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Introduction. In this paper we study C*-algebras which are the uniform

closure of strictly ascending sequences of full 77X77 (77< co) matrix algebras.

We call these algebras uniformly hyperfinite. Factors of type Hi which are

the weak closure of such a sequence were first studied in [4], where it was

proved that all such factors are isomorphic. The algebras we study are not

all isomorphic. In §1 we classify uniformly hyperfinite algebras according to

algebraic type (1.12) and obtain a characterization of these algebras. In §2

we identify the pure states and the pure state space of uniformly hyperfinite

algebras. The TO*-closure of the pure states of one of these algebras is the set

of all states of the algebra. This is not the first example of a C*-algebra whose

set of pure states is not closed, cf. [7]. In §3 we classify the irreducible repre-

sentations of uniformly hyperfinite algebras according to unitary equivalence.

In §§4 and 5 we study certain representations of uniformly hyperfinite alge-

bras.

The author is pleased to record his gratitude to Professor R. V. Kadison

for many helpful suggestions, for simplification of several proofs and for pa-

tient supervision of the research in this paper, which is the author's doctoral

dissertation at Columbia University.

We assume all algebras have a unit (denoted by I). A family

{etj-.i, j=l, ■ • • , 77} of operators on a Hilbert space § (always complex)

is called a family of matrix units if ei/ekm = 0 lor j^k, =eim for j = k, if ^i eu

= 1 (the identity operator on §), and if etj = e%. If ffi is the C*-algebra gener-

ated by these matrix units, we say {e.-y} is a family of matrix units for TI.

If X is a subset of &, we denote by [X] the smallest closed linear subspace

of § containing X. If £ is a projection on §, we also denote by E the set

{x:x£§, x = Px|. A state of a C*-algebra is a positive linear functional /

which satisfies /(I) = 1. The set of states of a C*-algebra is convex and w*-

compact. The extreme points are called pure states. If 91c is a self-adjoint

linear subspace of a C*-algebra 21 and if IE$l, then a state of 91c is also a

positive normalized linear functional. The (pure) states of 2Jc have extensions

to (pure) states of SI. If r is a state of St then there is a representation c6r of

SI on a Hilbert space §T and an x in f)T with t = (-x, x) o <pr and §T = [c/>T(2I)x].

t is pure if and only if <pr is irreducible (see [6]). If fix) is an expression de-

pending upon x and perhaps other variables, we use the notation /(•) to

designate the function x—>/(x).
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1. Algebraic classification.

Definition 1.1. Let §1 be a C*-algebra. 31 is called uniformly hyperfinite

(UHF) of type [pi] if there is a sequence of factors {9Jc,-: i=l, 2, • • ■ } in

21 with the following properties:

(1) Wli is of type IPi,

(2) Wi-iCm,
(3) pt—> oo as i—-> oo,

(4) 21 is the closure of Ui Wi.

In this case we shall say that 21 is generated by the factors Wi. 21 is called

uniformly hyperfinite if there is a sequence \pi] of positive integers such that

21 is uniformly hyperfinite of type [pi].

We observe that if [pi] is a sequence of positive integers then UHF

algebras of type {pi ] exist if and only if pi \ pi+i and pt—> oo as i—* oo. For

example, suppose pi = 2i, let d be an infinite cardinal and let § be a ci-dimen-

sional Hilbert space. Let Pi and P2 be orthogonal ci-dimensional projections

on § with Pl-r-P2 = J (the identity operator on £>), let Fbe a partial isometry

from Pi to P2. Then the set of complex linear combinations of Pi, P2, V and

V* is a factor Wi ol type f2. We can choose orthogonal ^-dimensional projec-

tions Pi and F2 in Pi with Pi+P2 = Pi, and we can choose a partial isometry

W from Pi to Fi. The algebra generated by Wi, Pi, F2, W and W* is a factor

Wi of type Ii. Continuing in this way, we can construct an ascending se-

quence [Wi] of factors on §, with Wi of type IPi (pi = 2i). The closure of

U,- Wi (in the norm || -|| =sup {| (-x, y)| : x, y are in the unit sphere of &}) is

a UHF algebra of type {2'}. With the next result we begin the classification

of UHF algebras under *-isomorphisms (see 1.12).

Lemma 1.2. If 21 and SB are both UHF algebras of type [pt] then 21 and SB
are *-isomorphic.

Proof. 21 is the closure of Ut- 50?,-, SB is the closure of U,- 5^,-, where Wi and

Sfli are factors of type IPi. It is easy to construct a *-isomorphism <p from

Ut- Wi onto U. 91,-. For example see [4, p. 760]. For each positive integer i,

d> \ Wi is norm preserving, so <j> has an extension to a *-isomorphism of 21

onto S3.

Definition 1.3. Let [pi] be a sequence of positive integers such that

pi\pi+i and pj—>oo as i—><x>. We define a function/({p,-}) whose domain is

the prime numbers. Let x be a prime number, let

f([pi])(x) = sup {«: there is an i with xn|p<}.

We will show that UHF algebras of type [pi] and type [qt] are *-isomorphic

if and only if f([pi}) =f([qi]), that is if and only if the same prime powers

are factors of the terms of the sequences {p,-} and {?,-}.

Definition 1.4. Let [pi] be a sequence of positive integers such that

pi\pi+i and pi—>«> asi—*oo.Let {xy:/=l,2, • • • } be an enumeration of the

prime numbers. We define
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k

qk = II xyminl*^((P<))(*')1 k = 1,2, ■ ■ ■ .
3=1

Lemma 1.5. If % is a UHF algebra of type {pt}, it is also UHF of type

{qt} with {q^ as defined in 1.4.

Proof. Let 21 be generated by factors 95c,- of type IPi. We remark that for

every positive integer i, there is a positive integer/ such that p,\ qj and qi\pj.

Using this, it is not hard to show (see for example [5]) that U,- Wi contains

an ascending sequence {-JI,-} of factors such that 9c, is of type Iti and U,- Wi

= Uy SRy. Thus 21 is UHF of type {q(}.
We now prove a sequence of lemmas, the essence of which is the state-

ment: if W is a C*-algebra acting on a Hilbert space § and if

{eij-.i, j = l, • • • , n} is a family of matrix units acting on §, and if this

family can be approximated in the uniform topology by operators in W, it

can be approximated in the uniform topology by matrix units in W (see

1.10). In our applications of these lemmas W will be a factor of type Iq,

however it does not seem to simplify the proofs to assume this, since we re-

quire inequalities which are independent of q.

Lemma 1.6. Let e>0. There is a 7(e) =7>0 such that if W is a C*-algebra

acting on a Hilbert space !q, if E is a projection on § a 77^ if there is an AEW

with \\E — A\\ <y then there is a projection FEW with ||p —p|| <e.

Proof. Since [|(^l+^*)/2-p|| Si\\A -p|| +|[^*-p||)/2 we can assume

that A is self-adjoint.

\\A2 - A\\ s \\a2 - AE\\ + \\AE - E\\ + \\E - A\\

S \\A2 - AE - EA + E\\ + \\EA - E\\ + 7 + 7

S\\A - E\\2 + 3y S 72 + 3T.

This implies that <r(yl), the spectrum of A, is contained in [—5, 6]

VJ[l —5, 1+5] where 5 is a positive number which can be chosen arbitrarily

small by choosing 7 sufficiently small. We suppose that 5 < 1/2. Let/ be the

function defined by/([-5, 5])= 0,/([l-5, 1+5]) = 1. Then fiA)EW,fiA) is
a projection and

||/U) - P[| S \\fiA) - A\\ + \\A - E\\ S S + 7.

For a suitable choice of 7 <e/2, 5 can be chosen less than e/2, and the proof

is complete.

Lemma 1.7. If e>0 and if n is a positive integer, there is a 5(e, 77)=8>0

with the property that if W is a C*-algebra and if {£,•: i= 1, • • • , n\ is a family

of projections in W with [|PtPy|| <S for i^j, then there is an orthogonal family

{Ei : i= 1, ■ ■ • , 77} of projections in W, with ||p' — Pj|| <e.
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Proof. We use induction on re. If re = 1 the proof is trivial. Suppose the

lemma is true for all re^r. For any e, l/3>e>0, we let 7(e) be the positive

number determined by 1.6. We suppose that 7(e) <e, and we define

S(e, r + 1) = min {1/3, y(e)/6r, 6(y(e)/6r, r)}

where the right hand side is already defined by the inductive assumption.

Suppose we are given a family {£,-:t = l, • • • , r + l} satisfying the

hypothesis of 1.7. By the inductive assumption we can choose an orthogonal

family [Ei :i = l, • • • , r] ol projections in W with ||p/ —Pi|| <7(e)/6r for

i = l, • ■ ■ ,r. Yet F= XX-i P.'- Then

||Pr+, - (7 - F)Er+i(I - F)\\ = \\Er+i - Er+1 - PPr+iP + PPr+i + Pr+iP||

^ 3||PPr+i||

^ 3 i: iip/£h-i||
•=i

< 3 £ (||P.-Pr+i|| + y(e)/6r)
i—l

By our choice of 7(e) we can choose a projection P/+i in the (commutative)

C*-algebra generated by £,', i=l, • ■ • , r, I, and (I—F)Er+i(I—F), with

||p/+i — Pr+i|| <e. Hence ||p/ — Pt-|| <e tor i = l, ■ ■ ■ , r + 1. Also P/+1P/ is a

projection for i= 1, - - ■ , r, and

||Pr'+1P/||    <  \\Er+lEi\\   +  6

g||£r+,£,||   +6+6

g 1/3 + 1/3 + 1/3 = 1.

Thus Ei+iE' =0 for i= 1, ■ ■ ■ , rand {jE/:»=»l, • • • , r + l} is an orthogonal

family of projections in W.

Lemma 1.8. If {p,-:t = l, • • • , n] and {P,:i=l, • • • , «} are each

orthogonal families of projections in a C*-algebra W, and if ||P.- — P<|| <1, then

there is a partial isometry W in W such that EfWFi is a partial isometry from

Fi to Ei. If e>0 there is a h(e, re) =5>0 such that if ||p,- —P,j| <5 then W can

be chosen so that ||Pi — PiTFF,|| <e. If ^,- Et = I then W can be chosen so that

\\I-W\\<e.

Proof. We have the inequalities ||P<-P<P,-£<||, ||P.— FiEiFi\\ g||£,—P<||

<1. Let 7 be a number such that ||£j —Pjj| <7<1. Let/ be the function de-

fined by /(x) = 0 if x £ (1 — 7)/2, f(x) = 1/x if x ^ 1 — 7, / is linear on
[(1 —7)/2, 1 —7]. If p is a pure state of the (commutative) C*-algebra gener-

ated by I, Ei and P,PiPj, then p(Ef) G {0, 1}. If p(Pj) = 0 (resp. 1) then since
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0 S EiFiEi S Ei (resp. 0 S E{ - P,P,P< Sy), we have p(P,P,-P,-) = 0
(resp.G [l—7> l])- Since p is multiplicative,

(1) piEtFiEifiEiFiEi)) = p(P,P,P,)/(p(P,P,Pi)) = p(P,-),

and if we let G,= (/(PiF.-P,-))1/2 then since (1) holds for each p, Ei = EiFiEiG\

= GiEiFiEiGi. If we let PL;=(/(P-PjFi))1/2 then by a similar argument,

Fi = LL2FiEiFi. Let Wi = EiGiFi. Then WtW? = P.-G.-F.-GiP^P,- and

IF* IF,- = FidEiGiFi

= HiFiEiFiEiG^Fi

= HiFiEiFi = Fi.

Let W= 22» Wi. EiWFi= W{ is a partial isometry from P< to P,- and IF is a
partial isometry from 22»' ^< to X); &*•

Given a positive e, let 5 be the minimum of {1/2, e/4wj. If ||Pi — P|| <5

then we choose y in the first part of the proof to be equal to 5. We have

lllFv-P.-H S\\W,- Gi\\ +|[G,--£i||

= \\GtFi - GiEi\\ + \\Gi - Ei\\

S \\Gi\\\\Ft - Ei\\ +\\Gi- E,\\.

If p is as above, then \piGi-E/)\ S |p(G2) -p(Pi)| <(1 — 5)-1 —1 = 5/(1 — S)

and \p(Gi)\s\p(G2i)\<l/(l-b). Consequently ||G,-£,-|| <5/(l-5) and

||G,-||<l/(l-5) and so ||TF,~P,|| <25/(1-5) Si5Se/n. If Y,iEi = I, then

IIW - l\\ =    £(1^- P,-)
i

s T,\\Wi- p<|| <€.
i

Lemma 1.9. Let e>0. There is a 5(e) =5>0 with the following property:

Let W be a C*-algebra acting on a Hilbert space !q. Let Pi and E2 (resp. Pi and

Ff) be orthogonal projections in W (resp. operating on §). Suppose that

\\Ei — Fi\\ <5, 7 = 1, 2, and suppose that there is a partial isometry V from Pi

to F2 and an AEW such that || V—A\\ <5. Then there is a partial isometry

UEWfrom Ei to P2 and || V- U\\ <e.

Proof. Let 5 = min {1/32, e/75}. We have

||p2 - P2^^*P2|| S \\E2 - AA*\\

S \\E2 - F2\\ + \\F2 - AA*\\

<8 + ||FF* - F^*|| + ||F^* - ^^*||

< 5 + 5 + 5(1 + 5) < 45 < 1.

P2^4^4*P2 is positive and lives on £2. By spectral theory, there is an XEW

such that
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£2 = XE2AA*E2X,

|| X - Ei\\ ^ || X2 - P2|| < 43/(1 - 45) < 85.

Let W = XEiA. Then WW*=E2 and W*W is a projection in W. Also

\\W*W - £i|| g \\W*W - F*£2X2P24|| + ||F*P2X2P24 - F*P2X2P2F||

+ ||F*£2X2P2F - Pi|| + ||Fi - Pjl

^ ||F* - 4*|| ||X2|| \\A\\ +\\A- V\\ ||X2|| + ||£2X2£2 -F2\\+b

< 5(1 + 85)(1 + 5) + 5(1 + 85) + ||P2X2P2 - £2|| +5 + 5

g 85 + H X2- £2|| < 165 g 1/2.

By the 5 chosen in the proof of 1.8, we see that there is a partial isometry

WiGW from Ei to W*W and

||lF*u/- Wl\\ < 645.

Let U=WWi. Then

||F - U\\ g ||F - W\\ + \\W - WWi\\

g \\V - E2V\\ + \\E2V - XE2V\\ + \\XEiV - XE2A\\

+ ||PT*JT- Wi\\

< 5 + 85 + 5(1 + 85) + 645 ̂  755 ̂  e.

U is a partial isometry from Pi to P2, and the proof is complete.

Lemma 1.10. For every e>0 and every positive integer re there is a d(e, re)

= 5 > 0 with the following property. Let W be a C*-algebra acting on a Hilbert

space §, let [e^: i, j=l, • • ■ , n] be a family of matrix units acting on !q. //

there are AijGW with ||e,-y —4,-y|| <5 then there are matrix units f^GW with

11 «.-y-/.v| |<«-
Proof. By 1.6 we suppose without loss of generality that An is a projec-

tion. For ij£j,

\\AiiAjj\\   S ||.4jj.<4yy        e,-j^4yy|[  + \\euAjj        6ftCyy||

^ \\Au - eu\\ + \\Ajj - eyy||.

By 1.7 we can assume without loss of generality that [An] is an orthogonal

family of projections and by 1.9 that for it*j, Atj is a partial isometry from

Ajj to An. X^' An is a projection and

t _ y a ..  < y \\e_a .-II1     /. ^i%i  == /. nen    si%i\\
i i

which for 5<l/re is less than 1. In this case ^liAii = I. Let fij = A*iAij. If

5<min (1/w, e/2) then {/,-,-} is a family of matrix units and
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\\fa ~ e,-y|| S |Mi,-^iy - Aueij\\ + ||yli,-eiy — e,-y||

< 25 S «.

This proof is complete.

Lemma 1.11. For every positive integer n there is an e>0 with the following

property. Let W be a factor of type lq acting on a Hilbert space !q, let

{eij'.i, j=l, • • • , n} be a family of matrix units acting on §. If in addition

there are A,jEW with \\eij — Aij\\ <e then n\ q.

Proof. By 1.10 it is sufficient to prove 1.11 when {^4,-y} is a family of

matrix units. Assuming this, recall that 1= 22»^«- Hence if Dim (•) is the

dimension function for 50c, l=Dim (22« Aa)=n Dim (vl,,-) for any i, and

Dim iAu) = 1/n. This implies n\q.

We prove two theorems, which are the main results of this section. The

first theorem is a classification of UHF algebras under *-isomorphisms.

Theorem 1.12. If %and 33 are UHF algebras of type {pi} and {rf} respec-

tively, then 21 7s *-isomorphic to 53 if and only if f({p,}) =/({r,-}), where f is

defined in 1.3.

Proof. Suppose f({pi}) =f({ti}). The qk defined in 1.4 with the sequence

{pi} is the same as the qk defined with the sequence {r{} tor k = l, 2, ■ ■ • .

By 1.5 21 and 33 are both of type {g,} and by 1.2 31 and 93 are *-isomorphic.

If 21 and 93 are *-isomorphic, it will follow from the second statement of

1.13 that f({pi}) =f({rt}). A direct proof could be given, using 1.11.

In the next theorem we state a necessary and sufficient condition for a

C*-algebra to be either UHF or a factor of type I„. This condition is analogous

to one of the definitions of hyperfinite factors of type IF [4]. We also find a

new definition lor f({p,}).

Theorem 1.13. Let 21 &e a C*-algebra. 21 fs either a UHF algebra or a factor

of type ln if and only if the following conditions are satisfied.

(1) 21 has a countable dense subset.

(2) If Ai, ■ ■ • , AnE^i and if e>0 there is a positive integer r and a factor

WE% of type lr and Bu ■ ■ -, BnEW such that \\At-B,\\<e.

If we define for a C*-algebra 21 and a prime number x

/(SI, x) = sup{/: W is a factor of type I„, W C 31, x> \ n]

then if 31 is o UHF algebra of type {pi}, fi{pi})i-) =/(SI, •).

Proof. Suppose 31 satisfies (1) and (2). Let |P,-:7 = 1, 2, • • • } be a

countable dense subset of the sphere of radius 1/2 about the origin of 31.

We construct by induction an ascending sequence of factors {5fJci}, W, of

type IPi for some positive integer pi, 9Ji»C3l, and such that there are

BkEWi, k = l, ■ ■ ■ , i with \\Dk-Bk\\S2-i. The existence of Wi is a direct



1960] ON A CERTAIN CLASS OF OPERATOR ALGEBRAS 325

consequence of (2). Suppose Wi has been chosen and satisfies the above con-

ditions for » = 1, • • • , re. We construct 9Jcn+i.

Let [e,t] he a family of matrix units for Wn, let e = 2~"~5p,r2. By (2) and

1.10 we can find a factor W C21, W of type Ip„+1, for some positive integer

pn+i such that there are matrix units f,tG[W] with ||es(— /,(|| <e, 5, t

= 1, ■ • • , pn, and Bi GW with \\Dk-Bi\\<e, k=l, ■ ■ ■ , n + 1. By 1.8 and
the choice of 5 in the proof of 1.8, there is a partial isometry IFG21 from/n

to en with 11en — W\\ <4e. Let Wn+i be the C*-algebra generated by Wn and

WfnWfnW*. Wn+i is isomorphic to the tensor product of Wn and fuWfu,

and so is a factor of type IPn+„ and WnGWn+iGW- Yet

Bk = T, e.iWfuB{ftiW*eu.
st

Then BkGWn+i and

||P*-.B*i! ^ \\Dk- B/\\ +\\Bk' - Bk\\

g 6 + p\ maxH/.A'/i, - e.iWfisBifnW*eu\\.
s,t

However

\\fM« - esiWfuBiftiW*eu\\

g \\UBiftt-fesBifnW*eu\\ + \\f..B£fllW*eu - esiWfuBiftiW*eit\\

g \\ftt - fnW*eu\\ + ||/„ - C1W7-1.II

=S ||/n - W*eu\\ + ||/,! - e,iW\\

^ ij/ii - «i,|| + ||en - W*eu\\ + \\f,x - c.i|| + ||«.i - e.iT*1|

g 6 + 46 + 6 + 4e.

Thus

|| Dk- Bk\\ ^ 6+ lOple^ 2~n~X

for & = 1, • • ■ , re + 1, and Wn+i has been constructed and has the required

properties. We can suppose that Wi has been constructed and has the re-

quired properties for i = 1, 2, • • • . The closure of U* Wi contains

[Di'.i—l, 2, - - - ] and so coincides with 21. If pi—»«> as i—>oo then 21 is

UHF. If pi-r*qo as *—>oo, choose a/ such that py = py+i = • • • . Then 9Jty is

dense in 21, 9D?y equals 2f and 21 is a factor of type lPj. This proves the first

statement of 1.13.

We prove the second statement. Let 21 be a UHF algebra of type [pi],

let N= {re: W is a factor of type I„, 2JJC2I}. Let x be a prime number. We

must show that f([pi})(x) = sup [j: there is an wGA with x'|re}. Suppose

reGA. By 1.11 and 1.1 formula (4) there is an i such that n\p,. Thus
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max{/: x'\ n} Sf({pt})(x),

sup{/: there is an 77 E N with x>'\ n} Sf({pi})(x).

The converse inequality follows directly from the definition of f({pi}) and

the fact that piEAf. This completes the proof of 1.13.

In §5 we will construct a C*-algebra which is related to the investigations

of this section.

2. Pure states and the pure state space. Let 21 be a UHF algebra gener-

ated by factors Wn of type Ip„, let {e^: i,j=l,---,p„}bea family of matrix

units for Wn- If / is a linear functional on 21, then/ is uniquely determined by

the numbers a^=f(e"f). We determine in 2.4 necessary and sufficient condi-

tions in terms of the a"j that/be a state (resp. pure state) of 21. If/ is a state

of 21 then / is pure if and only if for each positive integer 77 there is an integer

r greater than n such that if g is a linear functional on Wr, and if /| WrT^g^O

then g\Wn is approximately a scalar multiple of /| Wn- First we prove two

lemmas dealing with a more general situation. If P is a subset of a metric

space P', if e>0, we say that P is e-dense in T' if for every t' in T' there is a

t in P with d(t', t) <e.

Lemma 2.1. Let 21 be a C*-algebra, let {Wn: nEN} be a net (directed by

inclusion, N a set of indices) of finite dimensional self-adjoint linear subspaces

Wn of 21 which contain I. Assume that 21 is the closure of the union of the W„.

(Such a net always exists.) Let u be a state of 21. co is pure if for each n in N and

each positive number e there is an ri(n, e)=r in N with r^n and such that there

exists an e-dense subset T of {ar: aE [0, l], r is a state of Wr and co| Wr^ar}

with the property that if arET then either ||co| Wn — t\ Wn\\ Se or a <e.

Proof. Suppose co is not pure. Then co = 2_1ti + 2_1t2, where ti and r2 are

distinct states of 21. ti and co are also distinct states of 21, and since U„ Wn

is dense in 21, co| Wn and n| Wn are distinct states of Wn for some 77 in N. Let

e = min {1/4, ||co| W„—Ti\ 9Jc„||/5} , let r he in N with r^n, let Pbe an e-dense

subset of {ar: aE[0, l], r is a state of WT and co | Wr ^ ar}. Since co|3)cr

^2-1n| WT, there is an ar in Pwith ||2-iti| Wt — ar\\ <e. This implies | 2~1 — a\

<e, a>e, and

||co I Wn - r I Wn\\ ^ ||« | 2H» - n | Wn\\ - ||ti | Wr - 2ar\\ - par - r\\

> 5e — 2e — 2e = e.

Thus for this 77 and e, there is no r with the properties of the lemma, and the

proof is complete.

Lemma 2.2. Let 21, {Wn: nEN}, and co be as in 2.1. co 75 pure only if for

each 7? 777 N and each positive number e there is an r2(w, e) =r in N with r^n

and such that if qEN and if q^r, and if

CO I   Wq   =   22  UkTk
k
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where rk is a state of Wq and [ ak ] is a finite convex family, and if we let

Kq= [k:\\u\Wn-rk\Wn\\ >e]

then

£ {«*: k G Kq] < 6.

Proof. We suppose that for some re and some positive e such an r cannot

be found. For each g^re in some cofinal subset Q of N, there is a decomposi-

tion of co 13^ j as a finite convex sum of restrictions to Wq of states

[rhq:k = l, ■ ■ ■ ,tq] of 21,

CO   Wq  =   Zl  <*kqTkq   Wq,
k

and if Kq is defined as in the statement of the theorem, £{a&g: kGKq] ^e.

The dual Wt to the topological vector space Wn is a finite dimensional topo-

logical vector space, so the weak topology and the norm topology on Wt are

the same. Consequently there is a finite subset [At: *=1, • • • , s] of nonzero

elements of Wn such that itfGWt and \f(Ai)\ ^l,i = l, • ■ ■ ,s then ||/|| ^e.

0}\Wn-Tkq\WneWt and so

Kq = U [K(q, t) n Kq: i = 1, • • • , 2s]

where

K(q, 2i) = [k: -co(Ai) + rkq(Ai) > l], i = 1, • • • , s

K(q, 2i-l)= [k:a(Ai) - rkq(Ai) > l], i = 1, ■ ■ • , s.

Since £{a*9:^GP9} ^€ there is an i(q)G[l, • ■ ■ , 2s] such that

(1) aq=lZ {<***■ k G K(q, i(q))} ^ e/2s

where the above equation defines aq. Yet

rq  = aqx zZ {akqTkt: k G K(q, i(q))},

ri' = (1 - aq)~l £ [akqrkq: k G K(q, i(q)), l^k^lq].

Then

co I Wq = aqTq- | Wq + (1 - af)ri' \ Wq

and letting j = i(q)/2 if i(q) is even, (i(q)+l)/2 if i(q) is odd,

||«I aTC» - r9' | 3W,||  ^ my||-l| coUy) - ri(Aj) \

= iwh-
The states of 21 are w*-compact, so we can choose a subnet [qm: mGM]

of Q, where M is some directed set, such that
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(2) t^-t'

(3) <.->/'

aqm~^a

where t', r" are states of 21, the convergence in (2) and (3) is in the w*-

topology, and a is a real number. If AEWq,

ar'(A) + (1 - a)r"iA) =   lim iaQmr'qmiA) + (1 - «J^))
in

= limco(v4) = co(^4).
m

Consequently flr' + (l — a)r" =oi. We show that this convex sum is not degen-

erate, and this will complete the proof. By the equivalence of weak and norm

topologies in W*,

||C0 | Wn  ~  T' I  SW.II   =      CO    Wn  ~ ( Hm Tq\    Wn

=      CO I Wn  ~  Hm  iT'qm |  Wn)   I
m

= limm ||co | Wn — TQm | Wn\\

^inf{||^y|h:/= 1,-..,*} >0.

Thus coj^t', which implies cx<l and t't^t". By (1) cx>0 and the proof is

complete.

We observe that 2.2 is (stronger than) a converse to 2.1. Suppose that co

is pure, that nEN and that e>0. We show that there is an ri(77, e) which has

the properties of 2.1. In fact, let rfji, e) =r2in, e) ( = r). Let P= {ar: aE [0, 1)

and r is a state of WT with co | Wr ^ ar}. It arET then

w\Wr = ar+ il- a) [(1 - a)~l(<* I ̂  ~ ar)]

and by 2.2, either ||co| Wn-r\ Wn\\ Se or a<e.

Definition 2.3. Let 9c (resp. W) he the algebra of complex mXt7 (resp.

qXq) matrices, with matrix units {e"}} (resp. {«?;})■ Suppose n\q. An iso-

morphism 0 of 91 into W is called the standard imbedding [5 ] if

eie"j) = 22 ie«': (5> 0 = (an + i, an + j), a = 0, ■ ■ ■ , iq/n) — l}.

We identify the set of prXpT complex matrices with Wr by means of the

matrix units {eTtj}. When we speak of an e-dense subset 5 of a subset of Wr,

we shall mean e-dense in the metric which makes the mapping c/i of 6.1 from

the normed space Wt to the set Wr an isometry. If Pi and P2 are positive

elements of Wr, then the distance from Bi to B2 in this metric is trace | Pi — P2|

(see the proof of 3.4).
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Theorem 2.4. Using the notation preceding 2.1, let An be the tranpose of the

matrix (a%). Then f is a state if and only if trace (Af) = 1 and An~^0 for each re.

Suppose that f is a state and that the inclusion Wn-^Wq is the standard imbed-

ding relative to the matrix units {e^] and [e%] for each n and q with q^n. Then

f is pure if for each positive integer n and each positive e there is an integer

H(n, e)=r with r^n and such that there exists an e-dense subset S(n, e)=S of the

set [aB: aG[0, l] and B is a positive prXpr matrix with trace (B) = l and

Ar^aB] with the property that if aBGS then either

sup | o*y - Jf {bts- (s, I) = (apn + i, apn+j), a = 0, ■ ■ ■ , (pr/ps) - l] |   g e
»y

or a<e where B is the matrix (bst) ■ Also j is pure only if for each positive integer

re and each positive e there is an integer r4(«, e)=r with r'Sin and such that if q

is an integer, if q^r, if

Aq = zl akBk
k

where [ ak} is a finite convex family and Bk is a positive matrix with trace (Bf)

= 1, if we let

P(o) = [k: there is an i and aj with \ Oy — £ [b,s: (s, i)

= (apn + i, apn + j),a = 0, ■ ■ ■ , (pjpf) - l] |   > e}

where Bk is the matrix (b*t), then

lZ W-k G K(q)] <6.

Proof. If ^4„^0 for each re then by 6.1, /| Wn^0 tor each re. Let D he a

positive element of 21 and choose DnGWn such that Dn—>D. Then f(D)

=f((D*Dyi2)=limnf((DtDf)ll2)^0 and so/^0.  Conversely if/^0 then

f\Wn ^ 0 for each re and by 6.1 An ^ 0 for each re. Also /(/) = £< f(eH)

= trace (Af) and the proof of the first statement of 2.4 is complete.

Suppose that / is a state and that the inclusions Wn-^Wq are standard

imbeddings. Suppose that for each re and e we can find an r3(re, e) with the

properties stated in 2.4. Let rx(n, e) =r3(n, epf2) ( = r), let</>-1(S(re, epf2)) = P.

By 6.1, T is an £p~2-dense subset of [ar: aG [0, l], r is a state of Wr and

/| Wr^ar}. If D= zZa ^oe«G5f/ln, where d,,- is a complex number, then

||P|| gl implies |d,-y| gl for all i,j, and consequently

pl sup | f(e*j) - r(c"y) |  ^ || /| 3»„ - r | aw„!|

for any state t of Wr. If or G T, then a<p(r) G S(n, epf2) and so

sup,y |/(4)—r(e&)| ^epf2 or a<epf2. Thus ||/| Wn-r\ Wn\\ ge or a<e and

by 2.1,/ is pure.
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Suppose that / is a pure state of 21 and let 77 be a positive integer, let e

be a positive number. Let r±fn, e) =r2(w, e). If Aq= 22* <xkBk as in the state-

ment of 2.4, let Tk = <p~1iBk). By 6.1, rk is a state of Wq and/J Wq = 22* <w*-

If we define Kq as in 2.2, then Kq D Kiq). Thus 22{«*: k E K~iq)}
= 22{a*: kEKq} <e and 74(77, e) has the desired properties. This completes

the proof.

Lemma 2.5. Let % be a UHF algebra generated by factors Wn of type Ia„.

Let 03 be a pure state of 21, let e>0, let n be a positive integer. There is an integer

r^n and a pure state co' of 31 such that

(1) ||co'-co||<e,

(2) carrier co' | Wr S carrier w \ Wr,

(3) if p is a state of Wr and carrier p Scarrier co' | Wr then \\p\ Wn -co' | Wn\\

<«,

(4) Wr-dimension icarrier co'| WT) Sqr/qn-

Proof. By 6.1 we have co| Wn= 22<=i aiTi where the right hand member is

a finite convex sum of pure states of Wn- Let e' = min {e, ai, ■ ■ ■ , at}, let

e" = min {(e'/26)2, e'/2g„, 1/2}. We let r be the r2(e", 77) given by 2.2. Let

P be the carrier of co| Wr, let B = (c6(co| W/))112, where <p is defined in 6.1, let

{Aj-.j = 1, • • • , q„} be a set of matrix units for Wn- We identify Wr and the

algebra of all linear operators on <7r-dimensional Hilbert space.

By 6.1 co I Wr = trace (P-P), and so P = range B=I— (null space B). We

choose a maximal orthonormal family {yk} in F such that for each k there is a

j with

\l/\\Byk\\2iAjByk, Byk) - uiAA\   > e".

Choose an orthonormal basis {zn} for P— [{y*}]. By 6.1

co I wr = 22ll-By*ll!Wi/*/iiB:/*ii + 22 ||pz4I2w£z„/ob*j.
k h

By the choice of yk,

\\uBvkl\\Bvk\\ I  Wn  —  CO I  Srjc„||   >   t"

and so by the choice of r,

0 = 22 \\Byk\\2 < e"
k

where b is defined by the above equality. If x£ [{zn} ] and |]Px|| =1, then by

maximality of {yk},

I ub,(A,) - u(A,) I   S e"

and

(*) \\wb. I Wn ~ co I STO.II S <?> S e'/2 S e/2,
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where (*) follows from the fact that if A is in the unit sphere of Wn, then

4 = L-Mi,and |fr| gl.
Let G be the projection (not necessarily orthogonal) onto [{Pz/»} ] along

[[Byk]]+I-F, let

co' = (1 - b)~1co(G*-G).

«' is a positive linear functional and

co'(/) = (1 - b)~1co(G*G)

= (l-b)-izZ\\Bzh\\2
h

= (i -b)-i(i - zZWBykW2) = i

so co' is a state. If 0 is the representation of 21 due to co on a Hilbert space §«,

then o)=coxod for some x in £>. co' = (1— b)~1coe<.G)x od is also a vector state.

Since 0 is irreducible, co' is pure. Let Xi=0(G)x, let x2 = 6(I — G)x. Then

||x2||2 = ||0(7 - G)x||2

= (0((7 - G)*(I - G))x, x)

= U((I - G)*(I - G))

= Z\\Byk\\2 = b
k

and ||xi|| gl+61'2. Hence if A is in the unit sphere of 21,

I cc'(A) - u(A) I   =|(1- b)-l(d(A)xh xi) - (0(^)x, x) I

g  I 6(1 - b)-\d(A)xu xi) I   +| (6(A)x2, x2) |

+ I (d(A)xi, x2)\  +| (d(A))x2, xi) I

g6(l-6)-1||xi||2-r-||x2||2 + 2||x1||||x2||

g b(l - J)-!(l + b1'2)2 + b + 2¥i\l + b1'2)

g 13cJ1'2< 13(e"yi2 ge/2

and ||co'—co|| <e/2 which gives us (1).

The carrier of co'|3)cr is [{Bzh}] grange B= carrier w\Wr and (2) is

proved. Any unit vector v in [JPza}] has the form z; = Px for some x in

[[zh] ]. By (*) and the fact that ||co'— co|| <€/2 we see that (3) is true if p is

pure. Thus (3) is true in general. Let iG[l, • • • , t] and let P = carrier t<.

The mapping from carrier co' | Wr into P given by x—>Ex annihilates (at

least) the complement of a qr/qn dimensional subspace of carrier co'lSUr- If

(4) does not hold we can find a unit vector v in the kernel of this map. As

above v = Bx, with xG[{z*} ], and |<o„(P)— co(P)| ^as^e' which contradicts

(*). This completes the proof.
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The following lemma will be helpful in studying irreducible representa-

tions of UHF algebras.

Lemma 2.6. Let 31 be a UHF algebra generated by factors Wn, let <abe a pure

state of 31. There is a subsequence {77,} of the positive integers and a sequence

{Ei} of projections, EiEWni, such that

(a) 1 -«(£<) <2-*,

(b) if p is a state of Wni+i and carrier pSEi+i then \\p\ Wni—<o| 9JcBi|| <2~*

for 7 = 1, 2, • • • .

Proof. Let Pi = 1, n\ = l. Suppose 77y and Py have been chosen for some

positive integer j. For 77 = 77y and for e = 2-)'~2 find an r and an co' which satisfy

2.5. Let 77y+i = r, let Py+i=carrier co'| Wn-+V Then

1 - co(Py+i)  = co'(Py+i)  - Co(Py+i)

S ||to' - co||  < 2-i-i.

1 f p satisfies the hypotheses of (b) then

||P I  Wnj ~ CO I 9TO„J|   S \\P I  Wnj  - CO' I  Wn,\\   + ||co' - C0||

< 2~'~2 + 2~'-2 = 2-'-1

and the proof of 2.6 is complete.

The next result gives another set of conditions which are necessary and

sufficient for a state co of a UHF algebra 31 to be pure. In fact if w is a state

of 21 and if there exist factors 9c,-, 7 = 1,2, • • ■ , which generate 21 so that 2.7

formula (3) holds, then co is pure. We remark that in the terminology of the

following theorem, the sequence of projections {carrier co|9c/}, the state co,

and the factors 9t; satisfy 2.6 and also the sequence {carrier co| 91,} is mono-

tone decreasing.

Theorem 2.7. Let %be a UHF algebra generated by factors Wn of type IQn,

let 03 be a pure state of 21. There is an ascending sequence {9l<} of factors which

generate 21 and for each e > 0 there is a pure state co' of 21 and a subsequence

{nj} of the positive integers such that

(1) ||co-co'||<e,

(2) (resp. (3)) if p is a state of Wni (resp. 9!;) and carrier pS carrier co'| Wni

(resp. co|9ti) then \\p\ SR.^-w'1 STO^JI (resp. ||p|9c,-_i-«|9c,_i||) <2~i,
(4) Wm-dimension carrier co' | Wn< S 2»,-/«Jn,--li

(5) fii-dimension carrier co| <HliiSqni/qni-i.

Proof. We suppose e<l. Let coi=co and »i = l. By induction, using 2.5,

we can find a sequence {o3i} of pure states and a subsequence {n,} of the

positive integers such that ||co,-_i— Wj|| <e/2i+1, such that if P<y = carrier

co<|9ro„;- then EuSEi^u and STO^-dimension EnSqni/qni_1 and such that if p

is a state of Wni and if carrier pSEi{ then ||p| Wni_1—03i\ Wn^W <e/2i+1 for
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i = 2, 3, • • • . {co<} is a Cauchy sequence (in norm) in 21*, the dual to the vec-

tor space 21, and so {«,-} has a limit co' in 21*, «' is a state, and ||co—co'|| <e/2.

If (/, k) is a pair of integers with/^fe^l then £y„g£jw:. In fact this is

true for j = k, suppose it is true for pairs (s, t) of positive integers with

Ogs — t<j — k. Then Pyfc+igP^+u+igPm+i and so PyngP**. Let Et = carrier

co'| Wnr For any positive integer k, «'(/-£«) = limycoy(7 — Ekf) =0. Thus Ek

gpfcfc and (4) is proved. If p satisfies the hypotheses of (2), then

||p | Wn^ ~ co' | TOn^JI g ||p I Wm-t ~ co,-1 Wn<J\ + ||*< - co'||

< e/2<+1 + e/2*1 < 2-'"

and (2) is proved.

We show that co' is pure. Let 21o be the C*-algebra generated by 7 and

[Ei-.i = l, ■ • • ]. 2to is commutative and co' is a homomorphism of 2lo so

co'| 2lo is pure. If r is any extension of a'\ 2lo to a state of 21 then carrier t\ Wni

gPi and by (2), t=co'. Thus co'|2Io has a unique state extension to 21 and

so co' is pure. A proof that co' is pure could also be based upon 3.2. By [l]

there is a *-automorphism 0 of 21 such that u'(d~l(A)) =co(A) for all AG%-

(0 is the inner automorphism from some unitary Z7G21). Let 9fCi = 0(SDfc„i).

Then {%} satisfies (3) and (5) and the proof is complete.

Theorem 2.8. If 21 is a UHF algebra, then the w-*closure of the set of pure

states of 21 is the state space of 21.

Proof. Let co be a state of 21, let 21 be generated by factors Wn- Yet

-4,G2l, i=l, • ■ • , r. We show that there is a pure state t such that

|r(_4i) — co(_4i)| <1 for i=l, ■ ■ ■ , r. There is an integer re and BiGWn with

\\Bi—Ai\\ <l/2, i=l, • • • , r. If Wn is of type 7r we choose an integer m

such that Wm is of type 7, with s^r2. We assert that co| Wn has an extension

to a pure state r' of Wm- Yet Wm he represented on complex s-space. In this

representation, the commutant Wf of Wn is a factor of type 7,/r, and s/r^r.

Thus Wn has a separating vector, and all normal states (that is all states)

of Wn are vector states, and so they are restrictions to Wn of pure states of

Wm- This gives us the desired pure state r' of Wm- Let r be a pure extension

of t' to 21. Then

| r(Ai) - u(Ai) |   g   | r(Ai) - r(Bi) \  + \ r(B%) - u(Bt) \  + \ <*(B%) - u(Ai) |

< 1/2 + 0 + 1/2 = 1

and the proof is complete.

Let p and t be two distinct pure states of 21 (such pure states exist). Then

p/2+r/2 is a state of 21 which is not pure, so the set of pure states of 21 is

not w*-closed.

A plausible noncommutative extension of the Stone-Weierstrass approxi-

mation theorem states: If 21 and SB are C*-algebras with 21CIS8 and if 21
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separates the pure states of 33, then 21 = 33. In course lectures (1957-1958),

R. Kadison conjectured that the correct result should assume: 31 separates

the w*-closure of the pure states of 33 (i.e. the pure state space of 33). It is

automatic that the pure states are w*-closed in the commutative (classical)

case. It is known that if 31 separates the states of 33, then 31 = 33. Thus 2.8

establishes the emended conjecture for UHF algebras. We shall show else-

where that this emended conjecture is valid for those C*-algebras which have

a faithful irreducible representation.

3. Irreducible representations. In this section we determine the distinct

classes of unitarily equivalent irreducible representations of a UHF algebra

21. Since each irreducible representation of 21 is unitarily equivalent to the

representation due to some pure state of 21 and since we have already deter-

mined the set of pure states of 21, we have still to determine which pure states

of 21 give rise to unitarily equivalent representations (3.4). In 3.5 we prove

that all irreducible representations of UHF algebras are on separable Hilbert

space.

Lemma 3.1. If % is a UHF algebra generated by factors Wn, then the unitary

group of 21 7-s the uniform closure of the unitary group of U9Jc„.

Proof. An element U of 21 is unitary if and only if UU*=U*U=I.

Multiplication and * are continuous, so the closure of the unitary group of

UWn is in the unitary group of 21. Let U be a unitary operator in 21, let

AnEWn he such that An—>U. For sufficiently large 77, An is invertible, and

(An*Af)-ll2-*(U*U)-1i2 = I. Thus An(An*An)-1>2->U. Since An(An*An)-1'2

is unitary, the proof is complete.

We determine (3.2 and 3.3) the topology on the pure states of a UHF

algebra 21 which is induced by the norm in the dual to the Banach space 21.

This topology is closely related to the Hilbert spaces upon which 21 is ir-

reducibly represented (cf. also the remark following 3.4).

Let 2t be a C*-algebra, let {p$: fiEB} be a family of pure states of St

which contains exactly one representative from each unitary equivalence

class of pure states of 31. Let c6 be the representation of 31 on the Hilbert space

£> which is the direct sum of the representations <pp on Hilbert spaces §0

due to pp, fiEB. We identify 31 and c6(3I). (c/> is faithful.)

Lemma 3.2. Let 31 be a C*-algebra acting on the Hilbert space £> as above.

Let x, yE&be such that ux\ 31 and wy\ 31 are pure states of 31. Then

1-  I (x,y) |2 s\\Ux\<$L -co, I 3I||

S inf{2||ax — y||: a    is    a    complex    number,     \ a\   = l}

S 23/2(l -  I ix, y) \2)112.

Proof. By [l] [x]£2t-, the strong closure of 21, and
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1- |(x,y)|2= 1- ((y,x)x,y)

= i - ([*]y, y)

g||co-|2I--Wl,|2l-||

= ||co-| 21-cov | 2t||

where the last equality follows from [3].

Let A be in the unit sphere of 21, let a be a complex number of modulus 1.

Then (for any vectors x, y in the unit sphere of £>)

| (Ax, x) — (Ay, y) |   g  | (Aax, ax) — (Aax, y) \  + \ (Aax, y) — (Ay, y) \

g 2||ax - y|| .

For some complex a of modulus 1, (ax, y) _g0 and

11ax — y\\2 = (ax, ax) — (ax, y) — (y, ax) + (y, y)

= 2(1-| (x, y) | ) g 2(1 - | (x, y) |2)

and the proof is complete.

Lemma 3.3. Let 21 be a UHF algebra acting as preceding 3.2 on the Hilbert

space §, let 21 be generated by factors Wn, let w=co~|2I be a pure state of 21 for

some x in &. If {£,-} is the sequence of projections determined by 2.6 for the pure

state co then strong lim £,= [x] and \ (x, y)| 2 = lim co„(£i) for any y in !q.

Proof. Let [nt] be the subsequence of the positive integers determined by

2.6. We assert that there is a sequence {e(i) ] of positive numbers such that

e(i)-+0 and £i+e(/)7>£. if s>i. If s>i,

\\EiE.Ei - _Z.|| g || £,-£.£,■ - P,P.|| + ||P,-P. - 2_.ll

g 2||P,P. - £.||

and if z is a unit vector in £.,

||PiZ - z||2 = (£,-z, Eiz) + (z, z) - (EiZ, z) - (z, Ea)

(1) = 1 - (EiZ, z)

< 1 - co(£i) + 2-'+1 < 2-""1

since |k| _0cn,_1-co|2).„J| <2~«+1 and  l-w(£,)<2-i. Thus ||£,-£,£<-£.||
<2(-<4->/-. Let e(i) = 2<-i+3>'2. Since 7^£s, £i^£i£.£,-, and

Pi + e(.)7 ^ Pi£.£< + e(i)I ^ £,-£,£,- + £. - £,£.£,• = £.,

which proves the assertion.

For the time being we do not assume § and the action of 21 on § is as

preceding 3.2, we do not assume that co is a vector state. Let

f= [{8:*e$,«.| a = _>}],
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we assert that strong lim P; = P. Let {i(j)} he a subsequence of the positive

integers. We show that there is a subsequence {iijik))} of {iij)} such that

EiWk))+2e(i(j(k)))I>EiU{k+i)) + 2e(i(j(k + l)))I. Let /(1) = 1, and suppose

j(k) has been chosen for some positive integer k. Choose j(k + l) so that

e(i(j(k)))^2e(i(j(k + l))). Then {i(j(k))} has the above property. Thus by

monotone convergence every subsequence of {£;} has a strongly convergent

subsequence. Let £ be the limit of a strongly convergent subsequence

{£,-(;•)}. We show £ = P which will prove our assertion. £2 = strong lim E\s)

= E and £*=weak lim £*;)=£ so £ is a projection. Suppose that z£§ is

such that co2|2l=co. As in (1), ||£<z — 3||2 = 1 — (£,-z, z) <2_i so z££. Suppose

that y is a unit vector in P. Then

||wy| STOni-i - co I Wm-i\\ S \\oy - t»EiU\\ + \\axii — l/\\Eiy\\2WEiy\\

+ ||i/||p,-y||2co^v| aro.,-, - co I sto,,,..,!!

S 2||P,-y-y|| + l-||P,-y||2+2-'+1

where the first term in the last inequality is due to the second paragraph of

the proof of 3.2, and the last term is due to carrier l/||p,-y||2co£,„| WniSEi.

Thus co„|3I=co, yEF, and strong HmP, = P If 31 and § are as preceding

Lemma 3.2 then [F] = [x] by Lemma 3.2 and the first statement of Lemma

3.3 is proved.

If yE&, then lim (£,y, y) = ([x]y, y) = | (x, y)|2 and the proof of 3.3 is

complete.

Theorem 3.4. Let % be a UHF algebra generated by factors Wn, let p and t

be pure states of 21, let {E{} be a sequence of projections chosen by 2.6 for the pure

state r. Suppose that 0^r<l/2 and that for each positive integer n we are given

a subset 11„ of the unitary group of Wn such that if W is a unitary operator in

Wn there is a V in U„ with || V— W\\ St. The following statements are equivalent.

(1) The representations 4>p and <j>r due to p and r respectively are unitarily

equivalent.

(2) There is a unitary U in 21 with piU* ■ U)=r.

(3) There is a positive integer k such that

lim sup {sup {PiV*EiV): V ElXk}: i = 1, ■ ■ ■ } > 0.

(4) There is a positive integer k such that

lim (inf{trace | <K(p(F*-F) - r) | Mf) \ : V E U*}) < 1,
i

where <p is defined by 6.1.

Proof. We assert that if / and g are positive linear functionals on 9TOn then

||/—g|| =trace \<p(f— g)\ ■ Let/o (resp. go) be the linear functional on Wn such

that </3(/o) (resp. — <Kgo)) is the positive (resp. negative) part of the self-

adjoint operator cf>(/—g). Then/o, go^O and/0 — go=/— g. Carrier/0 (resp. g0)
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= range <p(fo) (resp. <b(go))< in fact by 6.1 this is true for/0 a pure state, thus

it is true for /0__;0. Thus carrier/o-L carrier go and

11/- «|| " ll/o - Soil = M\ + ll«»ll = MI) + go(I)
= trace d>(fo) + trace <£(g0) = trace <f>(f0 + go)

= trace | d>(f0 — go)\   = trace | <b(f — g) |

as asserted.

The implications (1)<=>(2) follow from [l]. Suppose (2) is satisfied. Let

21 be acting on § as preceding 3.2. There are x, yG& with co_| 21 =r, co„| 21 =p,

and a unitary LG21 with o>rjv\ 21 =t. By 3.2 yUy=x where 7 is some complex

number of modulus 1. There is a positive integer k and a unitary WGWk

with ||TF- U\\<(l-2r)/i, there is a FGU* with || V-W\\ ^r. For any posi-
tive integer i,

trace | <p((P(V*-V) - r) | Wi) \   = \\(P(V*-V) - r) | 2tt.-||

g ||cor.|2I-r|| g 2||7Fy-x||

g 2||F - V\\ g 2||F - W\\ + 2\\W - U\\

< 2r - (1 - 2r)/2 = 1/2 + r < 1.

Thus trace \<t>((p(V*- V)— t)\ Wi)\ is monotone increasing (as i increases),

the limit in (4) exists and is less than 1, and (4) is satisfied.

Suppose (4) holds. Let {«,-} be the subsequence of the positive integers

determined by 2.6. in conjunction with {£,}. Then for some positive integer

k and some number 5, with 0g5<l, we can choose V(i)GVlk such that

trace \<t>((p(V(i)*-V(i))-T)\Wlnt)\ <o, and

P(V(i)*EiV(i)) ^ r(Ei) - \\(p(V(i)*-V(i)) - r) I m,J|

_i 1 + 2~« - 5.

For large *, p(V(i)*EiV(i))>0 and (3) is satisfied. If (3) is true there is an

integer k, a cofinal subset J of the positive integers and an e>0 such that for

each jGJ there is a V(j)GVtk with p(V(j)*EjV(j))>e. Since the unitary

group of Wk is compact, we can choose a unitary VGWk which is a limit point

of { V(j):jGJ\- We have p(V*EjV)^e/2 for all j in some cofinal subset

of J and by 3.3, | (x, Fy)|2^e/2. Recall that §= zZ® {&»: PEP], so Vy
= _C{Z0: /3GP}, with zpG&p, and oivv\ 21 = _>_/%• However corj,|2I is pure

since coa| 21 is pure and so there is a unique (80GP with z^05^0. By the same

argument „G§j, for some /3iGP. Since (x, Fy) y^O, we have /30=)3t. Recalling

that _4—>_4§3l is an irreducible representation of 21, the representation due to

cox I 21 is unitarily equivalent to the representation due to co^,,|2. which is

unitarily equivalent to the representation due to co_|2I. This completes the

proof of 3.4.
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We remark that if / and g are positive linear functionals on a UHF

algebra 31 which is generated by factors Wn then by the first paragraph of the

proof of 3.4,

||/ - g\\ = lim || (/ - g) | gR.ll = Hm trace | <*>((/ - g)\Wf)\ -

Theorem 3.5. Each irreducible representation of a UHF algebra is on

separable Hilbert space.

Proof. Let <p be an irreducible representation of a UHF algebra 31 on a

Hilbert space §, let 31 be generated by factors 90?,,. If x is a nonzero vector in

§, then U„ [</>(9TOn)x] is separable and is dense in §.

4. Representations of type IL.

Theorem 4.1. Let 31 be a UHF algebra and let <p be a representation of 31

such that <piA)~, the weak closure of c6(SI), is a finite von Neumann algebra. Then

c6(3I)~ is a factor iand is hyperfinite).

Proof. Let 3 be the center of 0(31)"". Suppose £ and P are two orthogonal

nonzero projections in ,3- There are finite normal traces 0 and yp of c6(3l)_

such that 9(P)^0 and i/>(P)^0. Let B'iA)=diEA) and V(A) =+iFA) for
A £cf>(S0_. Then 6' and yp' are normal finite traces of 4>iA)~. However

X0'| Uc6(9Jc.) =yp'\{JypiWn) for some X>0 where 31 is generated by factors Wn-

6' and yp' are ultra-weakly continuous, so W=yp'. Thus O^X0'(£) =^'(£) =0,

a contradiction, and there do not exist two orthogonal nonzero projections in

3, which implies that ci>(Sl)_ is a factor.

5. An example. We construct a C*-algebra Sl0 which satisfies:

(1) 3lo is not a UHF algebra.
(2) The center of 2Io consists of scalar multiples of the identity.

(3) There is a strictly ascending sequence {9c\:i=l, 2, • • • } of finite

dimensional von Neumann algebras in Slo and Ui 91, is dense in 3f0.

This example is related to one of the definitions of hyperfinite factors of

type IL [4]. We will show that 3I0 is not a UHF algebra by showing that 3I0

does not satisfy the conclusion of the following theorem.

Theorem 5.1. If 21 is a UHF algebra, then 21 is simple.

Proof. Let 21 be generated by factors Wi- Let 3 be a proper two sided

ideal in 21. 3 is contained in a maximal two sided proper ideal $ which is

necessarily closed. The natural mapping c6: 21—>2l/$ is a *-homomorphism.

Since $£ is proper and Wi is simple, c&| W, is a *-isomorphism and hence is

isometric. Thus cp is isometric and so $ = {0}, 3 = {0} and the proof is com-

plete.

Let 21 be a UHF algebra generated by factors Wi, Wi^Wi+i- Let p be a

state of 21 such that p| W, is pure for i= 1, 2, • • • . Such states exist, and by

2.1 are pure. Let c6 be the representation of 21 due to p on a Hilbert space §.

We identify 21 and c6(2l). Let x be a unit vector of f> such that p = cox| 31. Let
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2Io= [A: A G2I, [x]A = A[x]].

2lo is a C*-algebra, we assert that 2lo satisfies (1), (2), and (3). 2lo is not a

UHF algebra since

3 = [A: A G2Io, Ax = 0}

is a proper two sided ideal in 2lo, and by [2 ] 3 ^ {0}. To show that 2lo

satisfies (2), we prove the stronger statement that 3I0 has a faithful irreducible

representation. In fact the mapping II: _4—^4(7 — [x]) is a representation of

2Io on the Hilbert space 7— [x] and by [2], II(2lo) acts irreducibly on 7— [x].

If A is in the kernel of II, then [x]_4 =_4 [x] =A, so A is a completely con-

tinuous operator. Let S be the set of all completely continuous operators on

|>. Then SH21 is a proper two sided ideal in 21 and by 5.1, £^21= {o}. Thus

(Sn2fo= {0}, n is faithful and 2I0 satisfies (2). Let £< = carrier p\W{. Et is a

minimal projection in Wi since p| Wi is by assumption a pure state of Wi. Let

3li = EiWiEi © (7 - £,)9Jci(7 - Pi).

{■Ji,-: * = 1, 2, • • • } is a strictly ascending sequence of finite dimensional

von Neumann algebras in 21o- We show that Ui fti is dense in 2lo- Let A =A*

in 21o, let Ai = A* in Wi he such that _4,~»_4. Let zt=(I— [x])^4tx. Since x is a

unit vector in £,- and since EiAAfl — £,)_4.£i is a scalar multiple of Eit

||£i_4i(7—£i)_4t-£i|| =(£,-_4i(7 —£i)_4i£,x, x) and

||z.-|| ̂  ||(7 - £i)zi|| = ||(7 - £iMiP.x|| = (22.-4,(7 - Ei)AiEtx, x)1'2

= ||£._4.<7 - Ei)AiEi\\u2 = ||(7 - Pi)^i£i|| = \\EiAi(I - £.)||.

Since z.—>0,

Pi^l.-Pi + (7 - Ei) Ai(I - Ei) -> A

and U» Wi is dense in 2Io. We have proved that 2lo satisfies (1), (2) and (3).

6. Appendix. For completeness we include the proof of certain known re-

sults about linear functionals on factors of type I„.

Lemma 6.1. Let W be a factor of type I„, let {e.y:t, 7 = 1, • • • , re} be a

family of matrix units for W. Let<pbe the mapping from W*, the dual of the vector

space W, to W defined by

4>(f) = _>_./("..•) e.-y
a

for fGW*. Then <p is a linear and an order isomorphism, and if W is identified

with the algebra of all operators on n-dimensional Hilbert space !q and if x is a

unit vector in §, then </>(co_) = [x]. The mapping d> does not depend upon the

choice of matrix units [ea] inW. If fGW* and f^O then f=trace (0(/)1/2-c/>(/)1/2)

Proof. It is well known that qb is a linear isomorphism. Let [ei, • ■ ■ , en]

be an orthonormal basis for § such that e.yey = eit i,j=l, • • •, n,let x=zZiJiei

be a unit vector in §. We show that <p(o>f) = [x]. In fact
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([x]ei, ef) = ((ei, x)x, ef) = y.yy

and

(4>(oif)ei, ef) = co_(e,-y) = y/yY

By linearity we conclude that <j> is an order isomorphism and that <j> does not

depend on the choice of the matrix units {e.y}. If fGW* and/__;0 then <£(/)

__; 0 and we may assume by what we have proved that d is an eigenvector of

<b(f), for i — l, • • • , re. That is, <b(f) = _>_,■ <_..«,-,- with c.i__;0 and hence

/ =   _C ai«^i
i

= trace ( zZ aiea' )

= traced/) 1/2-c6(/)1/2).

This completes the proof of Lemma 6.1.
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