CORRECTION ON A PREVIOUS PAPER

BY

E. M. STEIN

The purpose of this note is to correct an error which occurs in the proof of Lemma 5 of [1]. The inequality (3.3) is incorrect and should be replaced by \(|k_t(x)| \leq (A/|x|)(1 + \log(|x|t)), \) if \(t \geq 1/|x| \), and \(n \geq 2 \). (Hence, in addition, inequality (3.3*) does not need a separate proof.)

Arguing as before we have,

\[
k_t(x) = \int_{\Sigma} \frac{e^{-irt \cos(x', y')}}{r \cos(x', y')} \Omega(y')d\Sigma.
\]

Divide the unit sphere \(\Sigma \) into two disjoint regions, \(\Sigma_1 \), and \(\Sigma_2 \), so that \(\Sigma_1 = \{ y' \mid |\cos(x', y')| \leq 1/rt \} \), \((rt \geq 1) \), and \(\Sigma_2 \) is the complement.

The integral corresponding to \(\Sigma_1 \) is estimated by

\[
A \int_{\Sigma_1} \frac{rt \cos(x', y')}{r \cos(x', y')} \ d\Sigma = A \int_{\Sigma_1} d\Sigma = tO(1/rt) = O(1/r).
\]

The integral corresponding to \(\Sigma_2 \) is estimated by

\[
A \int_{\Sigma_2} \frac{r \cos(x', y')}{|\cos(x', y')|} \ d\Sigma = \frac{A}{r} \int_{\Sigma_2} d\Sigma \leq \frac{A}{r} (1 + \log(rt)).
\]

The rest of the proof of the lemma is then concluded as before.

REFERENCE