SOME SEMIGROUPS ON AN \(n \)-CELL

BY

ANNE LESTER HUDSON(1)

The purpose of this paper is to prove a theorem which is a generalization of a theorem proved by the author in [5]. The latter theorem is a special case of the one presented here. The theorem to be proved is:

Theorem. Let \(S \) be a semigroup which is topologically a closed \(n \)-cell, \(n \geq 2 \). Suppose for \(x \) and \(y \) in \(B \), the bounding \((n-1)\)-sphere of \(S \), \(xy = x \).

Then: (1) If \(S = K \), the minimal ideal of \(S \), then \(S \) consists entirely of left zeros, that is, \(xS = x \) for each \(x \) in \(S \).

(2) If \(S \neq K \), then \(K \) is a deformation retract of \(S \) and \(K \) consists entirely of left zeros for \(S \). Also there exists in \(S \) an \(I \)-semigroup \(T \) with the following properties:

(i) \(S \setminus K^0 = BT \), where \(K^0 \) denotes the interior of \(K \).

(ii) If \(b_1 \) and \(b_2 \) are in \(B \) and \(t_1 \) and \(t_2 \) belong to \(T \) and if \(b_1t_1 = b_2t_2 \) then \(t_1 = t_2 \).

(iii) For \(b_1 \) and \(b_2 \) in \(B \), \(t_1 \) and \(t_2 \) in \(T \), \((b_1t_1)(b_2t_2) = b_1(b_2t_2) \).

For definitions and background material the reader is referred to [6; 11.]

The proof of the theorem is divided into a sequence of lemmas throughout which the hypotheses of the theorem are assumed to hold. The case \(S = K \) is easily disposed of in Lemmas 1, 2 and 3. The remainder of the lemmas is devoted to the case \(S \neq K \). In this case, the general idea is to prove that the relation, \(\leq \), on \(Q \) the Rees quotient of \(S \) by the ideal \(K \), defined by \(a \leq b \) if and only if \(a = bc \) for some \(c \) in \(Q \) is a partial order on \(Q \). Knowing this relation is a partial order, it is possible to construct an \(I \)-semigroup \(J \) in \(Q \) so that \(Q = \pi(B)J \) where \(\pi \) is the natural map from \(S \) onto \(Q \). This \(I \)-semigroup \(J \) is then “lifted” into \(S \) and it is shown that the \(I \)-semigroup \(T \) where \(\pi(T) = J \) satisfies the conclusion of the theorem.

Lemma 1. Each element of \(B \) is a right identity for \(S \). If \(s \in S \) and \(n \) a positive integer then there exists an element \(a \in S \) such that \(a^n = s \).

Proof. The proof of this lemma depends on the following theorem [4]:

If \(\alpha \) is a continuous function from \(S \) to \(S \) such that \(\alpha \) is the identity on \(B \), then \(\alpha \) maps \(S \) onto \(S \).

To prove the first part of the lemma, let \(b \in B \) be a fixed element of \(B \)
and define \(\alpha: S \rightarrow S \) by \(\alpha(x) = xb_0 \). Then for \(b \) in \(B \), by hypothesis, \(\alpha(b) = bb_0 = b \), hence by the above theorem, \(\alpha \) maps \(S \) onto \(S \). Thus \(Sb_0 = S \) and since \(b_0 \) is an idempotent it follows immediately that \(b_0 \) is a right identity for all of \(S \). Since \(b_0 \) was arbitrary in \(B \), the first part of the lemma follows.

For the remainder of the lemma let \(n \) be a fixed positive integer and define \(\alpha: S \rightarrow S \) by \(\alpha(x) = x^n \) for \(x \in S \). Since \(B \) consists of idempotents \(\alpha \) is the identity on \(B \) and hence maps \(S \) onto \(S \). This, however, implies that each element of \(S \) has an \(n \)th root in \(S \) which is the statement of the lemma.

Lemma 2. For \(x \) in \(S \) there exists an idempotent \(e \) in \(S \) such that \(ex = x = xe \).

Proof. Let \(p \) belong to \(S \) and let \(\{p_n\} \) be a sequence of elements in \(S \) defined in the following way: \(p_0 = p \), and \((p_n)^2 = p_{n-1} \). Such a sequence exists by Lemma 1. Let \(Z(\{p_n\}) \) be defined as in \([5]\) and let \(e \) be the idempotent in \(Z(\{p_n\}) \). The author proves in \([5]\) that \(e \) acts as a two-sided identity for all of \(\{p_n\} \) and, in particular \(ep = p = pe \) which is as required by the lemma.

Lemma 3. If \(S = K \), then \(xS = x \) for each \(x \) in \(S \).

Proof. Since \(S \) is topologically a closed \(n \)-cell, each proper retract of \(S \) has fixed-point property. By Wallace \([9]\) therefore \(S \) is a group or \(K \subseteq E \). Clearly \(S \) is not a group, so \(S = K \) consists entirely of idempotents. Also by Wallace \([9]\), \(eSe = e \) for each \(e \in E \), thus for \(b \in B \), it follows that \(b = bSB = bS \). Now for arbitrary \(x \) in \(S \) by Lemma 1, \(xb = x \) for \(b \in B \), hence \(xS = (xb)S = x(bS) = xb = x \) and the lemma is established.

In the remainder it will be assumed that \(S \not= K \).

Lemma 4. \(S \backslash K \) is connected.

Proof. Wallace proved in \([8]\) that \(H^p(S) \approx H^p(K) \) and since \(S \) is a closed \(n \)-cell we have \(H^p(K) = 0 \) for all \(p > 0 \). In particular \(H^{n-1}(K) = 0 \), hence \(K \) does not cut \(R^n \) \([4]\) and since \(K \) is contained in the interior of \(S \), \(K \) does not cut \(S \).

Definition. For \(x \) and \(y \) in \(S \) with \(x \notin Py \) define \(n(By, x) \), the index of \(By \) relative to \(x \), as defined by Mostert and Shields in \([6]\). That is:

When \(x \in \overline{By} \), the mapping \(f: B \rightarrow S \backslash x \) defined by \(f(b) = by \) induces a homomorphism \(f^*: H^{n-1}(S \backslash x) \rightarrow H^{n-1}(B) \) where \(H^{n-1}(A) \) denotes the \((n-1) \)-Čech cohomology group of \(A \) with integer coefficients. Since \(H^{n-1}(B) \) is isomorphic to the integers there exists a least positive integer \(k \) such that \(k \) generates \(f^*(H^{n-1}(S \backslash x)) \). For such a pair \(x \) and \(y \) in \(S \) define \(n(By, x) \) to be \(k \).

Lemma 5. If \(A \) is a connected space and \(\sigma: A \rightarrow S \) and \(\tau: A \rightarrow S \) are continuous functions such that \(\tau(t') \in Bx(t) \) for each \(t \) and \(t' \) in \(A \), if \(\sigma(A) \) is compact or if \(\tau \) is a constant, then \(n(Bx(t), \sigma(t)) = n(Bx(t'), \sigma(t')) \) for \(t \) and \(t' \) in \(A \).

Proof. Assume \(\sigma(A) \) is compact. Since \(A \) is connected it suffices to show that for each \(t \) in \(A \) there exists an open set \(U \) containing \(t \) such that for \(x \)
and \(y \) in \(U \), \(n(B\sigma(x), \tau(x)) = n(B\sigma(y), \tau(y)) \). To show the existence of such \(U \), let \(t_0 \) belong to \(A \). By hypothesis \(\tau(t_0) \) is not an element of \(B\sigma(A) \) so there exists an open \(n \)-cell \(O_1 \) in \(S \) such that \(\tau(t_0) \in O_1 \) and \(O_1^* \cap B\sigma(A) = \emptyset \). Hence \(B\sigma(A) \subseteq S \setminus O_1^* \). By hypothesis \(\tau \) is a continuous function so there exists an open set \(U \) in \(A \) containing \(t_0 \) with \(\tau(U) \subseteq O_1 \). The claim is now made that \(n(B\sigma(t_0), \tau(t_0)) = n(B\sigma(s), \tau(s)) \) for each \(s \) in \(U \). To establish the claim let \(s \) belong to \(U \) and define maps \(\lambda, \lambda_{t_0}, m_0, I \) and \(J \) in the following way:

\[
\lambda_s : B \to B \times A \quad \text{by} \quad \lambda_s(b) = (b, s),
\]

\[
\lambda_{t_0} : B \to B \times A \quad \text{by} \quad \lambda_{t_0}(b) = (b, t_0),
\]

\[
m_0 : B \times A \to S \quad \text{by} \quad m_0(b, t) = b \sigma(t),
\]

and \(I \) and \(J \) are the injection maps from \(S \setminus O_1^* \) to \(S \setminus \tau(s) \) and \(S \setminus \tau(t_0) \) respectively. Then it is easily seen that the mappings

\[
\theta_s : B \to S \setminus \tau(s) \quad \text{defined by} \quad \theta_s(b) = b \sigma(s)
\]

and

\[
\theta_{t_0} : B \to S \setminus \tau(t_0) \quad \text{defined by} \quad \theta_{t_0}(b) = b \sigma(t_0)
\]

are given by

\[
\theta_s = I m_1 \lambda_s \quad \text{and} \quad \theta_{t_0} = J m_0 \lambda_{t_0}
\]

where \(m_1 \) is \(m_0 \) with the range restricted to \(S \setminus O_1^* \).

The following sequences now arise from these functions:

\[
\begin{align*}
H^{n-1}(S \setminus \tau(s)) & \xrightarrow{I^*} H^{n-1}(S \setminus O_1^*) \xrightarrow{\lambda_s^* m_1^*} H^{n-1}(B) \\
\text{and the same sequence obtained by replacing \(s \) by \(t_0 \) and \(I^* \) by \(J^* \).}
\end{align*}
\]

Since \(O_1 \) is an open \(n \)-cell for any \(y \) in \(O_1 \) the injection map from \(S \setminus O_1^* \) into \(S \setminus y \) induces an isomorphism from \(H^{n-1}(S \setminus y) \) onto \(H^{n-1}(S \setminus O_1^*) \) [1]. Hence \(I^* \) and \(J^* \) are isomorphisms onto. By S. T. Hu [3], \(\lambda_s^* = \lambda_{t_0} \) so it follows that

\[
\lambda_{t_0}^* m_1^* = \lambda_{t_0}^* m_1^*.
\]

Looking at the above sequences it is easily seen that

\[
\theta_{t_0}^*(H^{n-1}(S \setminus \tau(s))) = \theta_{t_0}^*(H^{n-1}(S \setminus \tau(t_0))).
\]

Since \(I^* \) and \(J^* \) are isomorphisms onto and

\[
\theta_s^* = \lambda_s^* m_1^* I^*, \quad \theta_{t_0}^* = \lambda_{t_0}^* m_1^* J^*.
\]

From this we obtain that

\[
n(B\sigma(t_0), \tau(t_0)) = n(B\sigma(s), \tau(s))
\]

and the first part of the proof of the lemma is complete. The remainder of the proof follows similarly.
Lemma 6. If x belongs to $S \setminus B$, then $n(Bb, x) = 1$ for each $b \in B$.

Proof. Let b_0 belong to B and let $x \in S \setminus B$. Define θ from B to $S \setminus x$ by $\theta(b) = bb_0$. By hypothesis on the multiplication in B, $\theta(b) = b$ for each b in B. Let $\delta: S \setminus x \to B$ be a continuous function from $S \setminus x$ onto B such that $\delta(b) = b$ for each b in B. If ϕ denotes the function from B onto B defined by $\phi(b) = \delta(b)$ then ϕ is the identity function so that

$$\phi^*: H^{n-1}(B) \to H^{n-1}(B)$$

is an isomorphism. From this it follows that

$$\theta^*: H^{n-1}(S \setminus x) \to H^{n-1}(B)$$

is onto since

$$\phi^* = \theta^* \delta^*.$$

Thus by the definition of $n(Bb_0, x)$ we have $n(Bb_0, x) = 1$ and the lemma is established.

Lemma 7. For b in B and x in S with $b \in Bx$, $n(Bx, b) = 0$.

Proof. Let $\theta: B \to S \setminus b$ be defined by $\theta(s) = sx$. Since $b \in Bx$ it follows that $Bx \subset S \setminus B$. For if $Bx \cap B$ were nonvoid, then for $y \in Bx \cap B$ there would exist $b_0 \in B$ such that $y = b_0x$ and in virtue of the multiplication in B, that $b = by = b(b_0x) = (bb_0)x = bx$ contrary to the assumption that $b \in Bx$. Hence Bx is a closed subset of S contained in $S \setminus B$. Since B is the boundary of S relative to R^n there exists a subset S_0 of S with the following properties: S_0 is closed, S_0 is topologically equivalent to S and $Bx \subset S_0 \subset S \setminus B$. Now define functions i_1 and i_2 by

$$i_1: Bx \to S_0 \quad \text{and} \quad i_1(y) = y \quad \text{for} \ y \in Bx,$$

$$i_2: S_0 \to S \setminus b \quad \text{and} \quad i_2(y) = y \quad \text{for} \ y \in S_0.$$

Also define

$$\theta_1: B \to Bx \quad \text{by} \quad \theta_1(y) = yx \quad \text{for} \ y \in B.$$

Clearly $\theta = i_2 \theta_1 i_1$ so that $\theta^* = \theta_1^* i_1^* i_2^*$. Looking at the sequence defined by these functions it follows that θ^* is the zero homomorphism, for we have:

$$H^{n-1}(S \setminus b) \xrightarrow{i_2^*} H^{n-1}(S_0) \xrightarrow{i_1^*} H^{n-1}(Bx) \xrightarrow{\theta_1^*} H^{n-1}(B)$$

and $H^{n-1}(S_0) = 0$. From this it follows that $n(Bx, b) = 0$.

Lemma 8. For $a \in S \setminus K$, a belongs to BS. Thus each element of $S \setminus K$ has a two-sided identity belonging to B.

Proof. Suppose there exists an element a_0 in $S \setminus K$ such that $a_0 \in BS$. Let
If $k \in K$ and $f \in B$ be fixed. Clearly $Bk \cap S \setminus K = \emptyset$ and since $S \setminus K$ is connected it follows from Lemma 5, taking $A = S \setminus K$, $\tau =$ identity and $\sigma =$ constant map k, that $n(Bk, x) = n(Bk, f)$ for each $x \in S \setminus K$. But a_0 belongs to $S \setminus K$ so that $n(Bk, f) = n(Bk, a_0) = 0$ by Lemma 7.

Now using the assumption that $a_0 \in BS$, it follows in a similar way from Lemma 5, taking $A = S \setminus K$, $\sigma =$ identity, and $\tau =$ constant map a_0, that $n(Bf, a_0) = n(Bk, a_0)$. Hence by Lemma 6, $n(Bk, a_0) = 1$. This contradiction establishes the fact that $a_0 \in BS$. The remainder of the lemma follows quite easily since each element of B is an idempotent and a right identity for all of S.

Lemma 9. If $a \in S \setminus K$, then $Ba \neq a$.

Proof. To prove this lemma let us assume that $Ba = a$ for some element a in $S \setminus K$. The claim is now made that with this assumption $B(S \setminus K) = S$. If this were not the case then there would exist an element $p \in S$ with $B(S \setminus K) \subset S \setminus p$. Since $B \subset B(S \setminus K)$ it follows that $p \in B$ hence it is possible to define a function $\delta : S \setminus p \to B$ such that $\delta(p) = b$ for each b in B.

Now for each x in $S \setminus K$ define a function $\theta_x : B \to B$ by $\theta_x(b) = \delta(\delta_x(b))$. For each b in B, θ_b is the identity and for a, θ_a is a constant. From this it can be concluded that the identity function on B is null-homotopic, since $S \setminus K$ is connected. This contradiction establishes the fact that $B(S \setminus K) = S$.

Since $B(S \setminus K) = S$ and K is nonempty, there exists an element $g \in B$ and $x \in S \setminus K$ such that $g \cdot x = x$. Hence $x = b \cdot x = (bg) \cdot x = b(gx) \in BK \subset K$ contrary to the fact that $x \in S \setminus K$. From this we obtain that $Ba \neq a$ for each a in $S \setminus K$.

Lemma 10. For a in $S \setminus K$, $Ja = Ba$ where Ja denotes the set of elements in S generating the same two-sided ideal as a.

Proof. Before proving this lemma let us note that the ideal generated by an element x in $S \setminus K$ is SxS. If $J(x)$ denotes the ideal generated by x then $J(x) = x \cup xS \cup Sx \cup SxS = SxS$ since x has a two-sided identity in S.

It follows from Lemma 1 that $Ba \subset J_a$ for if $b \in B$ then $J(ba) = S(ba)S = (Sb)aS = SaS = J(a)$ so that $ba \in J_a$.

It remains only to show that $J_a \subset Ba$. First let us note that $Ba \cap K = \emptyset$ since $a \notin K$, as in the proof of Lemma 9. Hence $K \subset S \setminus Ba$, and if P denotes the component of $S \setminus Ba$ containing K it follows from Wallace [9] that $P^* \cap P = Ba$. For an element p in $P \setminus K$, $BP \cap Ba = \emptyset$ for if not then $b_1p = b_2a$ for elements b_1 and b_2 in B. By Lemma 8 there exists b in B such that $bp = p$, hence $p = bp = (bb_1)p = b(b_2a) = b_2a = ba$ contrary to the fact that $p \in P$. Hence BP does not meet Ba and since $BP \cap P$ contains p, BP is connected and P is a component of $S \setminus Ba$ we have $BP \subset P$. By assumption $p \in K$, hence $K \subset S \setminus BP$, as in the proof of Lemma 9. Let Q be the component of $S \setminus BP$ containing K. Clearly $K \subset Q \subset P$ and as before $Q^* \cap Q = BP \subset P$. Let $I(p) = J(p) \setminus J_p$. Then $I(p)$ must contain K, $I(p)$ does not meet BP and by
Wallace [9], $I(p)$ is connected and $I(p)^* = J(p)$. The last statement follows from the fact that $Bp \subseteq J_p$ and by Lemma 9, $Bp \neq p$ so that $J_p \neq p$. Since $I(p)$ is connected and contains K, $I(p) \subseteq Q$, hence $J(p) = I(p)^* \subseteq Q^* = Q \cup Bp \subseteq P$. From this discussion we obtain that $J(p) \subseteq P$ for each $p \in P \setminus K$, hence $J_p \subseteq P$. But $I(a) \subseteq P$ so that $J(a) = I(a)^* \subseteq P^* = P \cup Ba$, therefore $J_a \subseteq Ba$ and Lemma 10 is established.

Definition. For a and b in $S \setminus K$ define $a \leq b$ if and only if there exists an element c in $S \setminus K$ such that $a = bc$.

Lemma 11. \leq as defined above is a partial order on $S \setminus K$.

Proof. (i) Since $a \in S$, $a = af$ for $f \in B$, so that $a \leq a$ and \leq is reflexive.

(ii) If a and b belong to $S \setminus K$ and $a \leq b$, and $b \leq a$, then there exist elements c and d in $S \setminus K$ such that $a = bc$ and $b = ad$. Thus $aS = (bc)S = b(cS) \subseteq bS = (ad)S = a(dS) \subseteq aS$, or $aS = bS$. Hence $SaS = SbS$ so that $J_a = J_b$ and by Lemma 10, $Ba = Bb$. Since a and b both belong to $S \setminus K$ there exist elements e and f in B such that $ea = a$ and $fb = b$. Now $a \in Ba = Bb$ so that $a = gb$ for some $g \in B$. From these equalities it follows that $a = ea = e(gb) = (eg)b = eb = e(ad) = (ea)d = ad = b$ so that \leq is antisymmetric.

(iii) Clearly \leq is transitive.

(i), (ii) and (iii) show that \leq is a partial order on $S \setminus K$.

Notation. For the minimal ideal K in S, let Q denote the Rees Quotient of S by K and let π denote the natural map from S to Q. By Rees [7], Q is a compact connected semigroup with zero, $\pi(K)$, and π is continuous and a homomorphism.

It should be noted at this point that π restricted to $S \setminus K$ is an isomorphism. For this reason, in the discussion that follows $S \setminus K$ and $\pi(S \setminus K)$, the former a subset of S and the latter a subset of Q will be considered the same. This identification will make the discussion simpler and somewhat shorter.

Lemma 12. There exists an I-semigroup $J \subseteq Q$ such that $Q = BJ$.

Proof. Let f be a fixed element in B. Then fQ is a compact connected semigroup with identity f and zero $\pi(K)$. Define a partial order on fQ by $a \leq b$ if and only if $a = bc$ for some $c \in fQ$. By Lemma 11, the fact that f is a right identity for all of S and the fact that $\pi(K)$ is a zero for fQ, it is easily seen that \leq is a closed partial order on fQ. Hence by Koch [2] there exists an I-semigroup $J \subseteq fQ$ with endpoints f and $\pi(K)$.

The next step in the proof is to show that $BJ = Q$. If it were the case that $S = BJ \cup K$, where $J_0 = J \setminus \pi(K)$, it would follow immediately that $Q = \pi(S) = \pi(BJ_0 \cup \pi(K)) = BJ$. Hence it suffices to show that $S = BJ_0 \cup K$.

Let us assume, to the contrary, that there exists an element p in S with p not in $BJ_0 \cup K$. Since J_0 is a half-open interval and $J = J_0 \cup \pi(K)$ is closed there exists an element k_0 in K with $J_0 \subseteq J_0 \cup k_0 \subseteq J_0^*$, where J_0^* denotes the closure of J_0 in S. Since J_0 is connected, $J_0 \cup k_0$ is connected and by assump-
tion \(p \in B(J_0 \cup k_0) \). Thus by Lemmas 5 and 7, \(n(Bp, k_0) = n(Bp, f) = 0 \). Now \(p \in S \setminus K \) and since \(S \setminus K \) is connected and \((B(S \setminus K)) \cap K = \emptyset\), it follows that \(n(Bp, k_0) = n(Bf, k_0) = 1 \), again by Lemmas 5 and 6. This is a contradiction so \(p \) must belong to \(B(J_0 \cup k_0) \). With the preceding remarks the lemma is established.

Lemma 13. There exists an element \(k_0 \) in \(K \setminus K^0 \) such that if \(T \) denotes \(J_0^* \), then \(T = J_0 \cup k_0 \) and \(K \setminus K^0 = Bk_0 \).

Proof. From the definition of \(J_0 \) we see that \(\pi(J_0^* \setminus J_0) = \pi(K) \), hence \(J_0^* \setminus J_0 \subseteq K \). Now let \(k_0 \in J_0^* \setminus J_0 \). The claim is made that \(K \setminus K^0 = Bk_0 \). To prove this claim let \(k = gk_0 \) for some \(g \in B \) and assume \(k \in U \), an open set. Since \(k = gk_0 \) and \(k \in U \), there must exist open sets \(V_0 \) and \(V_1 \) containing \(g \) and \(k_0 \), respectively, such that \(V_0 \cap V_1 \subseteq U \). Now \(k_0 \in J_0^* \setminus J_0 \) and \(V_1 \) is open containing \(k_0 \), hence there exists an element \(t \) in \(J_0 \) with \(t \in V_1 \). Since \(t \in S \setminus K \), it follows that \(gt \) also belongs to \(S \setminus K \) so that \(U \cap S \setminus K \neq \emptyset \). Since \(k \) was an arbitrary element in \(Bk_0 \), it follows that \(Bk_0 \subseteq K \setminus K^0 \).

Conversely, let \(k \in K \setminus Bk_0 \). If it can be shown that \(k \in K^0 \) then it will be established that \(Bk_0 = K \setminus K^0 \). To prove \(k \in K^0 \), let \(P \) be the component of \(S \setminus Bk_0 \) containing \(k \). As before, since \(J_0 \cup k_0 \) is connected \(n(Bk_0, k) = n(Bf, k) = 1 \). If it were the case that \(B \subseteq P \), then it would be true that \(n(Bk_0, k) = n(Bk_0, f) = 0 \) since \(P \) is connected and does not meet \(Bk_0 \). This is a contradiction to the above statement that \(n(Bk_0, k) = 1 \), hence \(B \) does not meet the component \(P \). Thus the boundary of \(P \) relative to \(R^* \) is contained in \(Bk_0 \) which is a subset of \(K \). Now if \(P \) is not contained in \(K \), then \(K \) is a closed proper subset of \(P \cup K \) containing the boundary of \(P \cup K \). Hence

\[
i^*: H^{n-1}(P \cup K) \to H^{n-1}(K)
\]

is not onto where \(i^* \) is induced by the injection map [4]

\[
i: K \to P \cup K.
\]

By Wallace [8], however, \(H^{n-1}(K) \approx H^{n-1}(S) = 0 \), so that \(i^* \) is onto. Thus \(P \cup K = K \), that is \(P \subseteq K \). Since \(P \) is a component of an open set in \(S \), \(P \) is also open and therefore \(k \in P \). This completes the proof of the statement that \(Bk_0 = K \setminus K^0 \).

In order to complete the proof of this lemma it remains only to show that \(T = J_0 \cup k_0 \). By definition of \(T \) we have \(T \subseteq fS \) since \(J_0 \subseteq fS \) and therefore \(T = J_0^* \cap (fS)^* = fS \). This shows that \(f \) is a two-sided identity for \(T \). In the above argument it was shown that \(J_0^* \setminus J_0 \subseteq K \setminus K^0 = Bk_0 \). Now let \(k \in T \setminus J_0 \), then \(k = gk_0 \) for some \(g \in B \) and \(fk = k, f(k_0) = k_0 \). Hence \(k = f(kgk_0) = (fg)k_0 = f(k_0) = k_0 \) so that \(T \setminus J_0 = k_0 \). Thus \(T = J_0 \cup k_0 \) and the proof of the lemma is complete.

Lemma 14. \(T \) is an \(I \)-semigroup with zero \(k_0 \) and identity \(f \). Also \(BT = S \setminus K^0 \).
Proof. Clearly T is a semigroup and an arc with zero k_0 and identity f. Also $S\setminus K^0 = S \setminus K \cup K \setminus K^0 = BJ_0 \cup Bk_0 = B(J_0 \cup k_0) = BT$. This concludes Lemma 14.

Lemma 15. For k in K, $kS = k$.

Proof. First let us note that by Wallace [9], $K \subseteq E$ and $kSk = k$ for each $k \in K$. If $K^0 = \emptyset$, then $Bk_0 = K$ so that $k_0K = k_0(Bk_0) \subseteq k_0Sk_0 = k_0$. Thus $k_0S = k_0$ since $k_0S \subseteq k_0K$. If $K^0 \neq \emptyset$ then Bk_0, since it is the boundary of K relative to R^n is an $((n-1), G)$-rim for K, (see [10]). Hence by the dual of Wallace’s theorem [10], if $k \in K$ and $(Bk_0)k = Bk_0$ it follows that $Kk = k$. Since $k_0^2 = k_0$, we have $(Bk_0)k_0 = Bk_0 = Bk_0$ so that $Kk_0 = K$. Hence $k_0S \subseteq k_0K = k_0(Kk_0) = k_0$.

In either case, $K^0 = \emptyset$ or K^0 nonempty it has been shown that $k_0S = k_0$. Now let k be an arbitrary element of K. Then $k_0k = k_0$ so that $kk_0 = k(k_0k) = k$ since $kSk = k$. Hence $kK = (kk_0)K = k(k_0K) = kk_0 = k$ and it follows that $kS = k$ which concludes the proof of the lemma.

Lemma 16. Let t_0 and t_1 belong to T and let b_0 and b_1 be elements of B. Then $(b_0t_0)(b_1t_1) = b_0(t_0t_1)$ and if $b_0t_0 = b_1t_1$ then $t_0 = t_1$.

Proof. This lemma follows immediately from the fact that f is an identity for T and $fb = f$ for each b in B.

Lemma 17. K is a deformation retract of S.

Proof. Define $\theta: S \times T \rightarrow S$ by $\theta(s, t) = st$. T is a closed interval with endpoints f and k_0, $\theta(s, f) = sf = s$ and $\theta(s, k_0) = sk_0 \in K$. Also for $k \in K$, $\theta(k, k_0) = kk_0 = k$. Since θ is continuous it follows that K is a deformation retract of S.

With Lemma 17 the proof of the theorem is now complete.

Example. An example of a semigroup described by the theorem and having a nontrivial kernel for $n = 2$ can be constructed as follows.

Let K_0 be a closed two-cell and B_0 the bounding 1-sphere of K_0. Define multiplication in K_0 by $xy = x$ for all x and y in K_0. Let T_0 be the closed unit interval with real multiplication. Then if $S = (K_0 \times \{0\}) \cup (B_0 \times T_0)$ and products are defined in S by coordinate-wise multiplication, S is a semigroup as described by the theorem, where B_0, of course, is $B_0 \times \{1\}$.

Clearly S is topologically a closed two-cell and is a semigroup with a nontrivial kernel $K = K_0 \times \{0\}$. If k_0 is a fixed element of B_0, then $T = \{k_0\} \times T_0$ is an I-semigroup which has the property that $S \setminus K^0 = BT$.

In this example, for $a \in S \setminus K$, the representation of $a = bt$ for $b \in B$ and $t \in T$ is unique. In [5], the author gives an example of such a semigroup described above but in it there exists an element in $S \setminus K$ for which this representation is not unique.

For $n = 2$, different examples may be constructed by varying the multiplication of the I-semigroup T_0. (See [6].)
For any integer $n > 2$, examples can be constructed in a similar way. That is, let K_0 be a closed n-cell with B_0 the bounding $(n-1)$-sphere and follow the same construction as above.

Bibliography

Tulane University,
New Orleans, Louisiana