Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the group of all homeomorphisms of a manifold


Author: Gordon M. Fisher
Journal: Trans. Amer. Math. Soc. 97 (1960), 193-212
MSC: Primary 54.00
DOI: https://doi.org/10.1090/S0002-9947-1960-0117712-9
MathSciNet review: 0117712
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Kister, Isotopies in 3-manifolds with boundaries. I, Amer. Math. Soc. Notices vol. 6 (1959) Abstract 563-3, p. 642. MR 0120628 (22:11378)
  • [2] M.-E. Hamstrom and E. Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. vol. 25 (1958) pp. 521-531. MR 0096202 (20:2695)
  • [3] -, Regular mappings and the space of homeomorphisms on a 3-manifold, Amer. Math. Soc. Notices vol. 6 Part I (1959) Abstract 564-39, pp. 783-784.
  • [4] H. Tietze, Über stetige abbildungen einer quadrätflache auf sich selbst, Rend. Circ. Mat. Palermo vol. 38 (1914) pp. 247-304.
  • [5] H. Kneser, Die Deformationssätze der einfach zusammenhangenden Flächen, Math. Z. vol. 25 (1926) pp. 362-372. MR 1544816
  • [6] R. Baer, Kurventypen auf Flächen, J. Reine Angew. Math. vol. 156 (1927) pp. 231-246.
  • [7] -, Isotopie von Kurven auf orientbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math. vol. 159 (1928) pp. 101-116.
  • [8] J. Schreier and S. Ulam, Über topologischen Abbildungen der euklidischen Sphären, Fund. Math. vol. 23 (1934) pp. 102-118.
  • [9] -, Eine Bemerkung über die Gruppe der topologischen Abbildungen der Kreislinie auf sich selbst, Studia Math. vol. 5 (1934) pp. 155-159.
  • [10] H. Kneser, Reguläre Kurvenscharen auf Ringflächen, Math. Ann. vol. 91 (1924) pp. 135-154. MR 1512185
  • [11] H. Poincaré, Mémoire sur les courbes définies par une équation differentielle, J. Math. Pures Appl. ser. 3 vol. 7 (1881) pp. 375-422; ser. 3 vol. 8 (1882) pp. 251-296; ser. 4 vol. 1 (1885) pp. 167-244.
  • [12] S. Ulam and J. von Neumann, On the group of homeomorphisms of the surface of the sphere, Bull. Amer. Math. Soc. vol. 53 (1947) Abstract 283 p. 506.
  • [13] N. J. Fine and G. E. Schweigert, On the group of homeomorphisms of an arc, Ann. of Math. vol. 62 (1955) pp. 237-253. MR 0072460 (17:288b)
  • [14] R. D. Anderson, The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math. vol. 80 (1958) pp. 955-963. MR 0098145 (20:4607)
  • [15] M. K. Fort, Jr., A proof that the group of homeomorphisms of the plane onto itself is locally arcwise connected, Proc. Amer. Math. Soc. vol. 1 (1950) pp. 59-62. MR 0033017 (11:381g)
  • [16] J. H. Roberts, Local arcwise connectivity in the space $ {H^n}$ of homeomorphisms of $ {S^n}$ onto itself, Summary of Lectures, Summer Institute on Set Theoretic Topology, Madison, Wisconsin, 1955, p. 100.
  • [17] A. Schoenflies, Beiträge zur Theorie der Punktmengen. III, Math. Ann. vol. 62 (1906) pp. 286-328. MR 1511377
  • [18] -, Die Entwickelung der Lehre von den Punktmannigfaltigkeiten, Leipzig, B. G. Teubner, 1908.
  • [19] B. v. Kerékjartó, Vorlesungen über Topologie, Berlin, Julius Springer, 1923.
  • [20] L. Antoine, Sur l'homeomorphie de deux figures et de leurs voisinages, Math. Pures Appl. ser. 8 vol. 4 (1921) pp. 221-325.
  • [21] J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A. vol. 10 (1924) pp. 8-10.
  • [22] E. Artin and R. H. Fox, Some wild cells and spheres in three-dimensional space, Ann. of Math. vol. 49 (1948) pp. 979-990. MR 0027512 (10:317g)
  • [23] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. vol. 10 (1924) pp. 6-8.
  • [24] W. Graeub, Die Semilineare Abbildungen, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Springer-Verlag, Heidelberg, 1950. MR 0042710 (13:152b)
  • [25] E. E. Moise, Affine structures in 3-manifolds, II. Positional properties of 2-spheres, Ann. of Math. vol. 55 (1952) pp. 172-176. MR 0045380 (13:574a)
  • [26] R. H. Bing, Locally tame sets are tame, Ann. of Math. vol. 59 (1954) pp. 145-157. MR 0061377 (15:816d)
  • [27] -, Approximating surfaces with polyhedral ones, Ann. of Math. vol. 65 (1957) pp. 456-483. MR 0087090 (19:300f)
  • [28] -, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. vol. 69 (1959) pp. 37-65. MR 0100841 (20:7269)
  • [29] E. E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and Hauptvermutung, Ann. of Math. vol. 56 (1952) pp. 96-114. MR 0048805 (14:72d)
  • [30] O. Veblen, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. vol. 3 (1917) pp. 654-656.
  • [31] J. W. Alexander, On the deformation of an n-cell, Proc. Nat. Acad. Sci. U.S.A. vol. 9 (1923) pp. 406-407.
  • [32] T. Radó, Über den Begriff der Riemannschen Flächen, Acta Szeged. vol. 2 (1925) pp. 101-121.
  • [33] I. Gawehn, Über unberandete zweidimensionale Mannigfaltigkeiten, Math. Ann. vol. 98 (1927) pp. 321-354.
  • [34] D. E. Sanderson, Isotopy in 3-manifolds, II. Fitting homeomorphisms by isotopy, Duke Math. J. vol. 26 (1959) pp. 387-396. MR 0107231 (21:5956)
  • [35] E. E. Moise, Affine structures in 3-manifolds, III. Tubular neighborhoods of linear graphs, Ann. of Math. vol. 55 (1952) pp. 203-214. MR 0046643 (13:765b)
  • [36] L. E. J. Brouwer, Über Abbildungen von Mannigfaltigkeiten, Math. Ann. vol. 71 (1912) pp. 97-115.
  • [37] P. S. Alexandrov, Kombinatornaya Topologiya, vols. 1 and 2, 1947, trans. by H. Komm, Rochester, Graylock Press, 1956.
  • [38] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton, Princeton University Press, 1952. MR 0050886 (14:398b)
  • [39] H. Seifert, Verschlingungsinvarianten, Sitzungsberichte Berlin Akad. (1933) pp. 811-828.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.00

Retrieve articles in all journals with MSC: 54.00


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1960-0117712-9
Article copyright: © Copyright 1960 American Mathematical Society

American Mathematical Society