k-1} \),

\[\int_{E_n} \cdots \int_{E_n} R(y_1, \ldots, y_{k-1}) \]

\[\cdot \max (0, y_1, \xi', \ldots, y_k, \xi') dy_1 \cdots dy_{k-1} \]

\[= \sum_{r=1}^{k-1} r^{-1} \int_{E_n} \cdots \int_{E_n} R(y_1, \ldots, y_{k-1}) \max (0, y_1, \xi' + \cdots + y_r, \xi') dy_1 \cdots dy_{k-1} \]

\[= \sum_{r=1}^{k-1} r^{-1} \int_{x \cdot \xi' x_0} x \cdot \xi' dx \int_{E_n} \cdots \int_{E_n} \rho(y_1) \cdots \rho(y_{r-1}) \rho(x - y_1 - \cdots - y_{r-1}) \]

\[\cdot \rho(y_{r+1}) \cdots \rho(y_{k-1}) \rho(x + y_{r+1} + \cdots + y_{k-1}) dy_1 \cdots dy_{r-1} dy_{r+1} \cdots dy_{k-1} \]

\[= \sum_{r=1}^{k-1} r^{-1} \int_{x \cdot \xi' x_0} x \cdot \xi' \rho^{(r)}(x) \rho^{(k-r)}(x) dx, \]

where \(\rho^{(r)}(x) \) denotes the \(r \)-fold convolution of \(\rho(x) \) with itself. Thus from (6)
Now by (5), using Lemmas 1 and 3, we obtain the bound

\[
\lim_{\alpha \to 1} a^{-n+1} \left\{ \sum_{j=1}^{\infty} k^{-1} \lambda_j(a)^k - a^n V(K) \frac{1}{(2\pi)^n} \int_{E_n} k^{-1} F(y)^k dy \right\}
\]

\[
= - \frac{1}{2} \sum_{r} V(K_{n-1}) \int_{x \cdot t^r > 0} x \cdot t^r \sum_{r=1}^{k-1} \frac{\rho^{(r)}(x)\rho^{(k-r)}(x)}{r(k-r)} dx.
\]

so if \(|\lambda| < A^{-1}\) we may conclude from (7) that

\[
\lim_{\alpha \to 1} a^{-n+1} \left\{ \sum_{j=1}^{\infty} \log \left[1 + \lambda_j(a) \right] - a^n V(K) \frac{1}{(2\pi)^n} \int_{E_n} \log \left[1 + \lambda F(y) \right] dy \right\}
\]

\[
= - \frac{1}{2} \sum_{r} V(K_{n-1}) \int_{x \cdot t^r > 0} x \cdot t^r \left\{ \frac{1}{(2\pi)^n} \int_{E_n} \log \left[1 + \lambda F(y) \right] e^{ix \cdot y} dy \right\}^2 dx,
\]

where the interchange of \(\sum_k\) and \(\int \cdots dx\) is justified by Lemma 3.

Thus the theorem is proved in case \(K\) is a polyhedron.

5. It is clear from the above discussion that the theorem holds for any set \(K \subseteq E_n\) for which suitable analogues of Lemmas 1 and 2 hold. We shall state, and prove in detail, these analogues in case \(K\), in addition to being compact and the closure of its interior, is convex.

Lemma 1'. \(V(aK) - V(aK \cap aK - x_1 \cap \cdots \cap aK - x_k) \leq a^{n-1} S(K) \max |x_i|\)

where \(S(K)\) denotes the surface of \(K\).

Proof. We may clearly assume \(a = 1\). Set \(N = \max |x_i|\) and assume \(x \in K \cap \cdots \cap K - x_k\). If the sphere with center \(x\) and radius \(N\) were contained in \(K\) we would have \(x + x_i \in K\) for \(1 \leq i \leq k\) which is not true. Thus \(x\) is within \(N\) of \(\partial K\). Since

\[
\{ x \in K \mid \text{dist} (x, \partial K) \leq N \}
\]

has volume at most \(NS(K)\), Lemma 1' is proved.

For the analogue of Lemma 2 we shall have to use surface integrals on \(\partial K\). These may be obtained as follows. (See [1, Chapter X, §§1, 2].) Choose point \(p\) in the interior of \(K\), and denote by \(\Sigma\) the surface of the unit sphere with center \(p\). For any \(x \in \partial K\) let \(\pi x\) denote the intersection with \(\Sigma\) of the ray beginning at \(p\) and passing through \(x\); thus \(\pi\) projects \(\partial K\) radially onto \(\Sigma\). For almost every \(x \in \Sigma\) there is a unique tangent plane to \(\partial K\) at \(\pi^{-1} x\); \(\xi\), the unit outer normal to \(\partial K\) at this point is then well defined. Now let \(S\) be a Borel set on \(\partial K\). Then we have
\[\sigma(S) = \int_{\Sigma} \frac{|x - p|^n \, d\sigma(x)}{(x - p) \cdot \xi} \]

where \(\sigma \) represents the surface element on \(\Sigma \). The measure \(\sigma \) on \(\partial K \) is independent of the particular choice of the point \(p \) of the interior of \(K \).

Lemma 2'. There is a set \(Z \subseteq E_n \) of measure zero such that, as \(a \to \infty \),

\[V(aK - x_1 \cap \cdots \cap aK - x_k) \]

\[= a^n V(K) - a^{n-1} \int_{\partial K} \max (x_1 \cdot \xi, \ldots, x_k \cdot \xi) \, d\sigma + o(a^{n-1}) \]

as long as no \(x_i = x_j \) with \(i \neq j \) belongs to \(Z \).

The proof of Lemma 2' is rather lengthy and will be given in stages. For a point \(x \in E_n \) we denote by \(K_x \) the set of \(p \in K \) such that the line through \(p \) and parallel to the vector \(x \) (i.e., the set of all \(p + \mu x, -\infty < \mu < \infty \)) does not meet the interior of \(K \). Clearly \(K_x \) is a subset of \(\partial K \).

Sublemma 1. Let \(Z = \{ x \in E_n | \sigma(K_x) > 0 \} \). Then \(Z \) has measure zero.

Proof. Assume \(Z \) has positive measure. Since \(\sigma(\partial K) = S(K) < \infty \), the set of supporting hyperplanes \(H \) which intersect \(\partial K \) in a set of positive measure is at most countable. For any such \(H \) let \(H_0 \) be the hyperplane parallel to \(H \) and passing through the origin. Then \(Z_1 = Z - \cup H_0 \) has positive measure. I claim that if \(y_1, \ldots, y_{n-1} \in Z_1 \) are linearly independent, then

\[\sigma(K_{y_1} \cap \cdots \cap K_{y_{n-1}}) = 0. \]

For let \(S \) be the set of singular points of \(\partial K \) (i.e., the set of points at which there is not a unique supporting hyperplane), and assume \(x \in K_{y_1} \cap \cdots \cap K_{y_{n-1}} \cap S \). Let \(\tilde{H} \) be the unique supporting hyperplane containing \(x \). Since the line through \(x \) and parallel to \(y_i \) does not meet the interior of \(K \), this line contains a supporting hyperplane, i.e., \(\tilde{H} \). Thus \(\tilde{H} \) is a supporting hyperplane, and parallel to the hyperplane \(H \) passing through \(0, y_1, \ldots, y_{n-1} \). Since \(y_i \in Z_1 \), \(\tilde{H} \) is not an \(H_0 \). But there are exactly two supporting hyperplanes parallel to \(\tilde{H} \), each intersecting \(\partial K \) in a set of measure zero. Therefore \(\sigma(K_{y_1} \cap \cdots \cap K_{y_{n-1}} \cap S) = 0 \). Since the projection of \(S \) on any sphere has measure zero, \(\sigma(S) = 0 \), so also \(\sigma(K_{y_1} \cap \cdots \cap K_{y_{n-1}}) = 0 \).

Now let \(Z_2 \) be a subset of \(Z_1 \) maximal with respect to the property: any \(n-1 \) points of \(Z_2 \) are linearly independent. If \(Z_2 \) were countable, the set of hyperplanes determined by \(0 \) and \(n-1 \) points of \(Z_2 \) would be countable, and so the union would have measure zero, which implies there is a point of \(Z_1 \) not in this union; but then this point could be added to \(Z_2 \) preserving its defining property, which would contradict maximality. Hence \(Z_2 \) is uncountable, and \(y_1, \ldots, y_{n-1} \in Z_2 \) implies \(\sigma(K_{y_1} \cap \cdots \cap K_{y_{n-1}}) = 0 \). Since each \(\sigma(K_y) > 0 \) for \(y \in Z_2 \), and
\[
\sum_{y \in \mathbb{Z}_2} \sigma(K_y) \leq (n - 2) \left(\bigcup_{y \in \mathbb{Z}_2} K_y \right) < \infty,
\]
we have arrived at a contradiction. Thus \(Z \) has measure zero.

Sublemma 2. Let \(x_1, \ldots, x_k \in E_n \) be such that no \(x_i - x_j \) with \(i \neq j \) belongs to \(Z \), and denote by \(P \) the convex hull of \(\{x_1, \ldots, x_k\} \). Then
\[
V[(K + \epsilon P) \cap (K + \epsilon x_1 \cup \cdots \cup K + \epsilon x_k)]
\]
is \(o(\epsilon) \) as \(\epsilon \to 0 \).

Proof. Let \(p \in (K + \epsilon P) \cap (K + \epsilon x_1 \cup \cdots \cup K + \epsilon x_k) \). Then \(p = q + \epsilon \sum \lambda_i x_i \) (\(\sum \lambda_i = 1, \lambda_i \geq 0 \)) with \(q \in K \); and \(q = p - \epsilon \sum \lambda_i x_i \in p - \epsilon P = Q \), say. No vertex of \(Q \) lies in \(K \), for \(p - \epsilon x_i \in K \) would imply \(p \in K + \epsilon x_i \). Thus \(p \) is within \(d(P)\epsilon \) of a point \(q \in Q \cap K \), where \(Q \) is a translate of \(-\epsilon P \) none of whose vertices lie in \(K \). (\(d(P) \) denotes the diameter of \(P \).)

Given points \(p, x \in E_n \) denote by \(h_p, x \) the line through \(p \) and parallel to the vector \(x \). I claim that for some \(q_0 \in Q \cap K \) and some \(x_i, x_j \) (\(i \neq j \)) we have
\[
(8) \quad |h_{q_0, x_i - x_j} \cap K| \leq d(P)\epsilon
\]
where \(| \cdots | \) denotes length. Let \(m \) be the dimension of \(Q \), \(\tilde{K} \) the intersection of \(K \) with the \(m \) dimensional plane through \(Q \). If \(\tilde{K} \subset Q \) then \(d(\tilde{K}) \leq d(Q) = ed(P) \), so (8) is satisfied if we take any \(q_0 \in \tilde{K} \) and the pair \(x_i, x_j \) corresponding to the vertices of \(Q \) (i.e., the vertices \(p - \epsilon x_i, p - \epsilon x_j \) of \(Q \)) whose distance is \(d(Q) \). If \(\tilde{K} \subset Q, \tilde{K} \) meets the complement of \(Q \). Since also \(\tilde{K} \) meets \(Q, \tilde{K} \) has a point in common with \(Q_{m-1} \), a closed \(m-1 \) face of \(Q \). Denote by \(H_{m-1} \) the \(m-1 \) dimensional plane through \(Q_{m-1} \). If \(H_{m-1} \cap \tilde{K} \subset Q_{m-1} \) we may take, to satisfy (8), any \(q_0 \in H_{m-1} \cap \tilde{K} \) and the pair \(x_i, x_j \) corresponding to vertices of \(Q_{m-1} \) whose distance is \(d(Q_{m-1}) \). If \(H_{m-1} \cap \tilde{K} \subset Q_{m-1} \) then \(\tilde{K} \) has a point in common with \(Q_{m-2} \), a closed \(m-2 \) face of \(Q_{m-1} \). Clearly we may repeat the process. If we reach the point where \(\tilde{K} \) has a point in common with \(Q_1 \) but \(H_1 \cap \tilde{K} \subset Q_1 \), then \(\tilde{K} \) would contain a vertex of \(Q_1 \). Thus we must have \(H_1 \cap \tilde{K} \subset Q_1 \) and (8) is satisfied for any \(q_0 \in H_1 \cap \tilde{K} \), and \(x_i, x_j \) corresponding to the end-point of \(Q_1 \).

Changing notation, we have shown that \(p \) is within \(2d(P)\epsilon \) of a point \(q \in K \) such that
\[
|h_{q_0, x_i - x_j} \cap K| \leq d(P)\epsilon
\]
for some pair \(x_i, x_j \). Next we show that this \(q \) is within \(A \epsilon \) of a point of \(K_{x_i - x_j} \). (Here we use \(A \) to denote any constant which depends only on \(K \) and \(x_1, \ldots, x_k \).) Let \(h_0 \) be a fixed line segment in \(K \) parallel to the vector \(x_i - x_j \), and \(\Pi \) the two dimensional plane through \(h_0 \) and \(h_{q, x_i - x_j} \). Since
\[
|h_{q, x_i - x_j} \cap K| < |h_0|
\]
if \(\epsilon \) is sufficiently small, the two line segments determine a triangle lying in
II with h_0 as one of its sides, and the end-points of $h_{q,x_i-x_j} \cap K$ lying on the other sides; denote by v the vertex of this triangle.

In II, there are two supporting lines for $\Pi \cap K$ parallel to h_0; let h be the one on the same side of h_0 as h_{q,x_i-x_j} and choose a $q_0 \in h \cap K$. Clearly q_0 must belong to the small triangle determined by v and $h_{q,x_i-x_j} \cap K$ and, furthermore, $q_0 \in K_{x_i-x_j}$. Let q_1 be the intersection of the line segment vq_0 with h_{q,x_i-x_j} and r the intersection of vq_0 with h_0. Then

$$\frac{|v-q_1|}{|v-r|} = \frac{|h_{q,x_i-x_j} \cap K|}{|h_0|} \leq \frac{d(P)\epsilon}{|h_0|},$$

so

$$|v-q_1| \leq |v-r| \frac{d(P)\epsilon}{|h_0|} \leq \frac{d(K)d(P)}{|h_0|} \epsilon.$$

Therefore certainly

$$|q_0 - q_1| \leq \frac{d(K)d(P)}{|h_0|} \epsilon,$$

and so

$$|q_0 - q| \leq \frac{d(K)}{|h_0|} \frac{1}{d(P)} \epsilon.$$

Thus q is within $A\epsilon$ of q_0 and so, since $|p-q| \leq 2d(P)\epsilon$, also p is within $A\epsilon$ of q_0; and $q_0 \in K_{x_i-x_j}$. Therefore if

$$C = \bigcup_{i \neq j} K_{x_i-x_j}$$

we have $\text{dist}(p, C) \leq A\epsilon$. Now C is homeomorphic, via some homeomorphism ϕ such that ϕ and ϕ^{-1} satisfy a Lip 1 condition, to a subset ϕC of E_{n-1}. (This is seen as follows: The projection π of ∂K onto a sphere Σ from an interior point of K is such that $\pi, \pi^{-1} \in \text{Lip 1}$. This is easily verified. Since C is a proper closed subset of ∂K [note that $\sigma(C) = 0$] we can then map πC into E_{n-1} by means of a ψ such that ψ and ψ^{-1} are, in fact, infinitely differentiable. We then take $\phi = \psi \pi$.) Since $\sigma(C) = 0$, $\phi(C)$ will have $n-1$ dimensional Lebesgue measure zero. Set

$$M = \sup_{x,y \in C} \frac{|x-y|}{|\phi x - \phi y|}.$$

Then, since ϕC has measure zero, ϕC can be covered by $o(\epsilon^{-n+1})$ spheres of radius $A\epsilon/M$, so C can be covered by $o(\epsilon^{-n+1})$ spheres of radius $A\epsilon$. Since, as we have shown, any point $p \in (K+\epsilon P) \Theta (K+\epsilon x_1 \cup \cdots \cup K+\epsilon x_k)$ is within $A\epsilon$ of C, this set is covered by $o(\epsilon^{-n+1})$ spheres of radius $2A\epsilon$, and so its volume is $o(\epsilon)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Sublemma 3. Under the hypothesis of sublemma 2 we have, as $a \to \infty$,
$$V(aK + x_1 \cup \cdots \cup aK + x_k) = a^n V(K) + a^{n-1} \int_{\partial K} \max (x_1 \cdot \xi, \ldots, x_k \cdot \xi) \, d\sigma + o(a^{n-1}).$$

Proof. Using the notion of mixed volumes [2, §29] we can write
$$V(aK + P) = a^n V(K) + na^{n-1} V(P, K, \ldots, K) + o(a^{n-1})$$
where P is the convex hull of $\{x_1, \ldots, x_k\}$. If K is a polyhedron with $n-1$ dimensional faces K'_{n-1} and corresponding outer normals ξ',
$$V(P, K, \ldots, K) = \frac{1}{n} \sum_{r} v(K'_{n-1}) \max (x_1 \cdot \xi', \ldots, x_k \cdot \xi')$$
([2, formula (3), §29] applied to the case of a polyhedron P). A simple approximation argument yields, in the case of general convex K,
$$V(P, K, \ldots, K) = \frac{1}{n} \int_{\partial K} \max (x_1 \cdot \xi, \ldots, x_k \cdot \xi) \, d\sigma$$
so from (9),
$$V(aK + P) = a^n V(K) + a^{n-1} \int_{\partial K} \max (x_1 \cdot \xi, \ldots, x_k \cdot \xi) \, d\sigma + o(a^{n-1}).$$
But by Sublemma 2 with $\epsilon = a^{-1}$,
$$V(aK + x_1 \cup \cdots \cup aK + x_k) = V(aK + P) + o(a^{n-1}),$$
so the sublemma is proved.

Sublemma 4. For any real numbers r_1, \ldots, r_k we have
$$\sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \max (r_{i_1}, \ldots, r_{i_j}) = - \min (r_1, \ldots, r_k).$$

Proof. Let $\chi(r)$ be the characteristic function of $(0, \infty)$. Then
$$\chi(\{-\infty, \min (r_1, \ldots, r_k)\})(r) = \{1 - \chi(r - r_1)\} \cdots \{1 - \chi(r - r_k)\}$$
$$= 1 + \sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \chi(r - r_{i_1}) \cdots \chi(r - r_{i_j})$$
$$= - \sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \{1 - \chi(r - r_{i_1}) \cdots \chi(r - r_{i_j})\}$$
$$= - \sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \chi(\{-\infty, \max (r_{i_1}, \ldots, r_{i_j})\})(r).$$
Integrating from $\min(r_1, \ldots, r_k)$ to ∞,

$$0 = -\sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \left\{ \max (r_{i_1}, \ldots, r_{i_j}) - \min (r_1, \ldots, r_k) \right\}$$

$$= -\sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \max (r_{i_1}, \ldots, r_{i_j}) - \min (r_1, \ldots, r_k),$$

which gives the result.

We can now prove Lemma 2'. The set Z will be that defined in the statement of Sublemma 1. The standard inclusion-exclusion principle gives

$$V(aK - x_1 \cap \cdots \cap aK - x_k)$$

$$= -\sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} V(aK - x_{i_1} \cup \cdots \cup aK - x_{i_j})$$

so by Sublemma 3 we have

$$V(aK - x_1 \cap \cdots \cap aK - x_k) = a^n V(K)$$

$$- a^{n-1} \int_{\partial K} \sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \max (-x_{i_1} \cdot \xi, \ldots, -x_k \cdot \xi) d\sigma + o(a^{n-1}).$$

But by Sublemma 4

$$\sum_{j=1}^{k} (-1)^j \sum_{i_1 < \cdots < i_j} \max (-x_{i_1} \cdot \xi, \ldots, -x_k \cdot \xi) = -\min (-x_1 \cdot \xi, \ldots, -x_k \cdot \xi)$$

$$= \max (x_1 \cdot \xi, \ldots, x_k \cdot \xi),$$

so Lemma 2' is proved.

Using Lemmas 1' and 2', as Lemmas 1 and 2 were used in §4, one now easily proves the main theorem for an arbitrary compact convex set K with interior.

References

Cornell University,
Ithaca, N. Y.