Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Oscillation criteria for self-adjoint differential systems


Author: William T. Reid
Journal: Trans. Amer. Math. Soc. 101 (1961), 91-106
MSC: Primary 34.30
DOI: https://doi.org/10.1090/S0002-9947-1961-0133518-X
MathSciNet review: 0133518
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1954. MR 0066560 (16:596f)
  • [2] J. H. Barrett, Two-point boundary value problems and comparison theorems for fourth-order self-adjoint differential equations and second-order matrix differential equations, Technical Summary Report #150, April, 1960, Mathematics Research Center, U. S. Army.
  • [3] G. D. Birkhoff and M. R. Hestenes, Natural isoperimetric conditions in the calculus of variations, Duke Math. J. vol. 1 (1935) pp. 198-286. MR 1545876
  • [4] G. A. Bliss, Lectures on the calculus of variations, University of Chicago Press, 1946. MR 0017881 (8:212e)
  • [5] M. Bôcher, Applications and generalizations of the concept of adjoint systems, Trans. Amer. Math. Soc. vol. 14 (1913) pp. 403-420. MR 1500954
  • [6] M. R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to the calculus of variations, Pacific J. Math. vol. 1 (1951) pp. 525-581. MR 0046590 (13:759a)
  • [7] H. C. Howard, Oscillation criteria for fourth-order linear differential equations, Trans. Amer. Math. Soc. vol. 96 (1960) pp. 296-311. MR 0117379 (22:8159)
  • [8] K. S. Hu, The problem of Bolza and its accessory boundary value problem (Dissertation, University of Chicago, 1932), Contributions to the Calculus of Variations, University of Chicago Press, 1931-1932, pp. 361-443.
  • [9] W. Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. vol. 17 (1950) pp. 57-62. MR 0032065 (11:248c)
  • [10] W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. vol. 89 (1958) pp. 325-377. MR 0102639 (21:1429)
  • [11] M. Morse, Sufficient conditions in the problem of Lagrange with fixed end points, Ann. of Math. vol. 32 (1931) pp. 567-577. MR 1503017
  • [12] -, Sufficient conditions in the problem of Lagrange with variable end conditions, Amer. J. Math. vol. 53 (1931) pp. 517-546. MR 1507924
  • [13] -, The calculus of variations in the large, Amer. Math. Soc. Colloquium Publications, vol. 18, 1934.
  • [14] Z. Nehari, Oscillation criteria for second-order linear differential equations, Trans. Amer. Math. Soc. vol. 85 (1957) pp. 428-445. MR 0087816 (19:415a)
  • [15] W. T. Reid, A boundary value problem associated with the calculus of variations, Amer. J. Math. vol. 54 (1932) pp. 769-790. MR 1506937
  • [16] -, An integro-differential boundary value problem, Amer. J. Math. vol. 60 (1938) pp. 257-292. MR 1507311
  • [17] -, A matrix differential equation of Riccati type, Amer. J. Math. vol. 68 (1946) pp. 237-246; also Addendum, ibid., vol. 70 (1948) p. 460. MR 0015610 (7:446a)
  • [18] -, Oscillation criteria for linear differential systems with complex coefficients, Pacific J. Math. vol. 6 (1956) pp. 733-751. MR 0084655 (18:898a)
  • [19] -, Adjoint linear differential operators, Trans. Amer. Math. Soc. vol. 85 (1957) pp. 446-461. MR 0088625 (19:550d)
  • [20] -, Principal solutions of non-oscillatory self-adjoint linear differential equations, Pacific J. Math. vol. 8 (1958) pp. 147-169. MR 0098220 (20:4682)
  • [21] H. M. Sternberg and R. L. Sternberg, A two-point boundary problem for ordinary self-adjoint differential equations of fourth order, Canad. J. Math. vol. 6 (1954) pp. 416-419. MR 0061738 (15:874c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34.30

Retrieve articles in all journals with MSC: 34.30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1961-0133518-X
Article copyright: © Copyright 1961 American Mathematical Society

American Mathematical Society