CONVERGENCE OF INTERPOLATORY POLYNOMIALS,
(0, 1, 2, 4) INTERPOLATION

BY
R. B. SAXENA

1. Introduction. In most of the problems of interpolation we prescribe the values of a function at some points \(x_i \) and of some of its consecutive derivatives there. Thus in the Hermite interpolation formula, the value of the function and its first derivative are prescribed at some points in a given interval. A general problem of interpolation was treated by Birkhoff in 1906, who considered a system of pairs of numbers \((k_i, x_i)\) \((i = 1, 2, \cdots, n)\) where \(k_i\) are integers \(\geq 0\) and \(x_i\) are any points in a given interval. Birkhoff's main theorem concerns the number of changes of sign of the kernel in the integral representation of the remainder in a general interpolatory formula when the system is a "normal" point system. For this purpose he has to classify the system of points according as they are "conservative" or "nonconservative." For greater details see [7]. A more particular case \(n = 2\) was treated directly by Polya when the system is not "normal" in the sense of Birkhoff. A similar case in the complex plane has been treated by Cinquini [8]. But this general point of view does not bring out the character of the interpolatory polynomials.

Recently in a series of papers [1; 2; 3], Turán has treated Lacunary interpolation from a different point of view by considering what he calls \((0, 2)\)-interpolation, where the value of the function and its second derivative are given at some points. He considers the problem of their existence, uniqueness, and explicit representation and the problem of convergence.

In the papers [4; 5] we have been dealing with so called "Lacunary interpolation." The terms \((0, 1, 3)\) and \((0, 1, 2, 4)\) interpolations have been defined therein. By \((0, 1, 2, 4)\) interpolation we mean the interpolation which concerns \(n\) given points in \([-1, 1]\),

\[
1 \geq t_1 > t_2 > t_3 > \cdots > t_{n-1} > t_n \geq -1
\]

when the values of the function, its first, second and fourth derivatives are prescribed at these \(n\) points. In other words

\[
(1.1) \quad f(t_i) = a_i, \quad f'(t_i) = b_i, \quad f''(t_i) = c_i, \quad f^{(4)}(t_i) = d_i
\]

for \(i = 1, 2, \cdots, n\); we want to determine the explicit forms of the polynomials of degree \(\leq 4n-1\) which take the values \(a_i\) at \(t_i\), whose first and second derivatives at \(t_i\) are respectively equal to \(b_i\) and \(c_i\) and whose fourth derivative at \(t_i\) is equal to \(d_i\). It has been shown that when we choose the \(n\) points to be the real zeros of

Received by the editors May 6, 1959.
(1.3) \[\pi_n(x) = n(n - 1) \int_{-1}^{x} P_{n-1}(t) dt = (1 - x^2)P'_{n-1}(x) \]

where \(P_k(x) \) is the \(k \)th Legendre polynomial such that \(P_k(1) = 1 \); these polynomials exist if and only if \(n \) is even. So we take \(n = 2k \geq 4 \).

The object of this paper is to study the convergence of the polynomials \(R_n(x) \) of interpolation for which we showed in [5] that

\[
R_n(x) = \sum_{r=1}^{n} a_r A_r(x) + \sum_{r=1}^{n} b_r B_r(x) + \sum_{r=1}^{n} c_r C_r(x) + \sum_{r=1}^{n} d_r D_r(x)
\]

where \(A_r(x), B_r(x), C_r(x), D_r(x) \) are polynomials each of degree \(\leq 4n - 1 \). These polynomials are uniquely determined by the conditions:

(1.4) \[
A_r(x_j) = \begin{cases} 0 & \text{for } j \neq \nu, \\ 1 & \text{for } j = \nu, \end{cases} \quad A_r'(x_j) = 0, \quad A_r''(x_j) = 0, \quad A_r^{(4)}(x_j) = 0,
\]

(1.5) \[
B_r(x_j) = 0, \quad B_r'(x_j) = \begin{cases} 0 & \text{for } j \neq \nu, \\ 1 & \text{for } j = \nu, \end{cases} \quad B_r''(x_j) = 0, \quad B_r^{(4)}(x_j) = 0,
\]

(1.6) \[
C_r(x_j) = 0, \quad C_r'(x_j) = 0, \quad C_r''(x_j) = \begin{cases} 0 & \text{for } j \neq \nu, \\ 1 & \text{for } j = \nu, \end{cases} \quad C_r^{(4)}(x_j) = 0.
\]

(1.7) \[
D_r(x_j) = 0, \quad D_r'(x_j) = 0, \quad D_r''(x_j) = 0, \quad D_r^{(4)}(x_j) = \begin{cases} 0 & \text{for } j \neq \nu, \\ 1 & \text{for } j = \nu, \end{cases}
\]

where \(j = 1, 2, \ldots, n \).

2. We now consider the sequence of points

(2.1) \[1 = x_{1n} > x_{2n} > \cdots > x_{n-1,n} > x_{nn} = -1, \quad (n = 4, 6, \ldots, 2k, \ldots) \]

where \(x_{rn} \)'s stand for the zeros of \(\pi_n(x) \). Then forming the interpolatory polynomials for each \(n = 2k \), we shall write the fundamental polynomials (1.4), (1.5), (1.6) and (1.7) as \(A_{rn}(x), B_{rn}(x), C_{rn}(x), D_{rn}(x) \) respectively. Let \(f(x) \) be defined for \([-1, 1]\): we consider the sequence of polynomials

\[
R_n(x,f) = \sum_{r=1}^{n} f(x_{rn}) A_{rn}(x) + \sum_{r=1}^{n} f'(x_{rn}) B_{rn}(x)
\]

\[
+ \sum_{r=1}^{n} c_{rn} C_{rn}(x) + \sum_{r=1}^{n} d_{rn} D_{rn}(x)
\]

with arbitrary numbers \(c_{rn} \) and \(d_{rn} \). We shall prove the following

Theorem. Let \(f(x) \) have the continuous derivative of order 2 in \([-1, 1]\) with continuity modulus \(\omega(\delta) \) of \(f''(x) \) such that

(2.3) \[\int_{0}^{\omega(f)} \frac{1}{t^{3/2}} \, dt \]
exists. Supposing that for arbitrary small \(\epsilon > 0 \) we have for \(n > n_0(\epsilon) \) and \(\nu = 1, 2, \ldots, n; \)

\[
|e_n| \leq \epsilon n, \quad |d_n| \leq \epsilon n^3,
\]

the sequence \(R_n(x, f) \) converges to \(f(x) \) uniformly in \([-1, 1]\).

3. Preliminaries. The explicit forms of the fundamental functions \(A_\nu(x) \), \(B_\nu(x) \), \(C_\nu(x) \) and \(D_\nu(x) \) which we have found in [5] are the following:

(a)

\[
D_1(x) = -\frac{\pi_n^3(x)}{60n^4(n - 1)^4} \left\{ P_{n-1}(x) + \frac{5}{3} \right\},
\]

\[
D_n(x) = \frac{\pi_n^3(x)}{60n^4(n - 1)^4} \left\{ P_{n-1}(x) - \frac{5}{3} \right\},
\]

and for \(2 \leq \nu \leq n - 1, \)

\[
D_\nu(x) = \frac{\pi_n^3(x)}{24P''_{n-1}(x_\nu)\pi_n^3(x_\nu)} \left[\int_{-1}^{x} \frac{P'_{n-1}(t)}{t - x_\nu} dt - \left\{ \frac{x_\nu}{1 - x_\nu^2} \right\} \right.
\]

\[
- \left. \frac{3}{5(1 - x_\nu^2)P_{n-1}(x_\nu)} \right\} \left\{ P_{n-1}(x) - \frac{2 + 3x_\nu}{3(1 - x_\nu^2)} + \frac{1}{(1 - x_\nu^2)P_{n-1}(x_\nu)} \right\}.
\]

(b) Denoting \(\pi_n^2(x) \) by \(Q_{2n}(x) \),

\[
C_1(x) = \frac{Q_{2n}(x)}{Q''_{2n}(1)} \left\{ r_1(x) + \left(\frac{5}{72} - \frac{1}{18n(n - 1)} \right) \pi_n(x) - \frac{Q'_{2n}(x)}{16n(n - 1)} \right\},
\]

where

\[
r_1(x) = \frac{3 + x}{4} l_1(x) - \frac{1 - x^2}{4} l_1(x)l'_1(x)
\]

\[
+ \left\{ \frac{5}{16} + \frac{1}{8n(n - 1)} \right\} \pi_n(x) \left(1 + \frac{1}{3} P_{n-1}(x) \right),
\]

\[
C_n(x) = \frac{Q_{2n}(x)}{Q''_{2n}(-1)} \left\{ r_n(x) - \left(\frac{5}{72} - \frac{1}{18n(n - 1)} \right) \pi_n(x) + \frac{Q'_{2n}(x)}{16n(n - 1)} \right\},
\]

where

\[
r_n(x) = \frac{3 - x}{4} l_n(x) + \frac{1 - x^2}{4} l_n(x)l'_n(x)
\]

\[
+ \left\{ \frac{5}{16} + \frac{1}{8n(n - 1)} \right\} \pi_n(x) \left(1 + \frac{1}{3} P_{n-1}(x) \right),
\]
and for $2 \leq \nu \leq n - 1$,

$$C_\nu(x) = \frac{Q_{2n}(x)}{Q'_{2n}(x_r)} \left[r_\nu(x) + \frac{2n(n - 1)}{3(1 - x_r^2)} \rho_\nu(x) + \frac{4\pi_n(x)}{9n(n - 1)(1 - x_r^2) P_{n-1}^3(x_r)} - \frac{Q'_{2n}(x)}{9n^2(n - 1)^2(1 - x_r^2) P_{n-1}^3(x_r)} \right],$$

(3.8)

where

$$r_\nu(x) = l_\nu^2(x) + \frac{\pi_n(x)}{2n(n - 1) P_{n-1}(x_r)} \left\{ \int_1^x \frac{l'_\nu(t)}{t - x_r} dt + \int_{-1}^x \frac{l'_\nu(t)}{t - x_r} dt + \frac{P_{n-1}(x)}{3(1 - x_r^2) P_{n-1}^3(x_r)} \right\},$$

(3.9)

$$l_\nu(x) = \frac{\pi_n(x)}{(x - x_r) \pi_n'(x_r)},$$

(3.9a)

and

$$\rho_\nu(x) = \frac{\pi_n(x)}{4n^2(n - 1)^2 P_{n-1}^2(x_r)} \left\{ (1 - \frac{2}{x_r}) \int_1^x \frac{P_{n-1}'(t)}{t - x_r} dt + (1 - x_r^2) \int_{-1}^x \frac{P_{n-1}'(t)}{t - x_r} dt + 2P_{n-1}(x) \left(-x_r + \frac{1}{3P_{n-1}(x_r)} \right) - 4 \right\};$$

(3.10)

$$B_1(x) = \frac{\pi_n(x)}{\pi_n'(1)} \left\{ u_1(x) + \frac{n(n - 1)}{576} (73n^4 - 146n^3 + 137n^2 - 64n + 12) \omega_1(x) \right\} + \frac{n(n - 1)}{576} (73n^4 - 146n^3 + 137n^2 - 64n + 12) \omega_n(x) \right\} - \frac{\pi_n''(1)}{\pi_n'(1)} C_1(x),$$

(3.11)

where

$$\omega_1(x) = \frac{Q_{2n}(x)}{6n^3(n - 1)^3} \left\{ 1 + \frac{1}{2} P_{n-1}(x) \right\},$$

(3.12)

$$\omega_n(x) = - \frac{Q_{2n}(x)}{6n^3(n - 1)^3} \left\{ 1 - \frac{1}{2} P_{n-1}(x) \right\},$$

(3.13)
\[u_1(x) = l_1^3(x) + \frac{\pi_n(x)}{3\pi_n'(-1)} \left[l_1(x)l_1'(x) - 10l_1'(1)r_1(x) \right] \]

\[- \frac{n(n - 1)}{32} (n^4 - 2n^3 - 17n^2 + 18n + 8)\omega_1(x) \]

\[+ \frac{n(n - 1)}{96} (25n^4 - 50n^3 + 35n^2 - 10n - 48)\omega_n(x). \]

and \(C_1(x) \) is the polynomial of degree \(\leq 4n - 1 \) given by (3.4).

\[B_n(x) = \frac{\pi_n(x)}{\pi_n'(-1)} \]

\[\cdot \left\{ u_n(x) - \frac{n(n - 1)}{576} (73n^4 - 146n^3 + 137n^2 - 64n + 12)\omega_1(x) \right\} \]

\[- \frac{n(n - 1)}{576} (71n^4 - 142n^3 + 151n^2 - 80n - 12)\omega_n(x) \}

\[- \frac{\pi_n''(-1)}{\pi_n'(-1)} C_n(x), \]

where

\[u_n(x) = l_n^3(x) + \frac{\pi_n(x)}{3\pi_n'(-1)} \left[l_n(x)l_n'(x) - 10l_n'(1)r_n(x) \right] \]

\[- \frac{n(n - 1)}{96} (25n^4 - 50n^3 + 35n^2 - 10n - 48)\omega_1(x) \]

\[+ \frac{n(n - 1)}{32} (n^4 - 2n^3 - 17n^2 + 18n + 8)\omega_n(x). \]

and \(C_n(x) \) is the polynomial of degree \(\leq 4n - 1 \) given by (3.6). For \(2 \leq \nu \leq n - 1, \)

\[B_\nu(x) = \frac{\pi_n(x)}{\pi_n'(x_\nu)} \left[u_\nu(x) + \frac{n(n - 1)x_\nu}{(1 - x_\nu^2)^2} \omega_\nu(x) \right] \]

\[+ \frac{n^4(n - 1)^4x_\nu}{30(1 - x_\nu^2)^2\pi_n'(-1)} \left\{ \frac{3}{(1 - x_\nu^2)P_{n-1}(x_\nu)} + \frac{12}{P_{n-1}(x_\nu)} + \frac{5}{1 - x_\nu^2} \right\} \omega_1(x) \]

\[+ \frac{n^4(n - 1)^4x_\nu}{30(1 - x_\nu^2)^2\pi_n'(-1)} \left\{ \frac{3}{(1 - x_\nu^2)P_{n-1}(x_\nu)} + \frac{12}{P_{n-1}(x_\nu)} - \frac{5}{1 - x_\nu^2} \right\} \omega_n(x) \],

where
\[w_s(x) = \frac{Q_{2n}(x)}{6\pi^{n-2}(x_r) P_{n-1}^{(n-1)}(x_r)} \left[\int_{-1}^{x} \frac{P_{n-1}^{(n-1)}(t)}{t - x} dt - P_{n-1}(x) \left\{ \frac{x}{2(1 - x^2)} \right\} \right]. \]

(3.18)

\[u_s(x) = l_s^4(x) + \frac{4(n-1)x}{1 - x^2} \omega_s(x) + \frac{2n^4(n-1)^4}{\pi^4(x_r)(1 - x_r)^2} \omega_1(x) \]

\[+ \frac{2n^4(n-1)^2 \omega_n(x)}{\pi^4(x_r) (1 + x_r)^2} + \frac{4n^2(n-1)P}{3\pi^4(x_r)} \pi_n(x) l_r(x) l_r'(x). \]

(3.19)

(d) Lastly, for \(2 \leq v \leq n-1\) we have

\[A_v(x) = l_s^4(x) + \frac{\pi_n(x)}{4\pi'(x_r)} \left[2l_s(x) l_s'(x) - 9l_s''(x) v_s(x) \right] \]

\[- \frac{3n(n-1)}{(1 - x^2)^2} \left\{ (n - 2)(n + 1) - \frac{8x^2}{1 - x^2} \right\} D_v(x) \]

(3.20)

\[+ \frac{3n^2(n-1)^2}{4(1 - x^2)^2 P_{n-1}^{(n-1)}(x_r) \pi'(x_r)} \left\{ \frac{10}{1 - x_r} + \frac{n(n-1)}{(1 + x_r)^2} \left(1 + \frac{2}{P_{n-1}(x_r)} \right) \right\} D_1(x) \]

\[+ \frac{3n^2(n-1)^2}{4(1 + x_r)^2 P_{n-1}^{(n-1)}(x_r) \pi'(x_r)} \left\{ \frac{10}{1 + x_r} + \frac{n(n-1)}{(1 - x_r)^2} \left(1 - \frac{2}{P_{n-1}(x_r)} \right) \right\} D_n(x), \]

where

\[v_s(x) = \frac{\pi_n(x)}{\pi'(x_r)} \left[r_s(x) + \frac{n(n-1)}{3(1 - x^2)} \rho_r(x) + \frac{\pi_n(x)}{6n(n-1)(1 - x^2) P_{n-1}^{2}(x_r)} \right] \]

(3.21)

\[- \frac{Q_{2n}(x)}{18n^2(n-1)^2(1 - x^2)^2 P_{n-1}^{2}(x_r)} \]

and \(D_1(x), D_n(x)\) and \(D_v(x)\) are the polynomials each of degree \(\leq 4n-1\) given by (3.1), (3.2) and (3.3).

\[A_1(x) = l_1^4(x) + \frac{\pi_n(x)}{4\pi'(1)} \left[l_1(x) l_1'(x) - (9l_1''(1) + 10l_1^2(1)) v_1(x) \right] \]

\[- \frac{17l_1'(1) u_1(x)}{1536} - \frac{n(n-1)}{1536} (804n^6 - 1913n^5 - 1049n^4 + 5353n^3) \]

(3.22)

\[- 1215n^2 + 744n - 864) D_1(x) + \frac{n(n-1)}{1536} (653n^6 - 1959n^5 \]

\[+ 3035n^4 - 2805n^3 + 1352n^2 - 276n - 1440) D_n(x), \]

where
CONVERGENCE OF INTERPOLATORY POLYNOMIALS

(3.23) \[\psi(x) = \frac{\pi_n(x)}{\pi'_n(x)} \left\{ r_1(x) + \frac{(n-2)(n+1)}{48n(n-1)} - \frac{Q'_{2n}(x)}{32n(n-1)} \right\}, \]

\[A_n(x) = l^4_n(x) + \frac{\pi_n(x)}{4\pi'_n(-1)} \left[l^2_n(x)l'_n(x) - (9l''_n(-1) + 10l''^2(-1))v_n(x) \right. \]

\[\left. - 17l'_n(-1)u_n(x) \right\] \]

(3.24) \[+ \frac{n(n-1)}{1536} (653n^6 - 1959n^5 + 3035n^4 \]

\[- 2805n^3 + 1352n^2 - 276n - 1440)D_1(x) \]

\[- \frac{n(n-1)}{1536} (804n^6 - 1913n^5 - 1049n^4 + 5353n^3 - 1215n^2 \]

\[+ 744n - 864)D_n(x), \]

where

(3.25) \[v_n(x) = \frac{\pi_n(x)}{\pi'_n(-1)} \left\{ r_n(x) + \frac{(n-2)(n+1)}{48n(n-1)} - \frac{Q'_{2n}(x)}{32n(n-1)} \right\}. \]

4. For our purposes we shall need some other representations of \(A_n(x), B_n(x), C_n(x) \) and \(D_n(x) \).

Using the integral

(4.1) \[\int_{-1}^{1} \frac{P_{n-1}(t)}{t-x_v} dt = \frac{2x_v}{1 - x_v^2} - \frac{2}{1 - x_v^2} \cdot \frac{1}{P_{n-1}(x_v)} \]

we have for \(v = 2, 3, \cdots, n-1 \),

(a) \[D_n(x) = \frac{\pi_n(x)}{24P''_{n-1}(x_v)\pi'_n(x_v)} \left[\int_{-1}^{1} \frac{P_{n-1}(t)}{t-x_v} dt - \left\{ \frac{x_v}{1 - x_v^2} \right\} P_{n-1}(x) - \frac{2 + 3x_v}{3(1 - x_v^2)} + \frac{1}{(1 - x_v^2)P_{n-1}(x_v)} \right], \]

and

(b) Since \(Q'_{2n}(1) = 2n^2(n - 1)^2 = Q''_{2n}(-1) \), and \(Q''_{2n}(x_v) = 2\pi''_n(x_v) \) we have from (3.4), (3.8), (3.6), (1.3) and (5.3)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[C_1(x) = \frac{\pi_n^2(x)}{2n^2(n-1)^2} \left[r_1(x) + \left\{ \frac{5}{72} - \frac{1}{18n(n-1)} \right\} \pi_n(x) + \frac{1}{8} P_{n-1}(x) \pi_n(x) \right], \]

\[C_n(x) = \frac{\pi_n^2(x)}{2n^2(n-1)^2} \left[r_n(x) - \left\{ \frac{5}{72} - \frac{1}{18n(n-1)} \right\} \pi_n(x) - \frac{1}{8} P_{n-1}(x) \pi_n(x) \right], \]

and for \(2 \leq n \leq n-1, \)

\[C_r(x) = \frac{\pi_n^2(x)}{2n^2(n-1)^2} \left[r_r(x) + \frac{2n(n-1)}{3(1-x_n^2)} \rho_r(x) + \frac{2\pi_n(x)}{9n(n-1)(1-x_n^2) P_{n-1}(x)} \left\{ 2 - \frac{P_{n-1}(x)}{P_{n-1}(x_r)} \right\} \right]. \]

(c) To simplify \(B_1(x) \) and \(B_n(x) \) we use the following results [1]:

\[\pi_n'(1) = -n(n-1) = (-1)^{n-1} \pi_n'(-1), \]
\[\pi_n''(1) = -\frac{n^2(n-1)^2}{2} = (-1)^n \pi_n''(-1), \]

and then we have

\[B_1(x) = -\frac{\pi_n(x)}{n(n-1)} \left[u_1(x) + \frac{n(n-1)}{576} \left(73n^4 - 146n^3 + 137n^2 - 64n + 12 \right) \omega_n(x) \right], \]

\[+ \frac{n(n-1)}{576} \left(71n^4 - 142n^3 + 151n^2 - 80n - 12 \right) \omega_1(x) \]

\[+ \frac{n(n-1)}{2} C_1(x). \]

\[B_n(x) = \frac{\pi_n(x)}{n(n-1)} \left[u_n(x) - \frac{n(n-1)}{576} \left(73n^4 - 146n^3 + 137n^2 - 64n + 12 \right) \omega_1(x) \right], \]

\[- \frac{n(n-1)}{576} \left(71n^4 - 142n^3 + 151n^2 - 80n - 12 \right) \omega_n(x) \]

\[- \frac{n(n-1)}{2} C_n(x). \]
From (3.17), (3.12), (3.13) etc. we have for \(2 \leq \nu \leq n-1\),

\[
B_{\nu}(x) = \frac{\pi_n(x)}{n(n-1)P_{n-1}(x)}
\]

\[
(4.9) \quad \left[\begin{array}{c}
\nu_{\nu}(x) + \frac{n(n-1)x_{\nu}}{(1-x_{\nu}^2)^2} \omega_{\nu}(x) - \frac{x_{\nu}^2 \pi_n(x)}{180(1-x_{\nu}^2)n^2(n-1)^2P_{n-1}^3(x_{\nu})}
\end{array} \right]
\]

\[
\cdot \left\{ \begin{array}{c}
\frac{10}{1 - x_{\nu}^2} + \frac{P_{n-1}(x)}{P_{n-1}(x_{\nu})} \left(\frac{3}{1 - x_{\nu}^2} + 12 \right)
\end{array} \right\}.
\]

(d) To simplify \(A_1(x)\) and \(A_n(x)\) we need the following results which are easy to verify from (3.9a) (see [4]).

\[
l'_1(1) = \frac{n(n-1)}{4}, \quad l'_n(-1) = -\frac{n(n-1)}{4},
\]

\[
l_{1'}(1) = \frac{(n-2)(n+1)}{6} l'_1(1), \quad l_n''(-1) = -\frac{(n-2)(n+1)}{6} l_n'(-1).
\]

Thus we have

\[
A_1(x) = \frac{3}{4} l_1^4(x) + \frac{1}{4} P_{n-1}(x)l_1^3(x)
\]

\[
+ \frac{\pi_n(x)}{16} \left\{ (4n^2 - 4n - 3)v_1(x) - 17u_1(x) \right\}
\]

\[
(4.10) \quad - \frac{n(n-1)}{1536} (804n^6 - 1913n^5 - 1049n^4 + 5353n^3 - 1215n^2
\]

\[
+ 744n - 864) D_1(x)
\]

\[
+ \frac{n(n-1)}{1536} (653n^6 - 1559n^5 + 3035n^4 - 2805n^3 + 1352n^2
\]

\[
- 276n - 1440) D_n(x).
\]

\[
A_n(x) = \frac{3}{4} l_n^4(x) - \frac{1}{4} P_{n-1}(x)l_n^3(x)
\]

\[
- \frac{\pi_n(x)}{16} \left\{ (4n^2 - 4n - 3)v_n(x) - 17u_n(x) \right\}
\]

\[
+ \frac{n(n-1)}{1536} (653n^6 - 1559n^5 + 3035n^4 - 2805n^3 + 1352n^2
\]

\[
- 276n - 1440) D_1(x)
\]

\[
- \frac{n(n-1)}{1536} (804n^6 - 1913n^5 - 1049n^4 + 5353n^3 - 1215n^2
\]

\[
+ 744n - 864) D_n(x).
\]
Since \(l''(x_0) = \frac{-n(n-1)}{3(1-x^2)} \) (see [5]), a little calculation shows that

\[
A_n(x) = \frac{3}{4} l_n'(x) + \frac{1}{4} \frac{P_{n-1}(x)}{P_{n-1}(x_v)} l_n'(x_v) - \frac{3}{4} \frac{\pi_n(x) r_n(x)}{(1-x^2) P_{n-1}(x_v)}
\]

\[
+ \frac{\pi_n(x)}{8n^3(n-1)^2(1-x^2)^2 P_{n-1}(x_v)} \left[\frac{2}{5} \left\{ \frac{5x_r(3 + x_r^2)^2 P_{n-1}(x_v)}{1-x_r^2} + \frac{n(n-1)}{P_{n-1}(x_v)} \right\} P_{n-1}(x)
\]

\[
+ \frac{1}{3} \left\{ \frac{10(1 + 3x_r^2)}{1-x_r^2} + n(n-1) \right\} \right]
\]

\[
+ \frac{3n(n-1)}{(1-x^2)^2} \left\{ -(n-2)(n+1) + \frac{8x_r^2}{1-x_r^2} \right\} D_n(x).
\]

5. We shall use some well-known facts about Legendre polynomials. For \(-1 \leq x \leq 1\) we have [3]

\[
(5.1) \quad |\pi_n(x)| \leq (2n/\pi)^{1/2},
\]

\[
(5.2) \quad |P_m(x)| \leq 1,
\]

the equation

\[
(5.3) \quad (1 - x^2)P_m''(x) - 2xP_m'(x) + m(m + 1)P_m(x) = 0
\]

and for the polynomials \(l_j(x) \)

\[
(5.4) \quad l_j^2(x) \leq \sum_{r=1}^{n} |l_r^2(x)| \leq 1, \quad (-1 \leq x \leq 1, j = 1, 2, \cdots, n).
\]

We shall also use Markov's and S. Bernstein's inequalities according to which, for a polynomial \(g(x) \) of degree \(\leq m \) and real coefficients, we have for \(-1 \leq x \leq 1\)

\[
(5.5) \quad |g'(x)| \leq m^2 \max_{-1 \leq x \leq 1} |g(x)|,
\]

and

\[
(5.6) \quad |g'(x)| \leq m/(1 - x^2)^{1/2} \max_{-1 \leq x \leq 1} |g(x)|
\]

respectively.

The following results have been proved by Turán and Balázs [3].

For \(n = 2, 4, \cdots, \nu = 2, 3, 4, \cdots, n/2 \).

\[
(5.7) \quad |P_{n-1}(x_\nu)| \geq 1/(8\nu\pi)^{1/2},
\]

\[
(5.8) \quad (1-x^2_\nu) \geq \nu^2/4(n-1)^2.
\]

We shall further make use of the estimates of \(\rho_n(x) \) and \(r_\nu(x) \) as obtained by Turán and Balázs [3].
For \(n = 4, 6, \ldots \), and \(-1 \leq x \leq 1\) we have

\begin{align*}
(5.9) \quad |r_1(x)| &< \frac{n}{4} + 2n^{1/2}, \quad |r_n(x)| < \frac{n}{4} + 2n^{1/2}, \\
(5.10) \quad |r_\nu(x)| &\leq 87\pi \left(\frac{n}{\nu} \right)^{1/2}, \quad \text{for } 2 \leq \nu \leq \frac{n}{2}, \\
(5.11) \quad |r_\nu(x)| &\leq 87\pi \left(\frac{n}{n - \nu} \right)^{1/2}, \quad \text{for } \frac{n}{2} + 1 \leq \nu \leq n - 1, \\
|\rho_\nu(x)| &\leq (8\pi)^{1/2} \frac{|I_\nu(x)| (1 - x^2)}{n(n - 1)} \nu^{1/2} + 128\pi \left(\frac{\nu}{n} \right)^{3/2} \frac{1}{(n - 1)^2}, \\
&\text{for } 2 \leq \nu \leq \frac{n}{2},
\end{align*}

\begin{align*}
|(\ref{eqn:5.13})| \quad \rho_\nu(x) &\leq (8\pi)^{1/2} \frac{|I_\nu(x)| (1 - x^2)(n - \nu)^{1/2}}{n(n - 1)} \\
&+ 128\pi \left(\frac{n - \nu}{n} \right)^{3/2} \frac{1}{(n - 1)^2}, \quad \text{for } n/2 + 1 \leq \nu \leq n - 1.
\end{align*}

Lastly we shall require the following results which have been obtained by Dr. A. Sharma and myself \([6]\):

\begin{align*}
(5.14) \quad |w_1(x)| &\leq \frac{1}{n^2(n - 1)^3}, \quad |w_n(x)| \leq \frac{1}{n^2(n - 1)^3}, \\
(5.15) \quad |w_\nu(x)| &\leq \frac{1}{3} \frac{8(2\pi)^{1/2}}{(1 - x^2)} \frac{|I_\nu(x)|}{n^{3/2}(n - 1)^2} \nu + 256\pi \left(\frac{\nu}{n} \right)^2 \frac{1}{(n - 1)^3}, \\
&\text{for } 2 \leq \nu \leq n/2,
\end{align*}

and

\begin{align*}
(5.16) \quad |\omega_\nu(x)| &\leq \frac{1}{3} \frac{8(2\pi)^{1/2}}{(1 - x^2)} \frac{|I_\nu(x)| (n - \nu)}{n^{3/2}(n - 1)^2} + 256\pi \left(\frac{n - \nu}{n} \right)^2 \frac{1}{(n - 1)^3}, \\
&\text{for } n/2 + 1 \leq \nu \leq n - 1.
\end{align*}

\begin{align*}
(5.17) \quad |u_1(x)| &< 3n^{1/2} + 2n, \quad |u_n(x)| < 3n^{1/2} + 2n, \\
|u_\nu(x)| &\leq \frac{128(2\pi)^{1/2} n^{1/2}}{3} \frac{|I_\nu(x)|}{\nu} + 2^{13/2} \left(\frac{n}{\nu^2} \right) + \frac{2}{3} \frac{(2\pi\nu)^{1/2}}{3} \frac{l_\nu(x)}{\nu}, \\
&\text{for } 2 \leq \nu \leq n/2,
\end{align*}
and
\[|u_r(x)| \leq \frac{128(2\pi)^{1/2}}{3} \left| \frac{I_r(x)}{n^{1/2}} \right| + 2^{18} \frac{\pi n}{(n - \nu)^2} + \frac{2(2\pi)^{1/2}}{3} (n - \nu)^{1/2} l_{r_x}^2(x) \]
(5.19)
\[+ \frac{2}{3} \left| l_{r_x}^3(x) \right|, \]
for \(n/2 + 1 \leq \nu \leq n - 1\),

(5.20) \[|v_1(x)| < \frac{4}{n}; \quad |v_n(x)| < \frac{4}{n}, \]

(5.21)
\[|v_r(x)| \leq \frac{981\pi}{n} + \frac{8(2\pi)^{1/2}}{3n^{1/2}(n - 1)} \left(n - \nu \right) |I_r(x)| + \frac{64(2\pi)^{1/2}}{3n^{1/2}(n - 1)^{1/2}}, \]
for \(2 \leq \nu \leq n/2\),

(5.22)
\[|v_r(x)| \leq \frac{981\pi}{n} + \frac{8(2\pi)^{1/2}}{3n^{1/2}(n - 1)} \left(n - \nu \right) |I_r(x)| + \frac{64(2\pi)^{1/2}}{3n(n - \nu)^{1/2}}, \]
for \(n/2 + 1 \leq \nu \leq n - 1\).

6. Investigation of the fundamental polynomials of the fourth kind. In this section we shall estimate the quantity
\[\sum_{r=1}^{n} |D_r(x)|. \]
For \(n=4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\),
(6.1) \[|D_1(x)| \leq \frac{1}{n^{5/2}(n - 1)^4}, \quad |D_n(x)| \leq \frac{1}{n^{5/2}(n - 1)^4}. \]
For the further fundamental polynomials we have

Lemma 6.1. For \(n=4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have
\[|D_r(x)| \leq \frac{4(8\pi)^{1/2}}{3} \cdot \frac{1}{n^{5/2}(n - 1)^{3/2}} + 128\pi \left(\frac{\nu}{n} \right)^{5/2} \frac{1}{(n - 1)^4}, \]
for \(2 \leq \nu \leq n/2\),
\[|D_r(x)| \leq \frac{4(8\pi)^{1/2}}{3} \cdot \frac{1}{n^{5/2}(n - 1)^{3/2}} + 128\pi \left(\frac{n - \nu}{n} \right)^{5/2} \frac{1}{(n - 1)^4}, \]
for \(n/2 + 1 \leq \nu \leq n - 1\).

Proof. Obviously it suffices to prove the first assertion. First let \(x < x_r < 1\). Since
\[\left| \int_{-1}^{x} \frac{P_n(t)}{t - x_r} dt \right| = \frac{P_n(x)}{x - x_r} - \frac{1}{1 + x_r} + \int_{-1}^{x} \frac{P_n(t)}{(t - x_r)^2} dt, \]
we have owing to (5.2)

$$\left| \int_{-1}^{x} \frac{P_{n-1}'(t)}{t-x} \, dt \right| \leq \frac{2}{x_r-x} + \frac{1}{1+x_r} < 2 \left(\frac{1}{x_r-x} + \frac{1}{1-x_r^2} \right).$$

Then (4.2) gives, owing to (3.9a) and (5.2),

$$|D_r(x)| \leq \frac{1}{12} \frac{\pi_n(x)}{\pi_n'(x)} \left| l_r(x) \right| \left| P''_{n-1}(x) \right| + \frac{1}{2} \frac{\pi_n(x)}{\pi_n'(x)} \left| l''_{n-1}(x) \right| \cdot \frac{1}{(1-x_r^2)} \left| P_{n-1}(x) \right|.$$

(6.4)

Since from (5.3) $(1-x_r^2)P''_{n-1}(x) = -n(n-1)P_{n-1}(x)$ and from (1.3)

$$\pi_n(x) = -n(n-1)P_{n-1}(x),$$

we have from (6.4), owing to (5.1) and (5.7)

$$|D_r(x)| \leq \frac{4(8\pi)^{1/2}}{3} \frac{\pi_n(x)}{n^2(n-1)} \left| l_r(x) \right| \left(1-x_r^2 \right)^{3/2} + 128\pi \left(\frac{n}{n} \right)^{5/2} \frac{1}{(n-1)^4}.$$

For $-1<x_r<1$ the estimate runs similarly, since we have again

$$\left| \int_{-1}^{x} \frac{P_{n-1}'(t)}{t-x} \, dt \right| < 2 \left(\frac{1}{x-x_r} + \frac{1}{1-x_r^2} \right).$$

For $x=x_r$ the lemma obviously holds. From Lemma 6.1, we can deduce

Lemma 6.2. We have for $n=4, 6, 8, \cdots$ and $-1 \leq x \leq 1$ the estimation

$$\sum_{r=1}^{n} |D_r(x)| \leq \frac{97\pi}{n^2}.$$

Proof. From (6.1) and Lemma 6.1 we obtain

$$\sum_{r=1}^{n} |D_r(x)| \leq \frac{2}{n^5(n-1)^4} + \frac{4(8\pi)^{1/2}}{3} \frac{1}{n^2(n-1)^2} \left[\sum_{r=1}^{n/2} \left| l_r(x) \right| + \sum_{r=n/2+1}^{n-1} (n-r)^{3/2} \left| l_r(x) \right| \right] + \frac{80\pi}{n^3} \left(\sum_{r=1}^{n/2} \left| l_r(x) \right| \right)^{1/2} \left(\sum_{r=1}^{n/2} l_r^2(x) \right)^{1/2}$$

$$< \frac{81\pi}{n^3} + \frac{16\pi}{n^3} = \frac{97\pi}{n^3}. $$
7. Investigation of the fundamental polynomials of the third kind. We have the following

Lemma 7.1. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) the estimation

\[
| C_1(x) | < \frac{1}{(n - 1)^2}, \quad | C_n(x) | < \frac{1}{(n - 1)^2}
\]

hold.

Proof. It is enough to consider \(C_1(x) \) only. Knowing the estimates of \(r_1(x) \) (5.9), we have from (4.4), using (5.1) and (5.2)

\[
| C_1(x) | \leq \frac{1}{\pi n(n - 1)^2} \left(\frac{n}{4} + 2n^{1/2} + \left(\frac{2n}{\pi} \right)^{1/2} \right) < \frac{1}{(n - 1)^2}.
\]

Further we have

Lemma 7.2. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have

\[
| C_\nu(x) | \leq \frac{8}{n(n - 1)^2} \left\{ 230\pi (n\nu)^{1/2} + \frac{2(8\pi)^{1/2}}{3} | l_\nu(x) | \nu^{3/2} \right\} \quad \text{for } 2 \leq \nu \leq n/2
\]

and

\[
| C_\nu(x) | \leq \frac{8}{n(n - 1)^2} \left\{ 230\pi (n(\nu - \nu))^{1/2} + \frac{2(8\pi)^{1/2}}{3} | l_\nu(x) | (\nu - \nu)^{3/2} \right\}
\]

for \(n/2 + 1 \leq \nu \leq n - 1. \)

Proof. We confine ourselves to the case \(2 \leq \nu \leq n/2. \) From (4.6), using the estimates of \(r_\nu(x) \) and \(\rho_\nu(x) \) in (5.10) and (5.12), and also using (5.1), (5.2), (5.7) and (5.8) we have

\[
| C_\nu(x) | \leq \frac{\pi_\nu(x)^2}{2n^2(n - 1)^2 \pi_{n-1}(x_\nu)} \left[| r_\nu(x) | + | \rho_\nu(x) | \frac{2n(n - 1)}{3(1 - x_\nu^2)} \right.
\]

\[
+ \frac{2}{3} \frac{\pi_\nu(x)}{n(n - 1)(1 - x_\nu^2)} \left| P_{n-1}^2(x_\nu) \right|
\]

\[
\approx \frac{8\nu}{n(n - 1)^2} \left\{ 87\pi \left(\frac{n}{\nu} \right)^{1/2} + \frac{2(8\pi)^{1/2}}{3} | l_\nu(x) | \nu^{1/2} \right. \bigg]
\]

\[
\bigg. \quad + 107 \frac{\nu^{3/2}}{n^{1/2}(n - 1)(1 - x_\nu^2)} \right\}
\]

\[
< \frac{8}{n(n - 1)^2} \left\{ 230\pi (n\nu)^{1/2} + \frac{2(8\pi)^{1/2}}{3} | l_\nu(x) | \nu^{3/2} \right\}.
\]

From Lemma 7.1 and Lemma 7.2 it follows
Lemma 7.3. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have the estimation

\[
\sum_{r=1}^{n} |C_r(x)| \leq \frac{9368}{n}.
\]

Proof.

\[
\sum_{r=1}^{n} |C_r(x)| \leq \frac{2}{(n-1)^2} + \frac{1840\pi}{n^{1/2}(n-1)^2} \left(\sum_{r=2}^{n/2} \nu^{1/2} + \sum_{r=n/2+1}^{n-1} (n-\nu)^{1/2} \right)
\]
\[
+ \frac{16(8\pi)^{1/2}}{3n(n-1)^2} \left(\sum_{r=2}^{n/2} |l_r(x)| \nu^{3/2} + \sum_{r=n/2+1}^{n-1} |l_r(x)| (n-\nu)^{3/2} \right)
\]
\[
< \frac{2}{(n-1)^2} + \frac{3680\pi}{n^{1/2}(n-1)^2} \sum_{r=1}^{n/2} \nu^{1/2} + \frac{32(8\pi)^{1/2}}{3n(n-1)^2} \left(\sum_{r=1}^{n/2} \nu^3 \right)^{1/2} \left(\sum_{r=1}^{n} l_r^2(x) \right)^{1/2}
\]
\[
< \frac{2}{(n-1)^2} + \frac{1840\pi}{2^{1/2}n(n-1)^2} \cdot \frac{n}{(n-1)^2} + \frac{4(8\pi)^{1/2}}{3} \cdot \frac{n+2}{(n-1)^2} < \frac{9368}{n}.
\]

8. Investigation of the fundamental polynomials of the second kind. In this section we shall estimate the quantity

\[
\sum_{r=1}^{n} |B_r(x)|.
\]

We need

Lemma 8.1. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\)

\[
|B_1(x)| \leq 4; \quad |B_n(x)| \leq 4.
\]

Proof. From (4.7), (5.1), (5.14), (5.17), and (7.1)

\[
|B_1(x)| \leq \left(\frac{2n}{\pi} \right)^{1/2} \cdot \frac{1}{n(n-1)} \left\{ 3n^{1/2} + 2n + \frac{5}{12} \cdot \frac{n^6}{n^2(n-1)^3} \right\} + \frac{n}{2(n-1)}
\]
\[
< \frac{3}{n^{1/2}(n-1)} \left(n^{1/2} + n \right) + \frac{n}{2(n-1)} < 4.
\]

Similarly \(|B_n(x)| \leq 4. \) For the further fundamental polynomials we have

Lemma 8.2. For \(n = 4, 6, 8, \ldots, -1 \leq x \leq 1 \) we have

\[
|B_r(x)| \leq \frac{4}{n^{1/2}(n-1)} \left[160 |l_r(x)| \left(\frac{n}{\nu} \right)^{1/2} + k_{19} \frac{n}{\nu^{3/2}} + 2\nu \cdot l_r^2(x) + \nu^{1/2} \right],
\]

for \(2 \leq \nu \leq n/2, \)

and
\[|B_\nu(x)| \leq \frac{4}{n^{1/2} (n-1)} \left[160 \left| l_\nu(x) \right| \left(\frac{n}{n-\nu} \right)^{1/2} + k_{19} \frac{n}{(n-\nu)^{3/2}}
 + 2(n-\nu) l^2_\nu(x) + (n-\nu)^{1/2} \right], \quad \text{for } n/2 + 1 \leq \nu \leq n-1. \]

Proof. Again we confine ourselves to prove the first assertion. From (4.9) using (5.15), (5.18) we have for \(2 < \nu \leq n/2\)
\[
|B_\nu(x)| \leq \frac{1}{n(n-1)} \left| \pi_n(x) \right| \left[\frac{128(2\pi)^{1/2}}{3} \frac{l_\nu(x)}{\nu} + \frac{2^{13}\pi n}{\nu^2} \right.
+ \frac{2(2\pi)^{1/2}}{3} \nu^{1/2} l^2_\nu(x) + \frac{2}{3} \left| l^3_\nu(x) \right| + \frac{8(2\pi)^{1/2}}{3} \nu^{1/2} \left| l_\nu(x) \right| \nu \right.
\left. + \frac{256\nu^2}{n(n-1)^2(1-x^2_\nu)^2} + \frac{\pi_n^2(x)}{180(1-x^2_\nu)n^2(n-1)^2} \left| P^2_{n-1}(x_\nu) \right| \right]
\left. \cdot \left\{ 10 \left(\frac{3}{1-x^2_\nu} + \frac{\left| P_{n-1}(x_\nu) \right|}{\left| P_{n-1}(x_\nu) \right|} \left(12 + \frac{3}{1-x^2_\nu} \right) \right) \right\}. \right]
\]

Then using (5.1), (5.2), (5.4), (5.7) and (5.8) we have
\[
|B_\nu(x)| \leq \frac{4\nu^{1/2}}{n^{1/2} (n-1)} \left[\frac{128(2\pi)^{1/2}}{3} \frac{l_\nu(x)}{\nu} \cdot n^{1/2} + \frac{2^{13}\pi n}{\nu^2} + \frac{2(2\pi)^{1/2}}{3} \nu^{1/2} l^2_\nu(x)
+ \frac{2}{3} \left| l^3_\nu(x) \right| + \frac{32(2\pi)^{1/2}}{3} \frac{l_\nu(x)}{\nu^2} \cdot (n-1) \nu^{1/2}
+ 2^{12} \cdot \frac{\pi(n-1)^2}{n\nu^2} + \frac{10.2^8}{9} \frac{(n-1)^2}{\nu^2} \right]
\leq \frac{4\nu^{1/2}}{n^{1/2} (n-1)} \left[1 + 160n^{1/2} \cdot \frac{l_\nu(x)}{\nu} + k_{19} \frac{n}{\nu^2} + 2 \nu^{1/2} l^2_\nu(x) \right],
\]
since
\[
\frac{10}{1-x^2_\nu} + \frac{\left| P_{n-1}(x_\nu) \right|}{\left| P_{n-1}(x_\nu) \right|} \left(12 + \frac{3}{1-x^2_\nu} \right) \leq \frac{25}{(1-x^2_\nu) \left| P_{n-1}(x_\nu) \right|}.
\]

From Lemma 8.1 and Lemma 8.2 it follows

Lemma 8.3. For \(n=4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have the estimation
\[
\sum_{\nu=1}^{n} |B_\nu(x)| \leq k_{23}.
\]
Proof. From Lemma 8.1 and Lemma 8.2.

\[\sum_{r=1}^{n} |B_r(x)| \leq 8 + \sum_{r=2}^{n-1} |B_r(x)| \leq 8 + \frac{640}{n-1} \left[\sum_{r=2}^{n/2} \frac{|L_r(x)|}{\nu^{1/2}} + \sum_{r=n/2+1}^{n-1} \frac{|L_r(x)|}{(n-\nu)^{1/2}} \right] \]

\[\quad + \frac{4n^{1/2}}{n-1} \left(\sum_{r=2}^{n/2} \nu^{-3/2} + \sum_{r=n/2+1}^{n-1} (n-\nu)^{-3/2} \right) \]

\[\quad + \frac{8}{n^{1/2}(n-1)} \left[\sum_{r=2}^{n/2} \nu^2 l_r(x) + \sum_{r=n/2+1}^{n-1} (n-\nu) l_r(x) \right] \]

\[\quad + \frac{4}{n^{1/2}(n-1)} \left[\sum_{r=2}^{n/2} \nu^{1/2} + \sum_{r=n/2+1}^{n-1} (n-\nu)^{1/2} \right] \]

\[< 8 + \frac{1280}{n-1} \left(\sum_{r=1}^{n/2} \frac{1}{\nu} \right)^{1/2} \left(\sum_{r=1}^{n} l_r(x) \right)^{1/2} \]

\[+ \frac{k_{20}}{n^{1/2}} \left(\sum_{r=1}^{n/2} \nu^2 \right)^{1/2} \left(\sum_{r=1}^{n} l_r(x) \right)^{1/2} + \frac{8}{n-1} \left(\sum_{r=1}^{n/2} \nu \right)^{1/2} \]

\[< k_{21} \log n + \frac{k_{20}}{n^{1/2}} + k_{22} < k_{23}. \]

9. Investigation of the fundamental polynomials of the first kind. Here we shall estimate the quantity

\[\sum_{r=1}^{n} |A_r(x)|. \]

We prove

Lemma 9.1. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have

\[|A_1(x)| \leq 16n^{3/2}; \quad |A_n(x)| \leq 16n^{3/2}. \]

Proof. From (4.10), (5.20), (5.17), (6.1), (5.1), (5.2) and (5.4) we at once get

\[|A_1(x)| \leq 1 + \frac{1}{16} \left(\frac{2n}{\pi} \right)^{1/2} \left(6n^2 \cdot \frac{4}{n} + 17(3n^{1/2} + 2n) \right) + \frac{5n^8}{2n^{5/2}(n-1)^4} \]

\[< 1 + \frac{84n^{3/2}}{16} + 10n^{3/2} < 16n^{3/2}. \]

Lemma 9.2. For \(n = 4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have

\[|A_r(x)| \leq k_1 + k_2 \nu^{1/2} + k_3 \left(\frac{n}{\nu} \right)^{3/2} + k_4 n \frac{|l_r(x)|}{\nu^{1/2}}, \quad \text{for } 2 \leq \nu \leq \frac{n}{2}, \]

and
(9.2) \[|A_\nu(x)| \leq k_1 + k_2(n - \nu)^{1/2} + k_3 \left(\frac{n}{n - \nu} \right)^{3/2} + k_4 n \left(\frac{L_\nu(x)}{n - \nu} \right)^{1/2} \]

for \(n/2 + 1 \leq \nu \leq n - 1 \).

Proof. As before we shall prove the first assertion. From (4.12), (6.1), (6.2) etc. we have

\[
|A_\nu(x)| \leq \frac{3}{4} + \frac{1}{4} \left(8\nu \pi \right)^{1/2} + \frac{12n^{3/2}}{\nu^{3/2}} |v_\nu(x)| + 192 \left(\frac{n}{\nu} \right)^{3/2} \]

\[
+ 32\pi \left(2 + \frac{32}{\nu^2} \right) \left[n \cdot \frac{l_\nu(x)}{\nu^{1/2}} + \frac{2(8\pi)^{1/2}}{5\nu^{3/2}} \right] + 256(2\pi)^{1/2} \left[\frac{86}{\nu^4} + \frac{1}{\nu^2} + \frac{2(8\pi)^{1/2}}{5\nu^{3/2}} \right] n^{3/2}.
\]

Using (5.21), we get

\[
|A_\nu(x)| \leq k_1 + k_2 \nu^{1/2} + k_3 \left(\frac{n}{\nu} \right)^{3/2} + k_4 n \cdot \frac{l_\nu(x)}{\nu^{1/2}}, \quad \text{for } 2 \leq \nu \leq n/2,
\]

with numerical \(k_1, k_2, k_3 \) and \(k_4 \).

From Lemma 9.1 and Lemma 9.2 it follows

Lemma 9.3. For \(n=4, 6, 8, \ldots \) and \(-1 \leq x \leq 1\) we have

\[
\sum_{r=1}^{n} |A_r(x)| \leq k_6 n^{3/2}.
\]

Proof.

\[
\sum_{r=1}^{n} |A_r(x)| \leq 32n^{3/2} + (n - 3)k_1 + k_2 \left\{ \sum_{r=2}^{n/2} \nu^{1/2} + \sum_{r=n/2+1}^{n-1} (n - \nu)^{1/2} \right\}
\]

\[
+ k_3 \left[\sum_{r=2}^{n/2} \left(\frac{n}{\nu} \right)^{3/2} + \sum_{r=n/2+1}^{n-1} \left(\frac{n}{n - \nu} \right)^{3/2} \right]
\]

\[
+ k_4 \cdot n \left[\sum_{r=2}^{n/2} \frac{|l_r(x)|}{\nu^{1/2}} + \sum_{r=n/2+1}^{n-1} \frac{|l_r(x)|}{(n - \nu)^{1/2}} \right]
\]

\[
\leq k_6 \cdot n^{3/2} + k_4 \cdot 2n \left(\sum_{r=1}^{n/2} \frac{1}{\nu} \right)^{1/2} \left(\sum_{r=1}^{n} l_r^2(x) \right)^{1/2} < k_6 n^{3/2}.
\]

10. **Lemmas on Jackson means.** Let \(\phi(\theta) \) have the period \(2\pi \), then the Jackson means of \(\phi(\theta) \) is
An alternative form of $J_n(\theta, \phi)$ is well-known:

\begin{equation}
J_n(\theta, \phi) = \frac{3}{\pi n(2n^2 + 1)} \int_0^{\pi/2} \left(\phi(\theta + 2t) + \phi(\theta - 2t) \right) \frac{\sin nt}{\sin t} \, dt.
\end{equation}

From (10.2) it follows

\begin{equation}
1 = \frac{6}{\pi n(2n^2 + 1)} \int_0^{\pi/2} \frac{\sin nt}{\sin t} \, dt.
\end{equation}

Under the hypothesis in our theorem, if $\phi(\theta)$ is continuously derivable in $[-1, 1]$, and $\omega_1(\delta)$, the modulus of continuity of $\phi'(\theta)$ satisfying the condition that

\begin{equation}
\int_0^\pi \frac{\omega_1(\delta)}{\delta^{3/2}} \, d\delta
\end{equation}

exists, then we can prove the following modification of Balázs-Turán's Lemma (5.1) in [3].

Lemma 10.1 If $\phi(\theta)$ is everywhere continuously derivable and satisfies the condition (10.4) then for an arbitrary $\epsilon > 0$ we have for $n > n_0(\epsilon)$

$$|\phi(\theta) - J_n(\theta, \phi)| \leq \epsilon/n^{3/2}.$$

From this we at once have

Lemma 10.2. Let

$$\Phi(\theta) = \int_0^\theta \phi(\theta) \sin \theta \, d\theta,$$

then

$$|\Phi(\theta) - \int_0^\theta J_n(\theta, \phi) \sin \theta \, d\theta| < (\epsilon/n^{3/2})(1 - \cos \theta).$$

Now let $f(x)$ be continuously derivable of order 2 in $[-1, 1]$ and

\begin{equation}
\phi(\theta) = f'(\cos \theta).
\end{equation}

Let $\omega(\delta)$ be the continuity module of $f''(x)$ for $-1 \leq x \leq 1$ with existing

$$\int_0^{\pi/2} \frac{\omega(\delta)}{\delta^{3/2}} \, d\delta.$$
If \(\max_{-1 \leq x \leq 1} |f''(x)| = M \) then denoting the continuity module of \(\phi'(\theta) \) by \(\omega_1(\delta) \) we have

\[
\omega_1(\delta) = \max_{|\theta'' - \theta'| \leq \delta} \left| \left[\frac{d}{d\theta} \phi(\theta) \right]_{\theta = \theta''} - \left[\frac{d}{d\theta} \phi(\theta) \right]_{\theta = \theta'} \right|
\]

\[
= \max_{|\theta'' - \theta'| \leq \delta} \left| \left[\frac{d}{d\theta} f'(\cos \theta) \right]_{\theta = \theta''} - \left[\frac{d}{d\theta} f'(\cos \theta) \right]_{\theta = \theta'} \right|
\]

\[
\leq \omega(\delta) + M\delta,
\]

i.e., the integral

\[
(10.5) \quad \int_0^{\theta_{3/2}} \frac{\omega(\theta)}{\theta^{3/2}} \, d\theta
\]

exists.

We consider the polynomials \(J_n(\theta, \phi) \) belonging to \(\phi(\theta) = f'(\cos \theta) \). Since \(\phi(\theta) \) is now even, \(J_n(\theta, \phi) \) is a pure cosine polynomial of order \(2n - 2 \) i.e., \(J_n(\text{arc cos } x, \phi) = \pi_{2n-2}(x) \) is a rational polynomial of degree \((2n - 2) \) and

\[
\pi_{2n-2}(x) = \frac{3}{\pi n(2n^2 + 1)} \int_0^{\pi/2} \phi(\text{arc cos } x + 2t) \{ \sin nt \}^4 \, dt.
\]

(10.6)

Lemma 10.1 gives for \(-1 \leq x \leq 1\), arbitrary small \(\epsilon > 0 \) and \(n > n_1(\epsilon) \)

\[
| \pi_{2n-2}(x) - f'(x) | = \epsilon / n^{3/2}.
\]

(10.7)

Putting

\[
(10.8) \quad P_{2n-1}(x) = \int_1^x \pi_{2n-2}(x) \, dx.
\]

Lemma 10.2 at once gives for \(-1 \leq x \leq 1\), arbitrary small \(\epsilon > 0 \) and \(n > n_2(\epsilon) \)

\[
| P_{2n-1}(x) - f(x) + f(1) | < 2\epsilon / n^{3/2}.
\]

(10.9)

Differentiating (10.6) one times according to \(x \) we get

\[
\pi_{2n-2}'(x) = -\frac{3}{\pi n(2n^2 + 1)(1 - x^2)^{1/2}} \int_0^{\pi/2} \phi'(u) \left\{ \frac{d\phi(u)}{du} \right\}_{u = \text{arc cos } x + 2t} \{ \sin nt \}^4 \, dt.
\]

(10.10)
From (10.10) we have the

Lemma 10.3. For \(-1 < x < 1\), we have for \(n > n_3(\epsilon)\) for the \(\pi_{2n-2}(x)\) defined in (10.6) the estimation

\[
\left| \pi'_{2n-2}(x) \right| \leq \frac{1}{(1 - x^2)^{1/2}} \cdot \max \theta \left| \frac{df'(\cos \theta)}{d\theta} \right|.
\]

Proof. Denoting

\[
\max \theta \left| \frac{df'(\cos \theta)}{d\theta} \right| = M_1,
\]

we have from (10.10) and (10.3)

\[
(10.11) \quad \left| \pi'_{2n-2}(x) \right| \leq \frac{M_1}{(1 - x^2)^{1/2}} \cdot \frac{6}{\pi n(2n^2 + 1)} \int_0^{\pi/2} \left(\frac{\sin n t}{\sin t} \right)^4 d t = \frac{M_1}{(1 - x^2)^{1/2}}.
\]

Lemma 10.3 does not give any information for \(x = \pm 1\). This is given by

Lemma 10.4. We have for the \(\pi_{2n-2}(x)\) defined in (10.6) the estimation

\[
\left| \pi'_{2n-2}(\pm 1) \right| \leq k_1 n^{1/2}.
\]

The proof of this Lemma is obvious from Lemma 5.3 in [3].

The following Lemmas have been proved exactly as by Turán and Balázs [3].

Lemma 10.5. For \(-1 < x < 1\) we have for \(n > n_4(\epsilon)\) for \(\pi_{2n-2}(x)\) defined in (10.6) the estimation

\[
\left| \pi''_{2n-2}(x) \right| \leq \frac{1}{(1 - x^2)^{3/2}} \cdot \max \theta \left| \frac{df'(\cos \theta)}{d\theta} \right| + \frac{e n^{1/2}}{(1 - x^2)^{3/2}}.
\]

Lemma 10.6. We have for the \(\pi_{2n-2}(x)\) defined in (10.6) the estimation

\[
\left| \pi''_{2n-2}(\pm 1) \right| \leq k_7 n^{5/2}.
\]

From Lemma 10.5 and using the S. Bernstein's inequality (5.6) we have for \(-1 < x < 1\) for \(\pi_{2n-2}(x)\) defined in (10.6) the estimation

\[
(10.12) \quad \left| \pi'''_{2n-2}(x) \right| \leq \frac{2n}{(1 - x^2)^2} \cdot \max \theta \left| \frac{df'(\cos \theta)}{d\theta} \right| + \frac{e n^{3/2}}{(1 - x^2)^{3/2}}.
\]

From Lemma 10.6 and using Markov's inequality (5.5) we have

\[
(10.13) \quad \left| \pi''''_{2n-2}(\pm 1) \right| \leq k_8 n^{9/2}.
\]

11. **The proof of the theorem.** The lemmas given before very easily prove
our theorem. Owing to the uniqueness theorem in [5] we have for the polynomials $P_{2n-1}(x)$ in (10.8)

$$
P_{2n-1}(x) = \sum_{r=1}^{n} P_{2n-1}(x_r) A_{vn}(x) + \sum_{r=1}^{n} P'_{2n-1}(x_r) B_{vn}(x)
$$

(11.1)

$$
P_{2n-1}(x) = \sum_{r=1}^{n} P_{2n-1}(x_r) A_{vn}(x) + \sum_{r=1}^{n} \pi_{2n-2}(x_r) B_{vn}(x)
$$

(11.2)

$$
P_{2n-1}(x) = \sum_{r=1}^{n} \pi'(x_r) C_{vn}(x) + \sum_{r=1}^{n} \pi''(x_r) D_{vn}(x).
$$

Hence owing to (11.2), (2.2), (2.4) and the remark that in (2.2)

$$
\sum_{r=1}^{n} A_{vn}(x) = 1
$$

we have for $n > n_0(\epsilon)$

$$
|f(x) - R_n(x,f)| \leq |f(x) - f(1) - P_{2n-1}(x)|
$$

$$
+ \left| \sum_{r=1}^{n} \left[P_{2n-1}(x_r) - f(x_r) + f(1) \right] A_{vn}(x) \right|
$$

$$
+ \sum_{r=1}^{n} \left[\pi_{2n-2}(x_r) - f'(x_r) \right] B_{vn}(x)
$$

$$
+ \sum_{r=1}^{n} \left[\pi'(x_r) - c_{vn} \right] C_{vn}(x)
$$

$$
+ \sum_{r=1}^{n} \left[\pi''(x_r) - d_{vn} \right] D_{vn}(x)
$$

(11.4)

$$
\leq |f(x) - f(1) - P_{2n-1}(x)|
$$

$$
+ \sum_{r=1}^{n} |A_{vn}(x)| \max_{-1 \leq u \leq 1} |f(u) - P_{2n-1}(u) + f(1)|
$$

$$
+ \sum_{r=1}^{n} |B_{vn}| \max_{-1 \leq v \leq 1} |f'(v) - \pi_{2n-2}(v)| + \epsilon n \sum_{r=1}^{n} |C_{vn}(x)|
$$

$$
+ \sum_{r=1}^{n} |\pi'(x_r)| |C_{vn}(x)| + \epsilon n^3 \sum_{r=1}^{n} |D_{vn}(x)|
$$

$$
+ \sum_{r=1}^{n} |\pi''(x_r)| |D_{vn}(x)|.
$$

Using (10.9) and Lemma 9.3 the first two terms tend to 0 uniformly for
−1 ≤ x ≤ 1; so does the third term owing to (10.7) and Lemma 8.3. Similarly fourth and sixth terms tend to 0 uniformly in [−1, 1] owing to Lemma 7.3 and Lemma 6.2 respectively. To estimate the fifth and last terms in (11.4)

\[\sum_{r=1}^{n} |x^{2n-2}(x_{rn})| \cdot |C_{rn}(x)| = S, \]

\[\sum_{r=1}^{n} |x^{2n-2}(x_{rn})| \cdot |D_{rn}(x)| = T, \]

we write owing to (2.1)

\[S = |x^{2n-2}(1)| \cdot |C_{1n}(x)| + |x^{2n-2}(-1)| \cdot |C_{nn}(x)| \]

\[+ \sum_{r=2}^{n-1} |x^{2n-2}(x_{rn})| \cdot |C_{rn}(x)|. \]

Lemma 10.4 and (7.1) obviously give for the first two terms in (11.5) the upper bound \(k_{9}n^{-3/2} \). In order to estimate

\[S_{1} = \sum_{r=2}^{n-1} |x^{2n-2}(x_{rn})| \cdot |C_{rn}(x)| \]

we use Lemma 10.3 and Lemma 7.2. These give

\[|S_{1}| \leq k_{10} \sum_{r=2}^{n-1} \frac{M_{1}}{n(n-1)^{2}(1-x_{rn}^{2})^{1/2}} \left\{ 230\pi(n\nu)^{1/2} + \frac{2(8\pi)^{1/2}}{3} |L_{\nu}(x)| \nu^{1/2} \right\} \]

\[= S'_{1} + S''_{1}. \]

Using (5.8) we have

\[S'_{1} = k_{10} \cdot \frac{230\pi M_{1}}{n^{1/2}(n-1)^{2}} \sum_{r=2}^{n-1} \frac{\nu^{1/2}}{(1-x_{rn}^{2})^{1/2}} \]

\[< \frac{k_{11}}{n^{1/2}(n-1)^{1/2}} \sum_{r=2}^{n-1} \frac{1}{\nu^{1/2}} < \frac{k_{12}}{n^{1/2}}, \]

\[S''_{1} = k_{10} \cdot \frac{2(8\pi)^{1/2}}{3} \cdot M_{1} \cdot \frac{1}{n(n-1)^{2}} \sum_{r=2}^{n-1} \frac{|L_{\nu}(x)| \nu^{1/2}}{(1-x_{rn}^{2})^{1/2}} \]

\[< \frac{k_{13}}{n(n-1)} \sum_{r=2}^{n-1} |L_{\nu}(x)| \nu^{1/2}. \]

The Schwarz's inequality gives

\[S''_{1} < k_{14} \cdot \frac{1}{n(n-1)} \left(\sum_{r=1}^{n} \nu \right)^{1/2} \left(\sum_{r=1}^{n} L_{\nu}(x)^{2} \right)^{1/2} < \frac{k_{14}}{n}. \]

Similarly
\[T = \left| \pi''_{2n-2}(1) \right| \left| D_{1n}(x) \right| + \left| \pi''_{2n-2}(-1) \right| \left| D_{nn}(x) \right| \]
\[+ \sum_{\nu=2}^{n-1} \left| \pi''_{2n-2}(\nu) \right| \left| D_{\nu\nu}(x) \right| . \]

(11.8) and (6.1) give for the first two terms in (11.8) the upper bound \(k_{16}n^{-2} \).

In order to estimate \(T_1 = \sum_{\nu=2}^{n-1} \left| \pi''_{2n-2}(\nu) \right| \left| D_{\nu\nu}(x) \right| \) we use (10.12) and Lemma 6.1. These give

\[T_1 \leq k_{16} \sum_{\nu=2}^{n-1} \left\{ \frac{2M_1}{1-x^2_{\nu n}} + \frac{\epsilon n^{1/2}}{(1-x^2_{\nu n})^{3/2}} \right\} \left(\frac{1}{n(n-1)} \right) \left| l_{\nu n}(x) \right| \]
\[\times \left(\frac{(1-x^2_{\nu n})^{3/2}}{n^2(n-1)^3} + \frac{n^{5/2}}{n^5(n-1)^4} \right) \]
\[= k_{16} \sum_{\nu=2}^{n-1} \left\{ \frac{2M_1}{1-x^2_{\nu n}} + \frac{\epsilon n^{1/2}}{(1-x^2_{\nu n})^{3/2}} \right\} \left| l_{\nu n}(x) \right| \]
\[+ k_{16} \sum_{\nu=2}^{n-1} \left\{ \frac{2M_1}{1-x^2_{\nu n}} + \frac{\epsilon n^{1/2}}{(1-x^2_{\nu n})^{3/2}} \right\} \frac{n^{3/2}}{n^3(n-1)^4} \]
\[= T_1' + T_1'' + T_1''' + T_1''', \]

(11.9)

\[T_1' = k_{16} \frac{2M_1}{n(n-1)^3} \sum_{\nu=2}^{n-1} \left| l_{\nu n}(x) \right| \frac{\nu^{3/2}}{(1-x^2_{\nu n})} \]
\[< 8k_{16} \frac{M_1}{n(n-1)} \sum_{\nu=1}^{n} \left| l_{\nu n}(x) \right| \frac{\nu^{1/2}}{n^2} \]
\[< k_{17} \frac{M_1 \log n}{n^2}. \]

(11.10)

\[T_1'' = k_{16} \frac{\epsilon}{n^{1/2}(n-1)^3} \sum_{\nu=2}^{n-1} \left| l_{\nu n}(x) \right| \frac{\nu^{3/2}}{(1-x^2_{\nu n})^{1/2}} \]
\[< 4k_{16} \frac{\epsilon}{n^{1/2}(n-1)^2} \sum_{\nu=2}^{n} \nu^{1/2} \left| l_{\nu n}(x) \right| , \]

(11.11)

\[T_1''' = k_{16} \frac{2M_1}{n^{3/2}(n-1)^4} \sum_{\nu=2}^{n-1} \left(\frac{1}{(1-x^2_{\nu n})} \right) \frac{n^{5/2}}{\nu^{3/2}} < 16k_{16} \frac{2M_1}{n^{3/2}} \sum_{\nu=2}^{n-1} \left(\frac{1}{\nu^{3/2}} \right) < k_{18} \frac{M_1}{n^{3/2}}, \]

(11.12)

\[T_1'''' = k_{16} \frac{\epsilon}{n(n-1)^4} \sum_{\nu=2}^{n-1} \frac{\nu^{5/2}}{(1-x^2_{\nu n})^{3/2}} < 8k_{16} \frac{\epsilon}{n(n-1)} \sum_{\nu=2}^{n-1} \frac{1}{\nu^{1/2}} < k_{19} \frac{\epsilon}{n} . \]

(11.13)

(11.4) to (11.13) complete the proof of the theorem.

I am grateful to Dr. A. Sharma for his help and guidance in the prepara-
tion of this paper. I am also grateful to the Government of India for the Research Training Scholarship.

References

5. R. B. Saxena, On some interpolatory properties of Legendre polynomials-(0, 1, 2, 4) interpolation, Ph.D. Thesis, Chapter 2, pp. 24–50, Lucknow University.

LUCKNOW, INDIA