ON A CERTAIN CLASS OF OPERATOR ALGEBRAS

BY
JAMES G. GLIMM

Introduction. In this paper we study C*-algebras which are the uniform
closure of strictly ascending sequences of full #X# (#n< ) matrix algebras.
We call these algebras uniformly hyperfinite. Factors of type II; which are
the weak closure of such a sequence were first studied in [4], where it was
proved that all such factors are isomorphic. The algebras we study are not
all isomorphic. In §1 we classify uniformly hyperfinite algebras according to
algebraic type (1.12) and obtain a characterization of these algebras. In §2
we identify the pure states and the pure state space of uniformly hyperfinite
algebras. The w*-closure of the pure states of one of these algebras is the set
of all states of the algebra. This is not the first example of a C*-algebra whose
set of pure states is not closed, cf. [7]. In §3 we classify the irreducible repre-
sentations of uniformly hyperfinite algebras according to unitary equivalence.
In §§4 and 5 we study certain representations of uniformly hyperfinite alge-
bras.

The author is pleased to record his gratitude to Professor R. V. Kadison
for many helpful suggestions, for simplification of several proofs and for pa-
tient supervision of the research in this paper, which is the author’s doctoral
dissertation at Columbia University.

We assume all algebras have a unit (denoted by I). A family
{e;,-: 2, j=1, -+ -, n} of operators on a Hilbert space § (always complex)
is called a family of matrix units if e;jexm =0 for j#k, =em for j=F, if D ;e
=T (the identity operator on §), and if e;;=¢};. If M is the C*-algebra gener-
ated by these matrix units, we say {e;,-} is a family of matrix units for .
If X is a subset of §, we denote by [X] the smallest closed linear subspace
of § containing X. If E is a projection on §, we also denote by E the set
{x:x€9, x=Ex}. A state of a C*-algebra is a positive linear functional f
which satisfies f(I) =1. The set of states of a C*-algebra is convex and w*-
compact. The extreme points are called pure states. If I is a self-adjoint
linear subspace of a C*-algebra A and if 7€, then a state of M is also a
positive normalized linear functional. The (pure) states of I have extensions
to (pure) states of . If 7 is a state of U then there is a representation ¢ of
9 on a Hilbert space §, and an x in §, with7=(-x, x) 0 ¢, and .= [o-()x].
7 is pure if and only if ¢, is irreducible (see [6]). If f(x) is an expression de-
pending upon x and perhaps other variables, we use the notation f(-) to
designate the function x—f(x).
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1. Algebraic classification.

DEeFINITION 1.1. Let U be a C*-algebra. U is called uniformly hyperﬁmte
(UHF) of type {p:} if there is a sequence of factors {Mi:i=1, 2, -} in
A with the following properties:

(1) M, is of type I,,,

(2) Mia CIW,

(3) pi— > asi— o,

(4) ¥ is the closure of U; M..

In this case we shall say that ¥ is generated by the factors IM;. N is called
uniformly hyperfinite if there is a sequence {pi} of positive integers such that
9 is uniformly hyperfinite of type { p.-}.

We observe that if {p;} is a sequence of positive integers then UHF
algebras of type {p;} exist if and only if p;] pip1 and p;— o as +— . For
example, suppose p;=2%, let d be an infinite cardinal and let § be a d-dimen-
sional Hilbert space. Let E; and E, be orthogonal d-dimensional projections
on § with E; 4 E, =T (the identity operator on ), let V be a partial isometry
from E; to E,. Then the set of complex linear combinations of E,, Es;, V and
V* is a factor M, of type I.. We can choose orthogonal d-dimensional projec-
tions F; and F; in E, with F1+4 F,=E,, and we can choose a partial isometry
W from F; to F,. The algebra generated by 9, F1, Fo, W and W* is a factor
M. of type I,. Continuing in this way, we can construct an ascending se-
quence {i)ﬁ,} of factors on 9, with M; of type I,, (p:=2%). The closure of
U; M; (in the norm || - H =sup | I( -x, )| : x, y are in the unit sphere of $})is
a UHF algebra of type {2¢ }. With the next result we begin the classification
of UHF algebras under *-isomorphisms (see 1.12).

LeMMA 1.2. If % and B are both UHF algebras of type {p:} then A and B
are *-isomorphic.

Proof. A is the closure of U; M;, B is the closure of U; N;, where M; and
N: are factors of type I,,. It is easy to construct a *-isomorphism ¢ from
U; M; onto U; Ni. For example see [4, p. 760]. For each positive integer 1,
&| M is norm preserving, so ¢ has an extension to a *-isomorphism of %
onto B.

DEFINITION 1.3. Let {p:] be a sequence of positive integers such that
p;lpm and p;— «© as i—». We define a function f({p,-}) whose domain is
the prime numbers. Let x be a prime number, let

f{{#:})(2) = sup {n: there is an i with x*|p,}.

We will show that UHF algebras of type { p.} and type {q.} are *-1somorph1c
if and only if f({p:}) =f({¢:}), that is if and only if the same prime powers
are factors of the terms of the sequences {p;} and {g:}.

DEerFINITION 1.4. Let {p;} be a sequence of positive integers such that
P‘l pi1and p;— o asi— o, Let {x, ji=1,2, } be an enumeration of the
prime numbers. We define
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k
Qe = H amintk S (pi)) )} k=1,2, .-,

j=1

Lemma 1.5. If A is @ UHF algebra of type {p:}, it is also UHF of type
{q:} with {q:} as defined in 1.4.

Proof. Let A be generated by factors M; of type I,,. We remark that for
every positive integer 4, there is a positive integer j such that p,|¢; and ¢ p;.
Using this, it is not hard to show (see for example [5]) that U; MM; contains
an ascending sequence {N:} of factors such that R; is of type I,, and U; M,
=U,; N,. Thus ¥ is UHF of type {¢.}.

We now prove a sequence of lemmas, the essence of which is the state-
ment: if MM is a C*-algebra acting on a Hilbert space $ and if
{eij:i, j=1,- -, n} is a family of matrix units acting on §, and if this
family can be approximated in the uniform topology by operators in I, it
can be approximated in the uniform topology by matrix units in I (see
1.10). In our applications of these lemmas I will be a factor of type I,
however it does not seem to simplify the proofs to assume this, since we re-
quire inequalities which are independent of g.

LEMMA 1.6. Let €>0. There is a y(e) =v >0 such that if M is a C*-algebra
acting on a Hilbert space O, if E is a projection on O and if there is an AEM
with |[E— Al| <v then there is a projection FEM with ||E— F| <e.

Proof. Since ||(A+A4*)/2—E| (|4 —E||+||4*—E||)/2 we can assume
that A4 is self-adjoint.
|42 — Al s [|4* — 4E]| +[[4E - E[| + ||E - 4]
<||42— AE— EA+ E| +||EA - E|+v+~
<[4 - E*+ 3y =42 + 3.

This implies that ¢(A4), the spectrum of A, is contained in [— §, 8]
U[1—8, 1+8] where & is a positive number which can be chosen arbitrarily
small by choosing v sufficiently small. We suppose that 8 <1/2. Let f be the
function defined by f([—8, 8]) =0, f([1 —8, 1+8]) =1. Then f(4)EM, f(4) is
a projectien and

lf(4) — E| = |lf(4) — 4| + ][4 — E| 5+ v.

For a suitable choice of v <e¢/2, 8 can be chosen less than ¢/2, and the proof
is complete.

LemMA 1.7. If €>0 and if n is a positive integer, there is a (¢, n) =0>0
with the property that if M is a C*-algebra and if {E;:i=1, - - -, n} is a family
of projections in I with ”E.E,H <8 for 153, then there is an orthogonal family
{E!l:i=1, - - -, n} of projections in M, with ||E! —E| <e.
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Proof. We use induction on #. If =1 the proof is trivial. Suppose the
lemma is true for all #<r. For any ¢, 1/3>¢>0, we let v(¢) be the positive
number determined by 1.6. We suppose that v(e) <e, and we define

3(e, 7 + 1) = min {1/3, v(e)/6r, 3(v(e)/6r, )}

where the right hand side is already defined by the inductive assumption.
Suppose we are given a family {E;:i=1,--., r+1} satisfying the
hypothesis of 1.7. By the inductive assumption we can choose an orthogonal
family {E!:i=1, - - -, r} of projections in M with ||E! —EJ|| <v(e)/6r for
i=1,-+-,r. Let F= i, E!. Then
|Eys — I = F)Eps(I — F)|| = ||Eey1 = Ery1 — FE iF + FE,qy + E. i F||
< 3| FE.|

<3 2 | EE|

i=1

<3 z_; (| EsErsdl| + v(9)/67)

= v(9).

By our choice of y(€) we can choose a projection E/4; in the (commutative)
C*-algebra generated by E/, 1=1, ..., r, I, and I—F)E,.(I—F), with
||E/1—E,i|| <e. Hence ||E! —EJ|| <efor i=1, - - -, r+1. Also E/,E! is a
projection for =1, - - -, 7, and

|EfnEl]| < ||EwaEl]] + ¢
S| BBl 4 e+ e
<1/3+1/3+1/3=1.

A

Thus E/wE! =0fori=1, - - - ,7and {E,-’:i=1, . ,r—i-l} is an orthogonal
family of projections in .
Lemma 1.8. If {Ei:i=1,---, n} and {Fui=1,---, n} are each

orthogonal families of projections in a C*-algebra I, and if “E;—F,-” <1, then
there is a partial isometry W in I such that E;WF; is a partial isometry from
Fito E.. If €>0 there is a 5(e, n) =8>0 such that if |[E;— Fi|| <8 then W can
be chosen so that |E;— E;WF)| <e. If D : E;=1I then W can be chosen so that
|I—w| <e.

Proof. We have the inequalities || E;— E;F.E/|, || Fi— F:E;F||| £||E:—F||
<1. Let v be a number such that ||E;— F,]| <y <1. Let f be the function de-
fined by f(x) =0if x £ (1 —v)/2, f(x) = 1/xif x =2 1 — v, f is linear on
[(1=7%)/2, 1—v]. If p is a pure state of the (commutative) C*-algebra gener-
ated by I, E; and E;FE;, then p(E;) € {0, 1}. If p(E;) =0 (resp. 1) then since
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0 < E,F.E; £ E; (resp. 0= E.‘ — E,F.E; = 'Y), we have p(E;F.-E,-) =0
(resp.E[1—7, 1]). Since p is multiplicative,

(1) p(E:F:Ef(EiFE:) = p(E:F:E)f(p(E:F:E)) = p(E),

and if we let G;= (f(E;F:E;))!'? then since (1) holds for each p, E;= EF;E,G>

=G;E;F;EG;. If we let H;=(f(F:E;F;))'? then by a similar argument,
Fi=H¢2F,'EiF,’. Let W,=E,G;F;. Then W¢W:"=E¢G;FiG¢Ei=E,‘ and

WiW; = F.G:EG:F;
— HiF.E.F.EGiF;
= HfF,E,F. = F,'.
Let W= Y_; W.. E;WF;=W,is a partial isometry from F; to E; and W is a
partial isometry from ».; F;to 2 .; E;.

Given a positive ¢, let § be the minimum of {1/2, e/4n}. If ”E;—F;” <8
then we choose v in the first part of the proof to be equal to §. We have

|\w:— E|| =||lw. -G +||G: — E||
=[|G:F: — GE|| + ||G: — Ef
= lGilll#: — Ef +ll6: — Ei|.
If p is as above, then |p(Gi—E.)| £|p(Gh) —p(E:)| <(1—8)"1—1=5§/(1-0)
and |p(Gy)| £|p(GD)] <1/(1—38). Consequently |Gi—EJ|<8/(1—8) and
|Gl <1/(1—8) and so ||W:—E{| <25/(1—08) S46<e¢/n. If X_; E;=1I, then
Z (W; — Ej)

< ‘z‘,llw,- — Ef <e

W — 1| =

LeEMMA 1.9. Let €>0. There 1s a 6(e) =0>0 with the following property:
Let M be a C*-algebra acting on a Hilbert space ©. Let E, and E, (resp. F1 and
F2) be orthogonal projections in I (resp. operating on D). Suppose that
|E:i—F| <8, i=1, 2, and suppose that there is a partial isometry V from Fy
to F, and an ACI such that ||V —A| <8. Then there is a partial isometry
UEM from Ey to E; and | V—"U|| <e.

Proof. Let  =min {1/32, e/75}. We have
| E2 — B2A A*Ey| < || B, — A 4%
= ”E2 - Fz“ + “F2 - AA*“
<84+ ||VvE — var| +||[var — a4
<d+06+(1+8) <4<,

E,AA*E, is positive and lives on E,. By spectral theory, there is an X &I
such that
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E2 = XEzAA*EzX,
| X — Ej| < || X2 — EJf| <45/(1 — 45) < 8.

Let W=XE,A. Then WW*=E,; and W*W is a projection in . Also
|W*W — E||| < ||W*W — V*E:X2E:A|| + || V*EsX2E24 — V*EX2E V|
+ ||[V*EsX2E:V — Fi|| + ||F. — Ei|
< |[v* — x|l x| 4]l + 1[4 = V| X3 + | EaX2E2 — Fo| [+ 8
<81+ 88)(1 +8) + (1 + 83) + || E2X2Ey, — Eo| + 6+ 6
< 8+ || X2 — Eif| < 165 < 1/2.
By the 6 chosen in the proof of 1.8, we see that there is a partial isometry
WiEeM from E;, to W*W and
|w*w — w| < 64s.
Let U=WW,. Then
v —ull ||V - Wl + [|lw - ww|
< ||V — EV| + ||EsV — XEV|| + || XE:V — XE.4||
+||ww — w|
<5485+ 5(1+ 8) + 645 < 756 < .

U is a partial isometry from E; to E,, and the proof is complete.

LeEMMA 1.10. For every €>0 and every positive integer n there is a 8(e, n)
=0>0 with the following property. Let I be a C*-algebra acting on a Hilbert
space O, let {e;j: i, j=1, - - -, n} be a family of matrix units acting on 9. If
there are A;EM with ||e;j— Ail| <8 then there are matrix units fi,EM with
lles—full <e.

Proof. By 1.6 we suppose without loss of generality that 4,; is a projec-
tion. For 757,

| iid;| = || Aduds; — exds| + |lesdi; — eaesi
< || dii — edd| + || 435 — e

By 1.7 we can assume without loss of generality that {A.-.-} is an orthogonal
family of projections and by 1.9 that for 157, 4,; is a partial isometry from
Ajito Ay D.: Ay is a projection and

HI— > Au| < Z”eu— A

which for §<1/n is less than 1. In this case ) ;Au=1I. Let fi=A% Ay, If
6 <min (1/n, ¢/2) then {fi,-} is a family of matrix units and
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”fij - eii“ = ”A:Alj - Altelj” + ”Al,':elj - e,~,~H
<2 Ze
This proof is complete.
LeEMMA 1.11. For every positive integer n there is an € >0 with the following
property. Let I be a factor of type 1, acting on a Hilbert space O, let

{egid,j=1,-+-, n} be a family of matrix units acting on . If in addition
there are A ;;EIM with ]|e¢,~—A,~,-| <€ then n| q.

Proof. By 1.10 it is sufficient to prove 1.11 when {A,-,-} is a family of
matrix units. Assuming this, recall that I= > ; 4;;. Hence if Dim (-) is the
dimension function for M, 1 =Dim (Zi A)=n Dim (4:) for any ¢, and
Dim (4:) =1/n. This implies 7| q.

We prove two theorems, which are the main results of this section. The
first theorem is a classification of UHF algebras under *-isomorphisms.

THEOREM 1.12. If A and B are UHF algebras of type {pi} and {r,'} respec-
tively, then N is *-isomorphic to B if and only if f({pi}) =f({ri}), where f 1s
defined in 1.3.

Proof. Suppose f({p:}) =f({7:}). The g; defined in 1.4 with the sequence
{pi} is the same as the ¢ix defined with the sequence {n} for k=1,2,---.
By 1.5 % and B are both of type {g:} and by 1.2 A and B are *-isomorphic.

If % and B are *-isomorphic, it will follow from the second statement of
1.13 that f({p:}) =f({r:}). A direct proof could be given, using 1.11.

In the next theorem we state a necessary and sufficient condition for a
C*-algebra to be either UHF or a factor of type I,.. This condition is analogous
to one of the definitions of hyperfinite factors of type II; [4]. We also find a
new definition for f({p.-}).

THaEOREM 1.13. Let A be a C*-algebra. A is either a UHF algebra or a factor
of type 1, if and only if the following conditions are satisfied.

(1) A has a countable dense subset.

2) If Ay, - - -, A.EN and if €>0 there is a positive integer r and a factor
MCA of type 1, and By, - - -, B.CIM such that ||A:—Bi|| <e.

If we define for a C*-algebra A and a prime number x

fQ, x) = sup{j: M is a factor of type L, M C U, 27| n}

then if A is ¢ UHF algebra of type {p;},f({p;})(-) =f(, ).

Proof. Suppose U satisfies (1) and (2). Let {D;:i=1, 2, } be a
countable dense subset of the sphere of radius 1/2 about the origin of 2.
We construct by induction an ascending sequence of factors {M.}, M; of
type I,, for some positive integer p;, IM:CHU, and such that there are
BiEMy, k=1, - - -, i with ||[Dy—Bi|| £2-% The existence of I is a direct
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consequence of (2). Suppose M; has been chosen and satisfies the above con-
ditions for i=1, - - - | n. We construct M,41.

Let {e,,} be a family of matrix units for M,, let e=2"""5p,~2 By (2) and
1.10 we can find a factor M CA, M of type I, ,,, for some positive integer
Put1 such that there are matrix units f,,E {sm} with ”est— f,t” <e s, ¢t
=1, - - -, pa, and B{ €I with |D,—B/|| <¢, k=1, - - -, n+1. By 1.8 and
the choice of & in the proof of 1.8, there is a partial isometry W& from fy;
to ey with |len— W|| <4e. Let M,y be the C*-algebra generated by 9, and
WinIfuW*. M,y is isomorphic to the tensor product of M, and fuMfu,
and so is a factor of type I, ,,, and M, CM,11 CYU. Let

By = X eaWfuBL fulW*ey,.
st

Then B,&M,41 and
| Dv — Bl < ||Dx — BL|| + || BY — Bl
< e+ pn max||fuB{ fu = ealWfuBLfuW*eu.

However

[[feeBi for — €W Bi fuW*erl|
= ”fuBk'fu _fuBk’fth*elt” + ”fuBk,fth*elt - edelsBklfth*elt”

< [fee = fuW*erd| + ||fue — eaWia|

= [lfve = W*eu]| + [Ifa — eaW]|

= ”fu - 8u” + Heu - W*elt” + ”f:l - eu” + ”6.1 - 6.1W”

S e+ 4e+ €+ 4de
Thus

| Dy — B| < e+ 10pne = 277

for k=1, - - -, n+41, and M.4; has been constructed and has the required
properties. We can suppose that I; has been constructed and has the re-
quired properties for ¢ =1, 2,.... The closure of U; IM; contains
{D.-:i=1, 2, - } and so coincides with . If p,— o« as i— o then ¥ is
UHF. If pi+ ® as i—®, choose a j such that p;=p;.1= - - -. Then M; is

dense in ¥, IM; equals A and A is a factor of type I,,. This proves the first
statement of 1.13.

We prove the second statement. Let A be a UHF algebra of type { pi},
let N={n:M is a factor of type L, EIRCQI}. Let x be a prime number. We
must show that f({p,-})(x)=sup {j: there is an nEN with x7|n} Suppose
n&N. By 1.11 and 1.1 formula (4) there is an 7 such that nl pi. Thus
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max{j: o7 | n} < f({p:}) (@),
sup{j: there is an n € N with 7| #} < f({p:})(®).

The converse inequality follows directly from the definition of f({pi}) and
the fact that p;&EN. This completes the proof of 1.13.

In §5 we will construct a C*-algebra which is related to the investigations
of this section.

2. Pure states and the pure state space. Let 9 be a UHF algebra gener-
ated by factors M, of type I, let {ef:4,j=1, - - -, p,} be a family of matrix
units for M,.. If f is a linear functional on ¥, then f is uniquely determined by
the numbers aj;=f(e};). We determine in 2.4 necessary and sufficient condi-
tions in terms of the aj; that f be a state (resp. pure state) of 2. If f is a state
of A then f is pure if and only if for each positive integer » there is an integer
r greater than » such that if g is a linear functional on I, and if f| M,=g=0
then g[ M, is approximately a scalar multiple of fl M.,.. First we prove two
lemmas dealing with a more general situation. If T is a subset of a metric
space T”, if €>0, we say that T is e-dense in 7" if for every ¢’ in T” there is a
tin T with d(¢/, ?) <e.

LEMMA 2.1. Let U be a C*-algebra, let {im,,: nEN} be a net (directed by
inclusion, N a set of indices) of finite dimensional self-adjoint linear subspaces
M, of A which contain I. Assume that N is the closure of the union of the M,.
(Such a net always exists.) Let w be a state of U. w is pure of for each n in N and
each positive number e there is an ri(n, €) =r in N with r Zn and such that there
exists an e-dense subset T of {ar:a &[0, 1], 7 is a state of M, and w[ M, =ar}
with the property that if ar & T then either ||| M —7| M| Se or @ <e.

Proof. Suppose w is not pure. Then w=27'7;+27'r,, where 71 and 7, are
distinct states of A. 71 and w are also distinct states of ¥, and since U, M,
is dense in ¥, w| M, and 71| M, are distinct states of M, for some n in N. Let
e=min {1/4, ||o| DM, —7:|M.||/5}, let 7 be in N with r Zn, let T be an e-dense
subset of {ar:a€[0, 1], 7 is a state of M, and w| M, Zar}. Since w|M,
22717, | M,, there is an ar in T with ||2=17,| M, —a7|| <e. This implies |2-1—al
<€, a>¢€, and

o] M — 7| M| = [l | Mu — 72| Dal| = |72 Me — 2a7]| — ||2a7 — ]|
> S5¢ — 2e — 2¢ = e.

Thus for this # and ¢, there is no » with the properties of the lemma, and the
proof is complete.

LemMmA 2.2. Let ¥, {sm,.: nEN}, and w be as in 2.1. w is pure only if for
each n in N and each positive number € there is an ry(n, €)=r in N with r=n
and such that if gEN and if ¢=r, and if

w| My = 2 awme
k
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where 71, 15 a state of M, and {ak} 1s a finite convex family, and if we let
Ko = {k:]lo]| D — 7| M| > ¢}
then
Sl k€KY <e

Proof. We suppose that for some # and some positive € such an 7 cannot
be found. For each ¢=# in some cofinal subset Q of N, there is a decomposi-
tion of |9, as a finite convex sum of restrictions to M, of states
{'rkq:k=1, s, tq} of U,

w|My = Z QrqTkg Emm
k

and if K, is defined as in the statement of the theorem, Z{akq: kEKq} =e.
The dual M} to the topological vector space M, is a finite dimensional topo-
logical vector space, so the weak topology and the norm topology on M} are
the same. Consequently there is a finite subset {A4;:3=1, - - -, s} of nonzero
elements of M, such that if FEM} and |f(4:)| £1,4=1, - - -, s then ||f]| Se.
| My —71g| M EME and so

q=U{K(q’i)an:i=1,...’2s}

where
K(q, 28) = {k: —w(4s) + mre(4:) > 1}, i=1,-++,s
K(g,2i — 1) = {k:w(4:) — mie(4:) > 1}, i=1,--+,s
Since Z{akq: kGK.,} = e there is an i(q)e{l, ceey, 2s} such that
(1) ao= 2 {ong: R € K(g,i()} = ¢/2s

where the above equation defines a,. Let

7i = a7 2 {aaerua: & € K(g, i)},

e = (1= a7 X {angmua: k € K(,i(9)), 1 S B < 4}
Then

w| Mg = agrd | Mg+ (1 — a)ry’ | M,
and letting j=1(g)/2 if i(q) is even, (¢(q)+1)/2 if i(q) is odd,
llo| Mn — 7¢ | Mal| = || 42| w(45) — 74 (4)) |
z [l 4

The states of 9 are w*-compact, so we can choose a subnet {gn.: mE& M}
of Q, where M is some directed set, such that
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(2) Tow =T
3) Tam— T
aqm —a

where 7/, 7'/ are states of U, the convergence in (2) and (3) is in the w*-
topology, and a is a real number. If 4 EM,,

ar'(4) + (1 = 9)7"(4) = lim (ag,r0n(4) + (1 = 24,)74,(4))

= lim w(4) = w(4).

Consequently a7’ 4+ (1 —a)7"’ =w. We show that this convex sum is not degen-
erate, and this will complete the proof. By the equivalence of weak and norm

topologies in ¥,
m, — ( lim r;,,)

w| M, — lim (o | M)

w mn

lloo| M — =" [ DR[| =

limp, o] Mo — 74, | D]
inf {|| 4,15 =1,---,s5} >0.

1%

Thus w7’, which implies a <1 and 7’#7". By (1) ¢>0 and the proof is
complete.

We observe that 2.2 is (stronger than) a converse to 2.1. Suppose that w
is pure, that #E€ N and that ¢>0. We show that there is an 7,(#, €) which has
the properties of 2.1. In fact, let r1(n, €) =r:(n, €) (=7). Let T'= {ar: a€f0,1)
and 7 is a state of M, with w| M, =ar}. If arET then

w| M =ar+ (1 — )1 — )N w| M — an)]

and by 2.2, either ||| M, —7| M| S e or a<e.

DEFINITION 2.3. Let M (resp. M) be the algebra of complex nX#n (resp.
gXq) matrices, with matrix units {e?,} (resp. {efj}). Suppose n]q. An iso-
morphism 8 of N into M is called the standard imbedding [5] if

0(er) = > {ew: (s,0) = (an + i, an +7),a =0, -, (g/n) — 1}.

We identify the set of p,Xp, complex matrices with I, by means of the
matrix units {¢}}. When we speak of an e-dense subset S of a subset of M,
we shall mean e-dense in the metric which makes the mapping ¢ of 6.1 from
the normed space I to the set M, an isometry. If B, and B. are positive
elements of 9, then the distance from B; to Bz in this metric is trace | By — B
(see the proof of 3.4).
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THEOREM 2.4. Using the notation preceding 2.1, let A, be the tranpose of the
matrix (af;). Then f is a state if and only if trace (4,) =1 and A, =0 for each n.
Suppose that f is a state and that the inclusion M,—IM, s the standard imbed-
ding relative to the matrix units {e}} and {4} for each n and q with g=n. Then
f is pure if for each positive integer n and each positive € there is an integer
rs(n, €) =r with r Zn and such that there exists an e-dense subset S(n, €) =S of the
set {aB:a€ [0, 1] and B is a positive p, X p, matrix with trace (B)=1 and
A,z aB} with the property that if aBES then either

sup la?j— E {blﬂ: (S’t) = (aPn""i,aPn'l']'):a =0,---, (I’r/Ps) - 1} l Se
v

or a <e where B is the matrix (b,,). Also f is pure only if for each positive integer
n and each positive € there is an integer ry(n, €) =r with r Zn and such that if q
is an integer, if q=v, if

Aq = E OlkBk
k

where {ak} is a finite convex family and By, is a positive matrix with trace (By)
=1, of we let

K(q) = {k: there is an i and a § with | ay — > {bI:,: (s, 0)
=(@pntiyapat ), a=0,+, (p/p) — 1}| > ¢}
where By is the matrix (bl), then
Dok S K@)} <e

Proof. If A,=0 for each #n then by 6.1, f[ IM,.=0 for each n. Let D be a
positive element of ¥ and choose D,EM, such that D,—D. Then f(D)
=f((D*D)V/2) =lim, f((D}¥D,)!/?) 20 and so f=0. Conversely if =0 then
f|Ma = 0 for each # and by 6.1 A, = 0 for each n. Also f(I) = >.; f(el)
=trace (4,.) and the proof of the first statement of 2.4 is complete.

Suppose that f is a state and that the inclusions IN,—IMN, are standard
imbeddings. Suppose that for each # and € we can find an 7;3(%n, €) with the
properties stated in 2.4. Let 71(n, €) =r3(n, ep, ?) (=7), let ¢~1(S(n, ep; %)) =T.
By 6.1, T is an ep, >-dense subset of {ar:aE€|[0, 1], 7 is a state of M, and
fIMzar}. If D=3, dijds€M,, where di; is a complex number, then
”D” =1 implies Id;,-l =1 for all 4, j, and consequently

pusup | flek) = (e | = || 7] M — 7| D]
ij
for any state 7 of M,. If ar © T, then ap(r) € S(n, ep;?) and so

supy; |f(eh) —7(el)| Sepy? or a<ep;? Thus lf| M —7| M.|| L€ or a<e and
by 2.1, f is pure.
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Suppose that f is a pure state of ¥ and let » be a positive integer, let €
be a positive number. Let 74(n, €) =7:(n, €). If A,= D axBs as in the state-
ment of 2.4, let 7, =¢~1(By). By 6.1, 71 is a state of M, and f| M= D & curs.
If we define K, as in 2.2, then K, D K(g). Thus D {a:k € K(g)}
< > {a: kEK,} <e and 74(n, €) has the desired properties. This completes
the proof.

LeEMMA 2.5. Let A be a UHF algebra generated by factors M. of type I,,.
Let  be a pure state of N, let €>0, let n be a positive integer. There is an integer
r=n and a pure state o' of N such that

(1) |lo' —ol| <e,

(2) carrier o’ | M, < carrier w| M,

(3) if p is a state of M, and carrier p <carrier ' | M, then ||p| M —w'| M|
<,

(4) M,-dimension (carrier o'|M,) £¢./qn.

Proof. By 6.1 we have wl M,= D +-, a;7; where the right hand member is
a finite convex sum of pure states of M,. Let ¢ =min {e, ay, o, a;}, let
¢’ =min {(¢/26)2, €/2¢2, 1/2}. We let r be the 7:(¢’’, n) given by 2.2. Let
F be the carrier of w| M,, let B= (¢(w| IM,))12, where ¢ is defined in 6.1, let
{A;:5=1, -+, 2} be a set of matrix units for M,. We identify M, and the
algebra of all linear operators on ¢,-dimensional Hilbert space.

By 6.1 w| M, =trace (B-B), and so F=range B=1I— (null space B). We
choose a maximal orthonormal family {y:} in F such that for each  there is a
j with

| 1/ Byil|*(4;Bye, Byi) — w(4))| > €.
Choose an orthonormal basis {2} for F— [{3:}]. By 6.1

w| My = 20| Byil|*wsusisu + 20 || Basl|*wnapsina.
k h

By the choice of yx,
oyt | Mo — w| M| > ¢
and so by the choice of 7,
b=yl <

where b is defined by the above equality. If x& [{z:} ] and || Bx|| =1, then by
maximality of {y:},

| wpo(4;) — w(4;)| =€’
and
*) llwpe| Mw — @] M| = gue” < €/2 < /2,
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where (*) follows from the fact that if A is in the unit sphere of M., then
A=737;BiA; and |B;] 1.

Let G be the projection (not necessarily orthogonal) onto [{Bz;.} ] along
[{Byk} |+I—F, let

o = (1 — b)(G*-G).
o’ is a positive linear functional and
o'(I) = (1 — b)) 'w(G*G)
= (1 =57 X|Bal*

= (- b>-*(1 P> HBkaz) =1

so w' is a state. If 0 is the representation of % due to w on a Hilbert space s,
then w=w, 060 for some x in . ' =(1—>)"wy 00 is also a vector state.
Since 8 is irreducible, o’ is pure. Let x; =0(G)x, let xo=0(I —G)x. Then
[[l|2 = [lo(7 — G)a[?
= (I — GO)*T — G)x, %)
= o — G)*I - G))

- T3y = 5

and ||x,]| £1+5'2. Hence if 4 is in the unit sphere of ¥,

| (4) — w(4)| = | (1 — 8)~(0(A)xs, %1) — (8(A)z, =) |
| 6(1 — B)2(0(A)xs, x1) | + | (6(A)x2, 23) |
+ | O)xs, ) | + | (6(4))s, 21) |
= b(1 = &) Y[ao|2 + [l 2+ 2| o] |||
b(1 — b)~1(1 + 522 4 b 4+ 2612(1 + b1/%)
136172 < 13(e")V/2 < ¢/2

and ||o’—w|| <e/2 which gives us (1).

The carrier of w'limr is [{Bz;,}]érange B =carrier wlsm, and (2) is
proved. Any unit vector v in [{Bz}] has the form v=Bx for some x in
[{z:}]. By (*) and the fact that ”w'—w” <e€/2 we see that (3) is true if p is
pure. Thus (3) is true in general. Let iE{l, -+ +, t} and let E=carrier 7;.
The mapping from carrier w'lsm, into E given by x—Ex annihilates (at
least) the complement of a ¢./¢. dimensional subspace of carrier o’ | m,. If
(4) does not hold we can find a unit vector v in the kernel of this map. As
above v=Bx, with x& [{z;.} ], and lw.,(E) —w(E)| Za; =€ which contradicts
(*). This completes the proof.

IIA

IAHIA
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The following lemma will be helpful in studying irreducible representa-
tions of UHF algebras.

LEMMA 2.6. Let 9 be a UHF algebra generated by factors M., let w be a pure
state of . There is a subsequence {n;} of the positive integers and a sequence
{E:} of projections, E;CMy,, such that

(8.) 1—60(E,) <2_i,

(b) if p is a state of Ma,,, and carrier p< E;y then ”p[ ED?,,‘.—wI 972,,;” <278
fori=1,2,-.-.

Proof. Let E;=1I, n,=1. Suppose n; and E; have been chosen for some
positive integer j. For n=n; and for e=277"2 find an 7 and an w’ which satisfy
2.5. Let njy =1, let E, 1 =carrier o'| Mo, 4, Then

1 — w(Ejy1) = ' (Ej1) — w(Ej)
< [l = of <27

1f p satisfies the hypotheses of (b) then

o] My = o[ M| < o] Moy — o [ D] + [J6” = o
< 27t gt = i

and the proof of 2.6 is complete.

The next result gives another set of conditions which are necessary and
sufficient for a state w of a UHF algebra ¥ to be pure. In fact if w is a state
of A and if there exist factors N;, =1, 2, - - -, which generate U so that 2.7
formula (3) holds, then w is pure. We remark that in the terminology of the
following theorem, the sequence of projections {carrier w| Sﬁi}. the state w,
and the factors N; satisfy 2.6 and also the sequence {carrier w|:} is mono-
tone decreasing.

THEOREM 2.7. Let A be a UHF algebra generated by factors M. of type I,,,
let w be a pure state of A. There is an ascending sequence {N;} of factors which
generate A and for each €>0 there is a pure state ' of A and a subsequence
{n:} of the positive integers such that

(1) |lo—o']| <e,

(2) (resp. (3)) if p is a state of M, (resp. M) and carrier p < carrier w'l M.,
(resp. | M) then ||p] Ma,_, —w'| Mo, || (resp. |lp] Mici —eo| Nia]) <274,

(4) M, ,-dimension carrier ' | Mn; £ qn;/qn;_y»

(5) Ni-dimension carrier wl Ri=Gn./Gn;y

Proof. We suppose €<1. Let w;=w and n;=1. By induction, using 2.5,
we can find a sequence {w;} of pure states and a subsequence {n;} of the
positive integers such that |jw;;—wi| <e/2#*!, such that if E=carrier
wi] M., then E;<E; 1 and M, -dimension E;;=gx,/¢n,_, and such that if p
is a state of M,, and if carrier p < E;; then ||p| Ma,_, —w:] Mo,y <e/27+ for
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1=2,3,---. {w,-} is a Cauchy sequence (in norm) in %*, the dual to the vec-
tor space ¥, and so {w;} has a limit «’ in %*, o’ is a state, and |jw—o’|| <e/2.

If (4, k) is a pair of integers with j=Zk=1 then Ej = E. In fact this is
true for j=k, suppose it is true for pairs (s, t) of positive integers with
0=s—t<j—k. Then Ejt;1 2 Ert15+1 = Eeyr and so Ej = Eg. Let E;=carrier
o’ | M.,;. For any positive integer &, ' (I — Ew) =1im; w;(I — Ex) =0. Thus E;
< Ex and (4) is proved. If p satisfies the hypotheses of (2), then

o] Mnss = o | Dl = [lo] Dy — wi] Day | + [Joos — o
< /21 4 /2741 < 23

and (2) is proved.

We show that ' is pure. Let 2o be the C*-algebra generated by I and
{E;:i=1, .. } A, is commutative and o’ is a homomorphism of 2, so
'| Ao is pure. If 7 is any extension of «'| s to a state of U then carrier 7| M,
<E,; and by (2), 7=v’. Thus «’ [2[0 has a unique state extension to % and
so w’ is pure. A proof that o’ is pure could also be based upon 3.2. By [1]
there is a *-automorphism 8 of U such that w’(8~(4)) =w(A4) for all AESH.
(0 is the inner automorphism from some unitary UEH). Let N;=0(M..,).
Then {MN:} satisfies (3) and (5) and the proof is complete.

TueoreM 2.8. If A is a UHF algebra, then the w-*closure of the set of pure
states of U s the state space of .

Proof. Let w be a state of ¥, let A be generated by factors M,. Let

A;€¥, 1=1, .-, r. We show that there is a pure state 7 such that
|7(A,~) —w(A;)I <1 fori=1, - .., r Thereis an integer n» and B;&EM, with
|Bi—44|<1/2, i=1, - - -, r. If M, is of type I, we choose an integer m

such that M, is of type I, with s=r% We assert that wl M. has an extension
to a pure state 7/ of M,.. Let M., be represented on complex s-space. In this
representation, the commutant M,/ of M, is a factor of type I,,, and s/r=r.
Thus M, has a separating vector, and all normal states (that is all states)
of M, are vector states, and so they are restrictions to I, of pure states of

M. This gives us the desired pure state 7/ of M. Let 7 be a pure extension
of 7/ to . Then

| 7(4) — (49| £ | 7(4) —7(B)| + | 7(B:) — w(B)| + | w(Bi) — w(49)|
<1/24+0+1/2=1

and the proof is complete.

Let p and 7 be two distinct pure states of A (such pure states exist). Then
p/2+7/2 is a state of A which is not pure, so the set of pure states of U is
not w*-closed.

A plausible noncommutative extension of the Stone-Weierstrass approxi-
mation theorem states: If % and B are C*-algebras with ACH and if A
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separates the pure states of B, then A=NB. In course lectures (1957-1958),
R. Kadison conjectured that the correct result should assume: I separates
the w*-closure of the pure states of B (i.e. the pure state space of B). It is
automatic that the pure states are w*-closed in the commutative (classical)
case. It is known that if 9 separates the states of B, then A=2B. Thus 2.8
establishes the emended conjecture for UHF algebras. We shall show else-
where that this emended conjecture is valid for those C*-algebras which have
a faithful irreducible representation.

3. Irreducible representations. In this section we determine the distinct
classes of unitarily equivalent irreducible representations of a UHF algebra
. Since each irreducible representation of 2 is unitarily equivalent to the
representation due to some pure state of 9 and since we have already deter-
mined the set of pure states of U, we have still to determine which pure states
of ¥ give rise to unitarily equivalent representations (3.4). In 3.5 we prove
that all irreducible representations of UHF algebras are on separable Hilbert
space.

LemMMa 3.1. If A is a UHF algebra generated by factors M., then the unitary
group of U is the uniform closure of the unitary group of UM,.

Proof. An element U of ¥ is unitary if and only if UU*=U*U=1I.
Multiplication and * are continuous, so the closure of the unitary group of
UM, is in the unitary group of A. Let U be a unitary operator in ¥, let
A, EM, be such that A,—U. For sufficiently large #, 4, is invertible, and
(4,.*4,) 12— (U*U)12=]. Thus A,(4,*4,)"*—U. Since A.(A.*4,)71?
is unitary, the proof is complete.

We determine (3.2 and 3.3) the topology on the pure states of a UHF
algebra 9 which is induced by the norm in the dual to the Banach space ¥.
This topology is closely related to the Hilbert spaces upon which U is ir-
reducibly represented (cf. also the remark following 3.4).

Let % be a C*-algebra, let {ngBGB} be a family of pure states of U
which contains exactly one representative from each unitary equivalence
class of pure states of 9. Let ¢ be the representation of % on the Hilbert space
9 which is the direct sum of the representations ¢ on Hilbert spaces $s
due to pg, BEB. We identify % and ¢(N). (¢ is faithful.)

LEMMA 3.2. Let A be a C*-algebra acting on the Hilbert space © as above.
Let x, yE D be such that w,l A and w,,l A are pure states of A. Then

1= @) floa] % = o] 2
< inf{2||ax — y||:a@ is a complex number, | «| =1}
= 21 = | (x, 9) |9

Proof. By [1] [x]E%-, the strong closure of ¥, and
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1= |92 =1— (O, D)z 9)

=1- ([x]yr y)
< oo | %= — “’vl x|
= J|ws| % — o, | |

where the last equality follows from [3].
Let A be in the unit sphere of U, let @ be a complex number of modulus 1.
Then (for any vectors x, y in the unit sphere of 9)

| (42,2) = (4y,9)| = | (4ew,a2) — (da,5)| + | (Aax, y) — (4,9) |
= 2”ax -9
For some complex o of modulus 1, (ax, ) =0 and
[lax = 9|2 = (aw, a2) = (2%, 9) = (3, 02) + (9, %)
=20~ [@yD) =20~ | @9
and the proof is complete.

LeEMMA 3.3. Let A be a UHF algebra acting as preceding 3.2 on the Hilbert
space O, let A be generated by factors M., let w=w,| A be a pure state of N for
some x in 9. If {E.} 1s the sequence of projections determined by 2.6 for the pure
state w then strong lim E;= [x] and | (x, ¥) | 2=lim wy(E;) for any y in .

Proof. Let {n,} be the subsequence of the positive integers determined by
2.6. We assert that there is a sequence {e(i)} of positive numbers such that
€(1)—0 and E;+e(?)[>E, if s>1. If s>1,

| E:E.E: — E)|| < ||E:E.E: — E:E,|| +||E:E. — E||

= 2| E:E, — E|

and if 2z is a unit vector in E,,

“E.-z — 4|2 = (Eis, Ez) + (3,2) — (Eiz, 2) — (3, Es2)
(1) =1— (Ez, 2)

<1 — w(E;) 4+ 22+ < 231
since [|ws| Ma,_,—w| Ma,_ || <27+ and 1—w(E) <2 Thus |E:E.E:—E,||
<26=+312 Let () =212, Since I ZE,, E;2 E;E,E;, and
E;+ ¢(i)I = E;E,E; + (i) = E,E,E; + E, — E;E,E; = E,,

which proves the assertion.

For the time being we do not assume $ and the action of ¥ on  is as
preceding 3.2, we do not assume that w is a vector state. Let

F=[{z:2€8,u|%=0}],
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we assert that strong lim E;=F. Let {i(j)} be a subsequence of the positive
integers. We show that there is a subsequence {i(j(k))} of {i(j)} such that
Eiian +2€(2(j(k))) > Eicierryy +2€(i(j(k+1)))I. Let j(1)=1, and suppose
j(k) has been chosen for some positive integer k. Choose j(k+1) so that
e(2(j(k))) =2e(z(j(k+1))). Then {i(j(k))} has the above property. Thus by
monotone convergence every subsequence of {El} has a strongly convergent
subsequence. Let E be the limit of a strongly convergent subsequence
{E,m}. We show E=F which will prove our assertion. E?=strong lim E%,
=E and E*=weak lim Ef,=FE so E is a projection. Suppose that zE9 is
such that w,|A=w. As in (1), ||[Eiz—2||2=1—(Eis, 3) <2~% so 2EE. Suppose
that y is a unit vector in E. Then

flow| DMa;y — | M, | < [y — wra| + llopw — 1/]| EglPor.y
+ Hl/HE‘yH%’EWI 9)2";-1 - ""| SJ‘R"{—l
< 2|Ey — 9| + 1 — ||Eg]? + 27

where the first term in the last inequality is due to the second paragraph of
the proof of 3.2, and the last term is due to carrier 1/||Ey||%wz,,| Ma; SE..
Thus w,,[?[=w, YyEF, and strong lim E;=F. If A and $ are as preceding
Lemma 3.2 then [F]=[x] by Lemma 3.2 and the first statement of Lemma
3.3 is proved.

If yE9, then lim (Ey, v)=([x]y, y) = I (=, y)l2 and the proof of 3.3 is
complete.

l

THEOREM 3.4. Let A be a UHF algebra generated by factors M, let p and 7
be pure states of U, let {E,} be a sequence of projections chosen by 2.6 for the pure
state T. Suppose that 0 =r <1/2 and that for each positive integer n we are given
a subset W, of the unitary group of M, such that if W is a unitary operator in
M., there is a V in U, with || V— W|| <r. The following statements are equivalent.

(1) The representations ¢, and ¢, due to p and 7 respectively are unitarily
equivalent.

(2) There is a unitary U in A with p(U*- U) =r.

(3) There is a positive integer k such that

lim sup {sup {p(V*EV): VE W}:i=1,---} > 0.
(4) There is a positive integer k such that
lim (inf{trace | ¢((2(V*-V) — 7)| My | : V EW}) < 1,

where ¢ is defined by 6.1.

Proof. We assert that if f and g are positive linear functionals on I, then
Hf—gl] =trace |¢(f—g)| . Let f, (resp. go) be the linear functional on M, such
that ¢(fo) (resp. —¢(go)) is the positive (resp. negative) part of the self-
adjoint operator ¢(f—g). Then fo, go=0 and fo—go=f—g. Carrier f, (resp. go)
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=range ¢(fo) (resp. ¢(go)), in fact by 6.1 this is true for fy a pure state, thus
it is true for f4=0. Thus carrier fo L carrier go and

17 = dl = ll7o = goll = ll7ll + lled| = 7o(2) + £o(2)
= trace ¢(fo) + trace ¢(go) = trace ¢(fo + go)
trace | o(fo — 20) | = trace | o(f — g |

as asserted.

The implications (1)<(2) follow from [1]. Suppose (2) is satisfied. Let
A be acting on 9 as preceding 3.2. There are x, yE 9 with w,l A=r7, w,|A=p,
and a unitary UE with wU,,I A=r. By 3.2 yUy=x where v is some complex
number of modulus 1. There is a positive integer & and a unitary WEM,
with || W— U]l <(1—2r)/4, there is a VEW, with || V—W]|| <r. For any posi-
tive integer 7,

trace | ¢((o(V*-V) — o) | M) | = [[((V*-V) — 7) | M|
= [Jove| % = 1| = 2V — 4
=2lv - vl =2v - w| + 2w - v
<2r—(1-=-2n/2=1/24r< 1.
Thus trace |¢((p(V*- V)—T)IED?,-)I is monotone increasing (as ¢ increases),
the limit in (4) exists and is less than 1, and (4) is satisfied.

Suppose (4) holds. Let {n,} be the subsequence of the positive integers
determined by 2.6. in conjunction with {E.} Then for some positive integer
k and some number 8, with 0=<§<1, we can choose V(:)&W; such that
trace |¢((p(V(@)*- V(5)) —7)| M.,)| <8, and

p(VE*EV (@) 2 (E) — [[(e(V@*- V@) — )| M|
1427 —4.

v

For large ¢, p(V(2)*E; V(1)) >0 and (3) is satisfied. If (3) is true there is an
integer k, a cofinal subset J of the positive integers and an ¢>0 such that for
each j&J there is a V(j)EUx with p(V(§)*E;V(j)) >e. Since the unitary
group of Iy is compact, we can choose a unitary VEM, which is a limit point
of {V(j):j&€J}. We have p(V*E;V)=e¢/2 for all j in some cofinal subset
of J and by 3.3, | (x, Vy)|*Z€/2. Recall that $= > @ {9s: BEB}, so Vy
=> {2:BEB}, with 2,EH;s, and wpy| A= Z“’:,- However wv,,IQI is pure
since w,,li’I is pure and so there is a unique Bo&EB with 25,70. By the same
argument x C s, for some B EB. Since (x, Vy)#0, we have 8,=0;. Recalling
that A—A g, is an irreducible representation of ¥, the representation due to
w,|?I is unitarily equivalent to the representation due to wv,!lﬂ which is
unitarily equivalent to the representation due to w,| . This completes the
proof of 3.4.
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We remark that if f and g are positive linear functionals on a UHF
algebra U which is generated by factors M, then by the first paragraph of the
proof of 3.4,

I = gl = lim|[(f — &) | M| = lim trace | $((f — g) | M) | .

THEOREM 3.5. Each irreducible representation of a UHF algebra is on
separable Hilbert space.

Proof. Let ¢ be an irreducible representation of a UHF algebra 2 on a
Hilbert space 9, let 9 be generated by factors IM,. If x is a nonzero vector in
9, then U, [¢(IM.)x] is separable and is dense in $.

4. Representations of type II;.

THEOREM 4.1. Let A be a UHF algebra and let ¢ be a representation of A
such that ¢(A)~, the weak closure of ¢p(N), is a finite von Neumann algebra. Then
()~ 1s a factor (and is hyperfinite).

Proof. Let B be the center of ¢(A)~. Suppose E and F are two orthogonal
nonzero projections in 8. There are finite normal traces # and ¢ of ¢(A)~
such that 6(E)#0 and ¢(F)=0. Let 6'(4)=6(EA) and ¢'(4) =y(FA4) for
AEHA)~. Then 6 and ¢’ are normal finite traces of ¢(4)~. However
NG’ [ Up(M,,) =y I Uy (IN,) for some A>0 where ¥ is generated by factors M,.
6’ and ¢’ are ultra-weakly continuous, so N’ =¢'. Thus 0N’ (E) =y/(E) =0,
a contradiction, and there do not exist two orthogonal nonzero projections in
8, which implies that ¢(¥)~ is a factor.

5. An example. We construct a C*-algebra 9, which satisfies:

(1) %, is not a UHF algebra.

(2) The center of A, consists of scalar multiples of the identity.

(3) There is a strictly ascending sequence {R;:i=1, 2, - - - } of finite
dimensional von Neumann algebras in %, and U; N; is dense in ¥A,.

This example is related to one of the definitions of hyperfinite factors of
type II, [4]. We will show that %, is not a UHF algebra by showing that %,
does not satisfy the conclusion of the following theorem.

THEOREM 5.1. If A is a UHF algebra, then U is simple.

Proof. Let U be generated by factors IM.. Let & be a proper two sided
ideal in 9. & is contained in a maximal two sided proper ideal & which is
necessarily closed. The natural mapping ¢: A—U/R is a *-homomorphism.
Since R is proper and IM; is simple, ¢>| M. is a *-isomorphism and hence is
isometric. Thus ¢ is isometric and so £ = {0}, = {0} and the proof is com-

plete.
Let % be a UHF algebra generated by factors M, M;=M,1. Let p be a
state of U such that p| M, is pure for =1, 2, - - - . Such states exist, and by

2.1 are pure. Let ¢ be the representation of 9 due to p on a Hilbert space 9.
We identify % and ¢(¥). Let x be a unit vector of  such that p=w,| A. Let
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Ao={4: 4 €9, [x]4 = 4[x]}.

Ao is a C*-algebra, we assert that ¥, satisfies (1), (2), and (3). Yy is not a
UHF algebra since

§=1{4:4 E Ny, 4z = 0}

is a proper two sided ideal in o, and by [2] §= {0} To show that U,
satisfies (2), we prove the stronger statement that %, has a faithful irreducible
representation. In fact the mapping II: A—A (I — [x]) is a representation of
%, on the Hilbert space I— [x] and by [2], II(2,) acts irreducibly on I— [x].
If A is in the kernel of II, then [x]4=A4[x]=A4, so 4 is a completely con-
tinuous operator. Let € be the set of all completely continuous operators on
$. Then N\ is a proper two sided ideal in ¥ and by 5.1, ENA = {0}. Thus
CNYp= {0}, II is faithful and 9, satisfies (2). Let E;=carrier pl M. E;is a
minimal projection in 9; since p| M, is by assumption a pure state of M;. Let

N = EPLE: ® (I — E)WI — E,).
{Mi:i=1, 2, - - -} is a strictly ascending sequence of finite dimensional
von Neumann algebras in %,. We show that U; N; is dense in Ao Let A =A4*
in %Ay, let A;=A7 in M; be such that 4,—4. Let z;,=(I— [x])4 . Since x isa
unit vector in E; and since E;A;(I—E;)4:E; is a scalar multiple of E;,
|Eidi(I—E)AE]| = (E:A«(I—E)A:E, x) and
ladl 2 |7 = Edad| = |7 — E)4iEal| = (B:diI — E) AiBi, x)'r2
= ||E:dI — E)A:E| " = ||(I — E)AE]| = || E:AI — EJ)|.

Since z,—0,
E,'A,'E,' + (I ot E,)A,(I - E,) — 4

and U; N, is dense in Ao. We have proved that U, satisfies (1), (2) and (3).
6. Appendix. For completeness we include the proof of certain known re-
sults about linear functionals on factors of type I,.

LeMMA 6.1. Let I be a factor of type 1., let {e,-j:i, j=1,-.-, n} be a
Sfamily of matrix units for M. Let ¢ be the mapping from IN*, the dual of the vector
space M, to I defined by

(f) = Zf(eﬁ)eif

for fEMM*. Then ¢ is a linear and an order isomorphism, and if M is identified
with the algebra of all operators on n-dimensional Hilbert space © and if x is a
unit vector in O, then ¢(w,) = [x]. The mapping ¢ does not depend upon the
choice of matrix units | e} in M. If FEM* and f = Othen f =trace (G(F)V2-p(f)V?)

Proof. It is well known that ¢ is a linear isomorphism. Let {e, - - -, e,}
be an orthonormal basis for § such thate;je;=e;,4,j=1, - - - ,n,letx = Zi'yie.'
be a unit vector in §. We show that ¢(w,) = [x]. In fact



340 J. G. GLIMM

([x]es, &) = ((es, %), €) = Fevs
and
(4’(‘*’:)31'; ei) = wz(eij) = 7]’7;’-

By linearity we conclude that ¢ is an order isomorphism and that ¢ does not
depend on the choice of the matrix units {e;;}. If fEM* and f=0 then ¢(f)
=0 and we may assume by what we have proved that e; is an eigenvector of
&(f), for i=1, - - -, n. That is, ¢(f) = 2_: ases; with a; =0 and hence

f= Z QiWe;

Il

trace ( Z a;e,'p)
[

trace(¢(f)'/*-¢(f)'%).
This completes the proof of Lemma 6.1.
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