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Introduction. In his papers [5; 6] Eichler demonstrated the significance

for the study of automorphic forms of Bol's discovery [3] of some remarkably

simple differential operators taking automorphic forms into automorphic

forms. In [6] in particular Eichler discussed a relation between the auto-

morphic forms associated to a transformation group 9 on a Riemann surface

30 and some purely algebraic constructions involving the group 9. the first

cohomology groups of 9 with certain modules of polynomials as coefficients;

the cocycles appeared as the periods of the automorphic forms under iterated

indefinite integration, generalizing the classical interpretation of the periods

of the abelian integrals on 30/g (which can of course be considered as auto-

morphic forms on 30) as cocycles of the group g or alternatively of the space

3}/g. The object of studying such a relation is the development of tools for

calculating the dimensions of spaces of automorphic forms and the traces of

the Hecke operators on automorphic forms. The aim of the present paper is

the study of a more general form of this relation in somewhat greater detail

for one complex variable, but in such a manner that the results can be ex-

tended to several complex variables; the actual extension to several complex

variables, as well as the application to the study of the Hecke operators, will

be discussed elsewhere.

As for the contents of this paper, §1 is devoted to an exposition of Bol's

differential operators in a form more useful in the present context than that

of [3]. In §2 these differential operators are applied to give an exact co-

homology sequence containing, in a rather more transparent form, the rela-

tion of Eichler discussed above. The interpretations of the terms appearing

in this exact sequence are discussed in §§3 through 5; the only point of

difficulty arises in §4, Theorem 3 of that section really being a form of the

Serre duality theorem [12] appropriate to the occasion. These results are

combined in §6 to give a formal statement of the fundamental result of the

paper.

1. Differential operators preserving automorphic forms. Let 3C be the

group of 2X2 real matrices
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such that AT = ad — bc>0; 3C acts as a group of complex analytic automor-

phisms of the upper half plane £> = jzGC| Im z>0}, with the group action

defined by T: z—*Tz=iaz + b)/icz+d). A scalar multiplier p(7\ z) for the

group 3C acting on D is a complex-valued function on 3CX3D which is holo-

morphic as a function on 3) and which satisfies the functional equations

PÍTiTí, z)=piTi, T2z)piTi, z) for all Tx, TiESC- The classification of such

multipliers has been discussed elsewhere [9]; for the present purposes only

multipliers of the form

(1) P(T, z) = A~r'\cz + d)"

will be considered, where k is a positive or negative integer called the degree

of the multiplier and the positive square root of Ay is selected in each case.

As a notational convenience the scalar multiplier of degree k = 2 will be de-

noted by 5(7", z) ; thus 5(7", z)~1 = dTiz)/dz. Note that any product of multi-

pliers, such as (ph)(T, z)=p(T, z)h(T, z), is again a multiplier.

Having selected a multiplier p, associate to each complex-valued function

/ on 3) and each transformation r£3C the complex-valued function f\„T on

3) defined by

(2) if\PT)iz) = piT,z)-1fiTz).

„T) for any constants au a2

72 for any transformations

It is clear that (aifi+aïf2)\ PT = ai(fi\ PT) +a2(f2

and functions/i, /2; and that f\ „(TiTi) = (f\PTi)

Ti, 7"2£3C. The mapping (/, T)—>/| PT is therefore a representation of 3C as a

group of linear transformations on, say, the vector space ß of C™ complex-

valued functions on 3); this representation will be denoted by p as well.

A linear differential operator is also a linear transformation on the vector

space S; following Eichler the differential operators of interest are those

which commute with the representation p of 3C on 6, in an appropriate sense.

As usual when considering holomorphic functions introduce as generators of

the algebra of linear differential operators the first order operators

i (d      a\ a     i /a      a\
= — (-i—)    and   — = — I-H— ),

2 \dx        dyj dz       2 \dx        dyj

where z = x+iy; and put

d        k
(3) ®> = T + ^-'

dz      2iy

where k is the degree of the multiplier p. The sense in which this differential

operator commutes with the representation p is expressed in the following:

Lemma 1. For any function /(z) £S and any transformation TEX-

(4) sU/|,D = (3V)Ur.
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Proof. First recall that for any P£3C

Im Tz = Im(az 4- b)/(cz + d) = At\ cz + d|~2Im z;

hence putting q(z) =k/2iy, y=Im z, it follows that

k
q(Tz) = - | cz + d |2

2tyAr

(cz + d)2 — 2icy(cz + d)\
2iyAT

kc
= 8(T,z)q(z)-(cz + d).

At

Then for any/£S and P£3C, putting w=Tz,

t>Af\,T) = (¿ + <?(2)) (f(T> *)_1/(^))

(df(w) kc )
= p(T, z)-l6(T, z)-1- \~-+ S(T, z)q(z)f(w)-(cz + d)f(w)\

{   dw At )

(df(w) )
= P(T, z)-*B(T, a)"'- <^^- + q(w)f(w)}

dw

= (®p/) Up-
Defining

(5) 3), = Spj--' • • • £)„ä-3)p,

a repeated application of (4) shows that

(6) £p(/|Pr) = CDP/) Up.

Thus Lemma 1 also provides a family of higher order linear differential oper-

ators which commute with the representation p in the sense of equation (6).

It should perhaps be noted here that these are the only differential operators

with such properties, up to constant factors; the proof of this assertion, being

trivial and irrelevant, will not be given here. There is however some use for

an explicit formula for the iterated operators defined by (5).

Lemma 2. // k is the degree of the multiplier p then

r       A    , (k - 1)(*) • ■ • (k - 1 4- r) d'
7 S,= EC,-—-—— (2%y)      — ,

s=o       (* - 1)(*) ■••(*- 1 4- î) dz"

where C[ are the binomial coefficients and
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d°     a        a

dz'       dz dz

Proof. The proof is of course by induction on r. If r = \ equation (7) re-

duces to equation (3) ; if then equation (7) holds for some r ^ 1 it follows that

®p    = 3V35,

/♦ _ 1 + »W ¿     (t-,)...(1-l + f) ^

Us 2iy   A .tí      (4-1) •••(4-1 + s) óW

-Ec

, (4 - 1) • • • (4 - 1 + r)

2iy   ) \ "    J (4 - 1) • • • (4 - 1 + s)

(4 - 1) • • • (4 - 1 + r)

.tï      (4 - 1) • • • (4 - 1 + s)

(2iy)8-r-h is - r)i2iy)s-'-1-h (4 + 2r)(2iy)'-'~1-\
dz'+1 dz' dz')

¿K+i      ,k _ 1} . . . ,k + r) r  (4 _ J) . . . {k _ i +f)
=-(2îy)-'-1 + 22-

¿V+1 (4 - 1) .tí (4 - 1) ■ • • (4 - 1 + j)

• id-! (4 - 1 + s) + Clik + r + s)\ i2iy)°~r~1-
( ) dz'

r+»  h.,    ik-i) ..-ik + r) i a-
=  >, Ca    - (2ty) -»

t¿ ik-l) ■ ■ -ik-l + s) dz'

since

C8r_i(¿ - 1 + s) + Cl(k + r + s)

= (k + r) ■ [Cl + Cli] + [sCl - ir+1- s)CU} = (k + r)cT.

This is just equation (7) for the case r + 1, thus completing the induction

argument.

The vector space 21 of functions holomorphic on 3) is a subspace of S

which is stable under the representation p of 3C on 6; hence the restriction

of p to the subspace 21 is another linear representation of 3C, which will still

be denoted by p. The linear differential operators %)rp of course commute with

the representation p on 21 in the sense of equation (6), provided only that

they preserve the space 21; but it is clear from (7) that 3)p2IC2I if and only

if (4-l)(4) • • • (4-l+r)/(4-l)(4) • • • (4-l+s)=0 for 0^s<r, that is,
if and only if r = l — k. Thus for the study of the space 21 by these means one

is restricted to considering multipliers p of degree 4^0 and the associated

differential operators T>TP with r=l — k; note that in this case

i-,    a1-"
(8) 3),

dz1
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2. Exact cohomology sequences associated to the differential operators.

Let Q be a properly discontinuous subgroup of 3C possessing a fundamental

domain which can be compactified by adding a finite number of parabolic

vertices [8]. The present discussion will be devoted principally to those

groups 9 which have at least one parabolic vertex; the simplifications arising

when there are no parabolic vertices will merely be noted in passing. In

particular it will be assumed that the point at infinity is a parabolic vertex

of 9. °r equivalently that g contains translations.

If X(P) is an w-dimensional complex linear representation of the group

9, that is, a homomorphism of 9 into the group GL(w, C), and p(T, z) is the

scalar multiplier defined by (1), then the matrix functions¿u(P, a) =p(T,z)\(T)

satisfy the functional equations p,(TiT2, z) =u(Ti, T2z)p.(T2, a) for all Pi, T2E$

and hence define a matrix factor of automorphy for the group g. Let

6n=S4- • • • 4-S, an element P=P(a)GS« being considered as a column

vector of n functions /¿(a) £6. The mapping (F, /)—>P|MP of ê„X9 into g

defined by

(9) (FlT)(z)=ß(T,z)-1F(Tz)

is then a representation of g as a group of linear transformations on the com-

plex vector space (£„; this representation will be denoted by u as well.

Now select a subset (P of the group 3C such that:

(i)   gcg<POP;
(ii)   for each parabolic fixed point ao of g there are transformations

(10) PE®, and at most finitely many, such that P» =a0; and

(iii) for each transformation P£(P the point P« is a parabolic fixed

point of g.

This set will be assumed fixed in what follows. Then for any real number

e^O let Se be the subspace of S consisting of those C°° functions/(a) on 3D

such that:

for each transformation P£(P and for each real number c>e the func-

(11) tion g(z) = (/|pP)(a) satisfies the condition that e—Cî/| g(s) | —»0 uniformly

as y—>4- oo in any strip a<x<b of finite width;

and let (%=&e4- • ■ • 4-6eC£n. It follows immediately from (10) (i) that

F\ uTE&n whenever FE&n and TEQ; hence p. also determines a linear repre-

sentation of the group g on each subspace fè^CÊ*. If Ç has no parabolic

vertices this entire construction is of course unnecessary.

To introduce cohomological machinery recall, from [7] for instance, that

a homogeneous ^-cochain of g with coefficients in Sn associated to the repre-

sentation ß of g as a group of linear transformations of Sn is a function

F(To, Ti, ■ • • , Tp) of p + l variables P¿€Eg with values in Ë„ such that

(12) P(PoP, TiT, ■ ■ ■ , TPT) = F(To, Tu ■ ■ ■ , Tp) \„T
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for all T, 7,G9¡ the set of all such />cochains forms a complex vector space

C¡¡(9> ®») m the obvious manner. The coboundary operator è: C£(g, 6„)

—» C^+1(g, S„) is the linear mapping which associates to any cochain

F(To, • • • , rp) G C*(g, 6») the cochain

(13) (SF)(To, ■■■ , TWO = ¿Z (-l)Wo, • • • , 7Vi, Ti+U • • • , 7P+1)
i=0

in C£+1(9, Sn). The kernel of this mapping is the subspace Z£(9, (S„) CC£(g, (£„)

of cocycles, and the cohomology groups are the quotient spaces

(14) Hi®, (in) = 4(£, S„)/SCr1(9, 6J.

There are in addition cohomology groups 7/£(9, 33«) associated to any sub-

spaces SSnCEn which are stable under the representation u, as for example

the cohomology groups 7/^(9, S¡»). More important for the present purposes

are the cohomology groups Äj(g, «„) and 77^(9, Wn), where 2I„ = 2I+ • • • +21

CS» is the subspace of holomorphic functions and 2ß = 2lnnßn. A useful

relationship among these groups follows directly from the results of §1, after

the preliminary:

Lemma 3. If the multiplier p is of degree 4^0 then for any e ̂  0 the following

is an exact sequence of complex vector spaces and linear maps

í-t

(15) 0-»Ç(-4) -^ H«-^-» H«-► 0,

where i is the inclusion map and ty ( — 4) is the space of complex polynomials of

degree ¿ — 4.

Proof. It follows immediately from (8) and (11) that *$( —4) is precisely

the kernel of the linear map 3)J_t. If/(z)G2P, PE<P, and g=f\PP, then by (6)

<s>:j/>i,i>-»-W~'<w
dz1-''

(1-4)!(1-4)! r
= a»-*(P, 2) -^—-^ (f - 2)*-2g(f)áf;

hence if g(2) satisfies the growth condition of (11) so does (3)J ^f) | p/3, and

therefore £)J~*2t«C2P. On the other hand if /(z)G3P and PE<S> then the iter-
ated indefinite integral

g^ = T~r;(Z(z-^k(fU
( — 4) ! J i0

^)(f)df

represents a function in 21 which is readily seen to satisfy the growth condi-

tion of (11) and the differential equation 3)J_tgp =/| Psl~*P.   In  particular
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g(z) =gi(z), where / is the identity element of the group G, satisfies t£}p~tg=f;

and since by (6) T>l~t(g\PP — gp) =0, then g\PP — gp is a polynomial, so that

g\„P satisfies the same growth condition as does gP and hence g£2K There-

fore 2l'£!£>p~*2I«, which completes the proof.

Theorem 1. // the multiplier p is of degree k S 0 then for any e ̂  0 the follow-

ing is an exact sequence of complex vector spaces and linear maps :

l-k

o-» #°(g, y(-k)n) ̂  hI(s, C) -U #°ä.-*(9,21-')

1-A

(16) i £l!(§, $(-*),) -^ /¿(g,C) ^> • • •

i-t

• • • A #pp(g, $(-*)„) A flftg, C) -^ fl*n-*(g, *.")-♦•••.

Proof. The direct sum of n copies of the exact sequence (15) of Lemma 3

gives an exact sequence

í-t

(17) 0->$(-*)„-W,—-»SÉ-+0;

since X(P) are constants it follows from (6) that 3>Í~*(P| „P) = (2)¿"*P) | ^"»P

for all P£2l^ and TEQ, hence that (17) determines an exact cochain sequence

l-A

(is) o -* c?(g, y(-k)n)^ c;(g, a',) -£-» ̂ -»(g, «5 - o,

which clearly commutes with the coboundary operator. Any such cochain

sequence is well known to determine an associated exact cohomology sequence

of the form (16) [4].
3. The zero-dimensional analytic cohomology groups. The zero-dimen-

sional cohomology groups are quite easy to interpret, since first of all i/£(9> 21«)

= Z"(g, W„). A zero-cochain P(Po)£C2(g, W„) is determined uniquely by its

inhomogeneous form F= F(I)E^n, where / is the identity element of the

group g; and conversely any element P£2I^ is the inhomogeneous form of the

zero-cochain F(T0) = F\ PT0. Identifying the zero-cochains with their inhomo-

geneous forms, the zero-cocycles correspond to those elements F£2I^ such

that P|pP-P = 0 for all P£g; that is,

(19) z'(g, 2l„) = {F E ÎÛ | F(Tz) = ß(T, z)F(z), all P £ g}.

Thus i/°(8i 2I„) can be interpreted as a space of automorphic forms for the

group g associated to the factor of automorphy p.; no further comment is

necessary for groups without parabolic vertices, but for groups with parabolic

vertices a slightly more detailed investigation of the behavior of these forms
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at the parabolic vertices is required to identify them with the automorphic

forms as customarily defined [8].

For the purpose suppose that the kernel of X is a subgroup gx of finite

index in g; then gx and g have the same parabolic fixed points. If F£Z°(g, 2l„)

each component/ of F satisfies/| PT=f for all P£gx, that is, /£Zp(gx, 31) ; if

further z0 is any parabolic fixed point for g and P££fC is a transformation

such that P°o=2o then (/|pP)|p(P-'PP) =/|pP for all P£gx, that is/|PP

£Z°(P-1gxP, 2Í). Letting TP:z-+z+b, b>0, generate the translation sub-

group of P-1gxP, it follows that (/| pP)(a4-&) = (/| PP)(a), hence that the func-

tion f\ „P has a Fourier expansion

CO

(20) (/|pP)(a) =   22  arexp(2Tirz/b).
r=-co

The function/ is said to be holomorphic at ao if ar = 0 for all r <0, and to van-

ish at a0 if moreover a0 = 0; note that this is independent of the choice of trans-

formation P. The set of all functions P£Z°(g, 2l„) each component of which is

holomorphic at all parabolic vertices of G form a complex vector space TP(Q),

the space of automorphic forms lor the group G associated to the factor of

automorphy p.; the subspace T"(g) of those automorphic forms which more-

over vanish at all parabolic vertices of g is the space of cusp forms (or Spitzen-

formen) for the group g associated to the factor of automorphy p,.

Theorem 2. // the kernel of X is of finite index in g there is an e0>0 such

that

(2i) #°(g, C) = r„(g)

for all e < e0.

Proof If P£rM(g),/ is a component of F, and P£(P, then by (10)(iii)

P =o =Zo is a parabolic vertex of g so that (/| PP)(z) =g(z) will have a Fourier

expansion (20) with ar = 0 for all r<0; consequently g(z)—>a0 uniformly as

y—><», so that e~CB|g(z)| —>0 uniformly as y—*cc for any c>0, and/(a)£21°.

Thus r„(g) £#°(g, 2© £//;(g, 20 for all 6>0. Conversely if P£#°(g, 2I„).

f is a component of F, and a0 is a parabolic vertex of G, then by (10) (ii)

there is a transformation P£(P such that P=o =a0, hence (/|pP)(z) = g(z) will

have a Fourier expansion (20). If e_C!/|g(z)| —*0 uniformly as y—>°° for some

cS2tt/& then for all r<0

i i rb i r"
\aT\  =—    I     exp(-27rî>z/è)/(z)dz   S— I    e~cy \ f(z) \ dx

b   I J o b J a

so that ar = 0. Since there are at most finitely many parabolic vertices in-

equivalent under gx, then setting e0 = min¡,(27r/&)>0 it follows that for e<e0,

P(z) is holomorphic at all the parabolic vertices of g. Thus for € <€0, //"(g, 2lB)

CFp(g), which completes the proof.
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4. The one-dimensional analytic cohomology groups. Turning next to the

one-dimensional cohomology groups, a one-cochain F(To, 7i)GC¿(g, Wn) is

determined uniquely by its inhomogeneous form F(7,) = 77(7, T), where / is

the identity element of the group g; and conversely any function FiT) from

g to W„ is the inhomogeneous form of a one-cochain FiTQ, 7\) = /"(TiTo-1) | »T0.

Identifying the functions FiT) with the one-cochains it follows from (13)

that the space Z¿(g, 2ÍÓ) of one-cocycles consists of those functions FiT) such

that

(22) FiTiTi) = FiTi) \,T2 + P(72)

for all Ti, TiEQ, and that the space SC°(g, W„) of one-coboundaries consists

of those functions FiT) of the form

(23) FiT) = G\PT - G

for some GEWn. The group H\(q, Wn) = Z¿(g, W„)/8CliQ, W„) is then the quo-

tient of the space of functions FiT) from g to Wn satisfying (22) modulo the

subspace of functions of the form (23).

Lemma 4. If F(z)G2l° and XEGL(n, C) is an element of finite order then

for any S>0, £>0 there exists a vector-valued function G(z) holomorphic in the

half-plane y > S such that :

(24) X~1Giz+ 1) ~Giz) = Fiz);

and

....    for any c>e and any component g(z) of Giz), e~cy\ g(z) | —>0 uniformly as

y—> + oo in any strip of finite width.

Proof. It follows by induction from (24) that for any integer a^l,

\-°G(z+a) -G(z) = Faiz) where

(26) Faiz) = 22x-'Fiz + r);
r=0

and if a is a multiple of the order of X then X_a= 1. The first step in the proof

is the construction of a function G„(z) holomorphic in y>5 which satisfies

(25) and

(27) Gaiz + a) - Gaiz) = Faiz),

where the integer a is a multiple of the order of X and a^2r/e; it of course

suffices to consider a single component /(z) of the vector-valued function

Faiz). Following the approach used in [l] let

4(z, t) = a-x(l - exp{2«(z - O/«})-1

where z = x+iy, t = a+ir. For each fixed z the function 4(2, t) is meromorphic
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in /, the only singularities being simple poles at the points t = z, z+a,

z ± 2a, ■ ■ ■ with residues l/27ri; k(z + a, t) = k(z, t); and \k(z, t)\

<(exp{2ir(y — r)/a})/a if y— r>a. Since/(a)£2I° it follows that the integral

h(z) =fH°k(z, t)f(t)dt extended over the line segment ¡7 = 0, 5<t<=o con-

verges to a function holomorphic in each strip ma < x < (m + l)a for

m = 0, +1, +2, • • • , and that h(z+a) =h(z). Modifying the path of integra-

tion by making indentations to the left or right respectively shows that the

function h(z) has analytic continuations h+(z), h~(z) from the right and left

respectively across the lines x = ma, and as in [l] h~(z)—h+(z)=f(z) along

the line x = 0. Considering the function h(z) in the single strip 0<x<o the

analytic continuations across the two sides of the strip are such that h(z+l)

— h(z)=h~(z)—h+(z)=f(z); therefore this segment of the function can be

extended to a function ga(z) holomorphic in the half-plane y>5 such that

ga(z 4- 1) — ga(z) = f(z). If (x — a)/a is not an integer then \k(z, t)\

= a~x\ sin 2ir(x — o)/a\~1 exp{2ir(y — r)/a} for all y; hence in any strip

a+r¡<x<<T+a — r\ for any 77>0

I       /» £T+¿5

%a(z) I   S e-c"

1
S Ce-™ H-

a

/» 0+10 I        /» (T-f-ICOk(z,t)f(t)dt  + e~cA I        k(z,t)f(t)dt
ib I J i+ii

2l"l\~l ( )     f °° ( I I
in-      exp| — (c — 2ir/a)y}   I     exp{ — 2xr/a} \ f(a + ir) | dr

a  \ J s

so that e~cy\ga(z) \ -^0 uniformly as y—>a> whenever c>e = 2ir/a.

Now in terms of the auxiliary function Ga(z) define another function by

setting

G(z) =—22 &-rGa(z + r) - Fr(z)),
a r=o

where Fr(z) is given by (26) for r>0 and Po(z) =0. If Ga(z) satisfies (25) then

so does G(z) ; and

\->G(z 4- 1) = — 22 (X-^KJaia + r+l) - Pr+1(z) + F(z))
a r=o

= F(z) + G(z) + — (Ga(z + a)- Ga(z) - Fa(z))
a

= F(z) + G(z).

This therefore completes the proof.

As a convenient abbreviation an open subset tU£3ù will be called an open

neighborhood of 00 if It contains a half-plane Im a>yo; and 11 will be called

an open neighborhood of a finite parabolic vertex a0 if 11 contains an open

circular disc in SD tangent to the real axis at ao, or equivalently, if P~lcU is an

open neighborhood of =0 for some P£(P such that P°o =z0. The set of those
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C°° vector-valued functions in D which are holomorphic in an open neighbor-

hood of each parabolic vertex of g is a subspace ÔuCfè« stable under the

representation u; hence (£U = (£,/ïËÎJ is also stable so that the cohomology

groups 77¿(g, G£) are well defined.

Lemma 5. If the kernel ofX is of finite index in g then for any e>0 the homo-

morphism 7/¿(g, (1°,) —>77¿(g, £¡¡) induced by the inclusion map (t0,—»Q£ is the

zero homomorphism.

Proof. What is to be proved is that any one-cocycle F(T)EZ\,('a, S£) is

the coboundary of a zero-cochain GGC°(g, (&)■ For this purpose first select

a pair of open neighborhoods It,-, 1)¿ of each parabolic vertex of g such that

the sets 13¿ are pairwise disjoint, the point set closure of 11,- is contained in

Vi, and the sets 11= (Jit;, V = \JX>i are invariant under the group g and con-

tain no fixed points of g; and select a Cx function r¡ = r¡(z) in 3D invariant

under g and such that Ogij(z)^l, y(z)=0 for zGSD-t), r?(z) = l for zGlt.

Now for each It* there is a transformation Pi G(P such that P~lcU¿ is a half-

plane Im z>yù and if 7\ generates the cyclic subgroup of those parabolic

transformations in g preserving the set 1l¿ then Pt1TíP, is a translation

z^>z+bi. By Lemma 4 there is a holomorphic function G[' (z) in P,-11li satis-

fying (25) and such that \[X¡rW (z + b{) -G¡'(z) = P(7\-)|„Pi, since X(7\)
is a matrix of finite order as a consequence of the hypothesis; then G'

= G¡'\PP~1 is holomorphic in It,, d ¡PP< satisfies (25), and G/|„7\

= XiTd-'Gi | pTi = X(ri)-1(G1" | „Pr'TtPJ | „Pr1 = (XiT^d' (z + bt)) | „Pr1
= G'i +P(P¿) in the set 1l¿. Extend GÍ to a function G' in the entire set gil;

by requiring that G'\^T—G' = FiT) for all 7"Gg; and proceed similarly for

the other components of the set 11. It is then clear that rçG'GCjXg, (tí,) has

as its coboundary the one-cocycle r¡FiT)EZl(Q, (t0,). To complete the proof

it therefore suffices to prove that a one-cocycle (1 — 7j)P(P)GZ¿(g, 6„) which

vanishes in the open set 11 is the coboundary of a zero-cochain GGC£(g, S„)

which also vanishes in the set 11; but since this follows precisely as in [9,

especially Theorem l], the lemma is thereby demonstrated.

The preceding preparatory lemmas will now be used to establish a dual

pairing 77¿(g, 21°) ®r°¡(g)—>C, where fi is the factor of automorphy defined by

(28) ßiT, z) = piT, s)-V(T, z)XiT)

and X(P) is the complex conjugate of X(P). Assuming again that the kernel

of X is of finite index in g there exists a positive definite Hermitian matrix M

such that 'XiT)MXiT) = M for all PGg, where 'X(P) is the transpose of the

matrix X(P). Consider elements F(T)EZ\(S, 21°) and H&%($). By Lemma 5

for any e>0 there exists an element GEÔt» such that F(T)=G\»T — G for all

PGg; then <p(z)=dG(z) is a vector-valued C°° differential form on 3) of

type (0, 1) which vanishes in an open neighborhood of each parabolic vertex

of   g   and   which   satisfies   the   functional   equation   <p(Tz) = u(T,   z)<p(z)
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= p(T, z)\(T)<p(z) for all P£g. Associate to H=H(z) the vector-valued

differential form d(z) = H(z)dz ; this is then a holomorphic differential form on 3)

of type (1, 0) which satisfies the functional equation 6(Tz) =p(T, z)~1\(T)6(z)

for all P£g. It follows immediately that the expression lp(z) /\Md(z) is a

scalar differential form on 3} of type (1, 1) which vanishes in an open neigh-

borhood of each parabolic vertex of g and which is invariant under the group

g, hence that the integral

(29) (</>, 6) =  f      'p(z) A M0(z)

converges and is independent of the choice of fundamental domain for g over

which the integration is extended. If </>, <j>' are two differential forms associated

to the same cocycle F(T) then <p—<p' = dG0 for some G0£Z°(g, (£|j); and as in

Theorem 2 there is an e0>0 such that for t<6o any function G0(z) £Z°(g, (!„)

must actually be a holomorphic modular form in the usual sense near each

parabolic vertex of g. Now the differential form lGo(z)Md(z), which is clearly

invariant under g, must behave like a cusp form near each parabolic vertex

of g, so that for any fundamental domain ï with boundary dï consisting of

finitely many rectifiable arcs

(p, e) - w, o) = o - if, e) = f â('G„) a Me = f d('G0Mo)
J$ Js

=  f   'GoMd = 0.
J aï

Thus for e<€0 the inner product (29) depends only upon the cocycle F(T)

and not upon the choice of the associated differential form <p(z). Since more-

over a coboundary F(T) has an associated differential form <j>(z) = 0 the inner

product (29) actually depends only upon the cohomology class of F(T). Con-

sequently the inner product (29) defines a bilinear pairing (F(T), H) of

Hl(S> 21°) ®r£(g) into the complex numbers. As a final comment note that to

calculate the inner product (F(T), H) it is not necessary that the associated

function G(z) be holomorphic in an open neighborhood of the parabolic ver-

tices, although that is perhaps the most convenient formulation for proving

the existence of the inner product; indeed it is clearly sufficient that G(z) be

such that Stokes' theorem is applicable in the form f<$d(lGMd) = f^GMQ.

Lemma 6. // the kernel of X is of finite index in g and if k S 0, where k is the

degree of the multiplier p, then for each nontrivial i/£r>j(g) there exists a co-

homology class {F(T)} EHl(q, 2© such that (F(T), H)^0.

Proof. To the element i/= i/(z)£r£(g) associate the Cx differential form

P(z) = y-kH(z)dz;
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then for any PGg,

PiTz) = Af*| cz + d\2ky~kp(T, z)~1X(T)H(z)dz = n(T, z)p(z).

Note further that for the differential forms ^(2) and 6(z) = H(z)dz the inner

product (29) has the value

(P, 6) =  (     lP(z) A M8(z) =  f     y-k <HjzJMH(z)dz Adz^O
J ©/g J £>/g

since M is positive definite, the convergence of the integral following as in

[ll] since 77(z) is a cusp form. To complete the proof it clearly suffices to

show that there is an element G = G(z)GSS such that dG = p, for then G\hT

-G = FiT)EZH%, 21°) and (P(P), 77) = (P, 6)^0. For this purpose introduce

the iterated indefinite integrals Griz) = (1/V !)/^(z — t)rHit)dt; it follows directly

that Gr(z) G 21°, and that dGr/dz = Gr-i if r>0 and dG0/dz = H. Consequently,

letting s= -4^0 and G_i(z) =/7(z),

G(Z)   =   Ê   —^— i  V~rGr(z)   E  C
r=o  (s - r) !

and

3G        ' si
-= ¿2 -,--ir{y"rGr-i(z) - i(s - ^y'-'-'Griz)} = y'G-iiz) = y-*77(2);
dz       r=0  (s — r) !

so that

<3G _
dGiz) = ——dz = y-kH(z)dz = P(z),

dz

which concludes the proof.

It should be noted that the condition 4^0 is really not a restriction at

all, for if there exist any nontrivial functions Z7(z) Gr°.(g) then the degree

of jû, which is 2 — 4, must be positive, so that 4^1; the lemma can be demon-

strated to hold for the case 4= 1 as well, although the proof will not be given

here [10].

Lemma 7. If the kernel of X is of finite index in g and if k ^ 0, where k is the

degree of the multiplier p, then for each nontrivial cohomology class {FiT)}

G77¿(g, 2© there exists a function HET-iQ) such that (FiT), 77) ̂ 0.

Proof. What is to be proved is that a one-cocycle P(r)GZ¿(g, 21°) is

cohomologous to zero if (P(7), 77) =0 for all HETKq); this can be accom-

plished by an application of the usual method of orthogonal projection of

harmonic differential forms. For this purpose let A0 be the complex vector

space of those C°° vector-valued functions F(z) on 3) which vanish in an

open neighborhood of each parabolic vertex of g and which satisfy the func-
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tional equation F(Tz) =u(T, z)F(z) for each P£9; and let A1 be the complex

vector space of those C°° vector-valued differential forms <p(z) =E(z)dz on 3)

of type (0, 1) which vanish in an open neighborhood of each parabolic vertex

of g and which satisfy the functional equation <p(Tz)=n(T, z)d>(z) lor each

7 £9- These are clearly pre-Hilbert spaces with the respective inner products

(Pi, F2)° =   f     yk~2 >Fi(z)MF2(z)dx A dy
JS>i%

and

(Pi, 4,s)i = -L f     yk i0l(a) A M(?2(z) =   f     yk <Ei(z)MË2(z)dx A dy;
2 JsD/g JD/g

so the completions [A0], [A1] of these spaces with respect to their inner

products are then Hubert spaces in the usual sense; these completions are

the spaces of those measurable functions or differential forms respectively

which are the P2-limits of sequences of elements from A0 or A1 respectively.

It should be noted that the subspaces of [A0], [A1] consisting of C°° elements,

say [A°]MC[A°], [A1]oc£[A1], are strictly greater than the original spaces

A0, A1; for an element in [A°]°°, [A1]00 need not vanish in an open neighbor-

hood of the parabolic vertices of g nor even tend to zero upon approach to a

parabolic vertex, though it must of course be of finite norm. The exterior

differential operator of type (0, 1) is a linear mapping d: A0—»A1, and it follows

directly that the dual to d is the linear mapping d*: A1—>A° defined by

_ d
d*p(z) = d*(E(z)dz) = y2~k — (ykE(z));

dz

lor if F(z) £A° and

then

<t>(z) = E(z)dz E A1

(OF, 4>y = — f     ykd >F A Mp = — f     (d <P) A ykMp
2 J3û/g 2 J»/g

= — f      d('FykM$) - — f      <FMd(yk$)
2 J 2D/9 2 J £)/g

i   r d      _
= 0- >F(z)M— (ykE(z))dz A dz

2 J£>/g dz

=  f     f-i *F(z)M \y2-k — (y*I(z))l dx /\dy = (F, d*d>)°.
J£)i<3 (        dz )

The composite differential operator A = oâ* is a linear mapping A:A'—>A\
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which is indeed a strongly elliptic differential operator at all finite points

since it is of the form A(E(z)dz) =y2(d2E(z)/dzdz) + (terms involving lower

order derivatives). Letting [AAl] be the closure of the linear subspace AA1

G [A1] and ^ be the orthogonal complement of [A A1] in [A1], there results

the orthogonal decomposition [A1] = [A A1]©^. Since SF is the set of elements

'/'GtA1] such that (A </>, ̂)=0 for all <pGA\ where A is strongly elliptic, it

follows from Weyl's lemma, in the form of Theorem W of [2] for instance,

that actually ^ consists of those forms pE [A1]"5 such that A ^ = 0. Moreover

Lemma M of [2] also holds in the present case, by using a countably infinite

rather than a finite form of the diagonalization process in the proof. Therefore

just as in [2] there follows an orthogonal decomposition theorem for C*

forms, [A1]M = A[A1]-e^ [10].

To apply this construction to the problem at hand, proving the lemma,

consider firstly an element p(z) =E(z)dzE<&. Since d(d*p) =Ap = 0 it follows

that G(z) =d*piz) is a holomorphic function satisfying the functional equa-

tion GiTz) =p(T, z)G(z) for all PGg; but there are no nontrivial such func-

tions when 4^0 so that actually d*^(z) = 0. Since then y2~kd/dz(ykE(z))

= d*(E(z)dz) =d*p(z) =0 it follows that the function

Hiz) = ykË~iz)

is holomorphic in 3); as in Lemma 6 this function satisfies the functional equa-

tion H(Tz) = ß(T, z)H(z) for all PGg, and in addition it is of finite norm in

the sense of Petersson since

f     y~k iH(z)MH(z)dx A dy =  f     y* 'E(z)ME(z)dx A dy
j£>,g Jsû/g

= iPiz),Piz)Y < + ».

Consequently //(z)Grp(S); so that any element ypE& must be of the form

Piz) = y-kHiz)dz

for some 7/(z)Gr„(g). Now consider a one-cocycle P(7,)GZ^(g, 21°) such that

(P(P), H) =0 for all 7/Gr°.(9), and let (p(z)GA1 be the differential form asso-

ciated to that cocycle as in the definition of the inner product (29). Then for

any differential form

Piz) = y~kH(z)dz E *

it follows that

ip,py=f     yk <p(z)M AP(z) =  (      ><biz)M A Hiz)dz = (F(T),H) = 0;
JäD/9 JSD/9

therefore  by  the  decomposition  theorem <p(z) = A0(z) =d(o*0(z))   for some
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0(z) E [A1]00. The function G(z) = d*9(z) then satisfies the functional equation

G(Tz) =u(T, z)G(z) for all P£g, and <p(z) =dG(z). Since <b(z) vanishes in an

open neighborhood of each parabolic vertex of g the function G(z) must be

holomorphic in such neighborhoods; and since further (G(z), G(z))°= (G, d*0)°

= (dG, 0)1 = (p, 6)1 < oo , it follows indeed that G(z) £Z¡¡(g, g£). In view of the

discussion of the inner product (29) this clearly suffices to prove that the co-

cycle F(T) is cohomologous to zero, and thereby concludes the proof of the

lemma.

It should be noted once again that the condition &S0 can be avoided,

and is used here merely to simplify the presentation. Now the desired inter-

pretation of the one-dimensional cohomology group follows immediately from

Lemmas 6 and 7.

Theorem 3. // the kernel of X is of finite index in g and if k SO, where k is

the degree of the multiplier p, then the dual of ZPÛ(g, 2© is canonically isomorphic

to rj(g).

5. The higher dimensional analytic cohomology groups. The cohomology

groups of dimension greater than one are really the simplest of all. As a tool

in the investigation of these groups consider a scalar automorphic form /(a)

associated to some factor of automorphy v(T, z) for g on 3D; the factor of auto-

morphy v is of no importance here and can be quite arbitrary, but for sim-

plicity assume that the function/(a) itself has a divisor b/in which each point

appears with multiplicity 1. For any ^-cochain F(TB, ■ • ■ , PP)£C'(g, 21")

it is clear that the product f-F(T0, • • • , Tp)ECppv(<è, 2©; hence multiplica-

tion of cochains by the element /£2T? defines an isomorphism X/: C£(g, 2©

—>C£„(g, 2©, though this is of course not an isomorphism onto. Note that the

point set b/£2D is stable under g, and hence associated to the factor of auto-

morphy uv is an action of the group g on the complex vector space S«[b/]

of complex-valued functions on the point set b/, an action defined as in (9) ;

consequently there are cochain groups (^„(9, 6n[b/]) and cohomology groups

H^ÁS* S»[fr/]) defined as in §2. Furthermore the restriction of a cochain

P(Po, • • • , PP)£CJ,(g, 2© to the point set b/£2D is an element of

CJLXg, Sn[b/]); this restriction is therefore a linear mapping restr: Cppy(Q, 2©

-C(g, sB[b/]).

Lemma 8. The following is an exact sequence of complex vector spaces and

linear maps:

o -» cftg, 2i!) -^ c?,(g, 2i!) -^ Ces, e«[b/]) - o;

this sequence commutes with the coboundary operators and hence gives rise to an

exact cohomology sequence:
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0 - //°(g, 2ll) -> h\,(s, 2l!) -» hI(s, 6»[b/]) -

//;(g,2l°)-»//^(g,2l„°)-^- • •

-► si(S, 2ll) -* £&(§, 2l!) - //^(g, 6»[b/]) -»•••.

Proof. To show that the cochain sequence is exact only two assertions

need to be verified. The first assertion is that the image of X/ is the kernel of

the restriction map; this is obvious, since a cochain which is in the kernel of

the restriction map vanishes on b/ and hence is the product of / and an ele-

ment of C£(g, 2©. The second assertion is that the restriction map has as

image the entire space C£„(g, Sn[b/]); this is also obvious, by considering the

associated inhomogeneous cochains as in [7], and observing that any func-

tion on the point set b/ is the restriction of a function in 21°. The second half

of the lemma is as obvious as its predecessor, so no further comment is

needed to conclude the proof.

Theorem 4. 77£(g, 21°) =0 for all p>l.'

Proof. First of all it is obvious that i/J„(g, 6»[b/]) =0 for all p>0; com-

pare [9] for instance. Therefore from the exact cohomology sequence (30) it

follows that

(31) HpPig, 21,1) s* fl?,(g, 2l!)

for all p> 1, the isomorphism being that derived from the cochain homomor-

phism X/; and this is true for any function/of the type under consideration.

Now to proceed by way of an argument by contradiction suppose that, con-

trary to what is to be proved, 7/£(g, 21°) ̂0; then let P(P0, • • • , Tp)EC*iç, 21°)

be a nontrivial cocycle, and let r>0 be the dimension of the complex vector

space 7/'(g, 21°). For a factor of automorphy v of suitably large degree there

will be at least r + 1 linearly independent automorphic forms/¿(z) associated

to that factor of automorphy, any linear combination of which will be a

function/(z) = 22cif>(z) of the type considered above; then since the map X/

is an isomorphism on cohomology the cocycle /-P(Po, • ■ • , Tp)=22c'fi

•P(70, • • • , Tp) must be nontrivial if not all of the constants c¿ vanish, so

that the cocycles/IP(P0, ■ • • , Tp)ECvIJ.v(<è, 2© must represent linearly inde-

pendent cohomology classes. However since there are at least r + 1 such, this

contradicts (31), and the contradiction serves to conclude the proof.

As a final comment on this proof: by using the fact that 77¿„(g, 6„[b/]) =0

and interpreting the first part of the exact cohomology sequence (30) by

applying the results of §§3 and 4, there follows a Riemann-Roch theorem as in

[12; 6].
6. The polynomial cohomology groups. The final result of the present

paper follows immediately upon applying the interpretations developed in
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§§3, 4, and 5 to the cohomology groups in the exact sequence of §2. As a

notational convenience introduce first the factor of automorphy v=p,-bl~k of

degree 2 — k, where k is the degree of the multiplier p; note that the factor of

automorphy j& = p-1-S-X is also of degree 2 — k, and indeed that ß = v il X is a

real representation of the group g.

Theorem 5. // the kernel of X is of finite index in g and if k<0 then

(32) fli(g,?(-Ä),) = 0 forp>l,

and there is an exact sequence of complex vector spaces and linear maps of the

form

(33) o -> r,(g) -» ¿(g, $(-*),) -> r¡(g) -» o.

Proof. From Theorem 2 note that H°(<g, 2© =Tp.(g) ; and since the degree

of ¡x is k<0 then r„(g) =0. From Theorem 3 note further that i/¿(g, 2© is

dual to rjl(g) and that ZPÜji-*(g, 2© is dual to rJJ-Wg) ; again since p-^X
is of degree ¿<0 then r°-i6*x(g) =0 and hence i/¿,nt(g, 21°) =0. Select some

isomorphism between the dual vector spaces i/¿(g, 2© and r°¡(g). Equation

(33) now follows by substituting these observations into the first portion of

the exact cohomology sequence of Theorem 1 with e = 0; and equation (32)

follows upon combining Theorem 4 and the remainder of the exact cohomol-

ogy sequence of Theorem 1, again with e = 0.

Note that for each subgroup QoEQ there are the natural restriction

homomorphisms Hl(Q, *)—»//¿(go, *) for arbitrary coefficient groups. In par-

ticular for each parabolic transformation P£g let { T} be the cyclic subgroup

of g generated by P and consider the restriction homomorphism i/¿(g, ty( — k)„)

—»i/¿({ T}, fy( — k)n) ; the intersection of the kernels of these maps for all the

parabolic transformations P£gisasubspace H^Q, ($( — k)n) CPf¿(9, $( — £)»).

Corollary to Theorem 5. With the same hypotheses as in Theorem 5

there is an exact sequence of complex vector spaces and linear maps of the form

(34) o -» r!(g) -» Brl(s, ?(-*)») -» r-(g) - o.

Proof. The mapping«: r„(g)—>/f¿(g, <$( — k)n) in (33) is just that described

in [6] associating to an automorphic form in r„(g) the periods of the ap-

propriate iterated indefinite integral; and precisely as in [6] the periods

associated to a cusp form represent cohomology classes in the subgroup

#¿(g. $(-*)») C¿í¿(g, V(-k)n). The mapping ß from the kernel of

{Hl(9, $(-£)»)—Tg(g)} to r,(g) which is inverse to the mapping a is

equally simple to describe; for if H(T) is a cocycle representing a cohomology

class in the kernel of {P/¿(g, fy( — k)n)—^1(9)} there must be an element

P£2I£ such that H(T) =F\ PT-F and then f=T>l'kF is the element ß(H(T))
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Gr*(g). To complete the proof of the corollary it is clearly sufficient to show

that ß maps a cocycle representing an element of //¿(g, ^3( —4)„) into the sub-

group r°(g) of cusp forms. For this purpose consider a parabolic transforma-

tion T, which without loss of generality can be taken to be of the form

T: z—*z+a for some constant a. For a cocycle representing an element of

LL)f!à, *$( — 4)n) it is easy to see that 7/(P), for T as above, must indeed be a

polynomial of degree at most ( — 4) — 1. Then/(z) =/3(77(P)) =dgiz)/dz where

g(z)=á(-t)P(z)/áz<-*) and F\pT-F = HiT); but since g(z)G2I°. must be such

that giz+a)=giz), it has a Fourier expansion of the form 22ñ-o cn expi2rinz/a)

and consequently
dgiz)       " «

^(z) = - = 2-1 2ti— c„ expi2winz/a),
dz        n=i a

which does show that /(z) is a cusp form.

Remarks. If X is a real representation of the groug g, so that » = v, it then

follows from (34) that dim//¿(g, <ß(-4)„) = 2-dim r„(g); for the trivial

representation X this was proved in [6] simply by calculating the two dimen-

sions. Again as in [6] the operations of the Hecke modular correspondences

commute with the exact sequences (33) and (34), so that the knowledge of

the eigenvalues of the Hecke operators on the polynomial cohomology groups

leads to the knowledge of the Fourier coefficients of a basis for the automor-

phic forms associated to the group g.
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