On the Kronecker products of irreducible representations of the real unimodular group. I
Author:
Lajos Pukánszky
Journal:
Trans. Amer. Math. Soc. 100 (1961), 116152
MSC:
Primary 22.57
MathSciNet review:
0172962
Fulltext PDF Free Access
References 
Similar Articles 
Additional Information
 [1]
V.
Bargmann, Irreducible unitary representations of the Lorentz
group, Ann. of Math. (2) 48 (1947), 568–640. MR 0021942
(9,133a)
 [2]
E. T. Copson, An introduction to the theory of functions of a complex variable, Oxford, Clarendon Press, 1955.
 [3]
I.
M. Gel′fand and M.
A. Naĭmark, Unitary representations of the Lorentz
group, Izvestiya Akad. Nauk SSSR. Ser. Mat. 11
(1947), 411–504 (Russian). MR 0024440
(9,495a)
 [4]
George
W. Mackey, Induced representations of locally compact groups.
I, Ann. of Math. (2) 55 (1952), 101–139. MR 0044536
(13,434a)
 [5]
, Induced representations of locally compact groups. II, Ann. of Math. vol. 58 (1953) pp. 193220.
 [6]
F.
I. Mautner, Unitary representations of locally compact groups.
II, Ann. of Math. (2) 52 (1950), 528–556. MR 0036763
(12,157d)
 [7]
F.
I. Mautner, On the decomposition of unitary
representations of Lie groups, Proc. Amer.
Math. Soc. 2
(1951), 490–496. MR 0041856
(13,11b), http://dx.doi.org/10.1090/S00029939195100418563
 [8]
F.
J. Murray and J.
Von Neumann, On rings of operators, Ann. of Math. (2)
37 (1936), no. 1, 116–229. MR
1503275, http://dx.doi.org/10.2307/1968693
 [9]
John
von Neumann, On rings of operators. Reduction theory, Ann. of
Math. (2) 50 (1949), 401–485. MR 0029101
(10,548a)
 [10]
M.
A. Naĭmark, Decomposition of a tensor product of irreducible
representations of the proper Lorentz group into irreducible
representations. I. The case of a tensor product of representations of the
fundamental series, Trudy Moskov. Mat. Obšč.
8 (1959), 121–153 (Russian). MR 0114139
(22 #4966)
 [11]
I.
E. Segal, A class of operator algebras which are determined by
groups, Duke Math. J. 18 (1951), 221–265. MR 0045133
(13,534b)
 [12]
I.
E. Segal, Hypermaximality of certain operators
on Lie groups, Proc. Amer. Math. Soc. 3 (1952), 13–15. MR 0051240
(14,448b), http://dx.doi.org/10.1090/S00029939195200512405
 [13]
E.
C. Titchmarsh, Eigenfunction Expansions Associated with
SecondOrder Differential Equations, Oxford, at the Clarendon Press,
1946 (German). MR 0019765
(8,458d)
 [1]
 V. A. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. vol. 48 (1947) pp. 568640. MR 0021942 (9:133a)
 [2]
 E. T. Copson, An introduction to the theory of functions of a complex variable, Oxford, Clarendon Press, 1955.
 [3]
 I. M. Gel'fand and M. A. Naĭmark, Unitary representations of the Lorentz group, Izv. Acad. Sci. SSSR vol. 11 (1947) pp. 411504 (Russian). MR 0024440 (9:495a)
 [4]
 G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. vol. 55 (1952) pp. 101139. MR 0044536 (13:434a)
 [5]
 , Induced representations of locally compact groups. II, Ann. of Math. vol. 58 (1953) pp. 193220.
 [6]
 F. I. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. vol. 52 (1950) pp. 528556. MR 0036763 (12:157d)
 [7]
 , On the decomposition of unitary representations of Lie groups, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 480485. MR 0041856 (13:11b)
 [8]
 F. J. Murray and J. von Neumann, On rings of operators. I, Ann. of Math. vol. 37 (1936) pp. 116229. MR 1503275
 [9]
 J. von Neumann, On rings of operators. Reduction Theory, Ann. of Math. vol. 50 (1949) pp. 401485. MR 0029101 (10:548a)
 [10]
 M. A. Naĭmark, Decomposition of a tensorial product of irreducible representations of the proper Lorentz group into irreducible representations, Trudy Moskov. Mat. Obšč. vol. 8 (1959) pp. 121153. MR 0114139 (22:4966)
 [11]
 I. E. Segal, A class of operator algebras, which are determined by groups, Duke Math. J. vol. 18 (1951) pp. 221265. MR 0045133 (13:534b)
 [12]
 , Hypermaximality of certain operators on Lie groups, Proc. Amer. Math. Soc. vol. 3 (1952) pp. 1315. MR 0051240 (14:448b)
 [13]
 E. C. Titchmarsh, Eigenfunction expansions associated with secondorder differential equations, Oxford, Clarendon Press, 1946. MR 0019765 (8:458d)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
22.57
Retrieve articles in all journals
with MSC:
22.57
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947196101729621
PII:
S 00029947(1961)01729621
Article copyright:
© Copyright 1961
American Mathematical Society
