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1. Introduction. It is well known that the cohomology groups H"(X; IT) of

a polyhedron X with coefficients in the abelian group IT can be characterized

as the group of homotopy classes of maps of X into the Eilenberg-MacLane

space K(TL, n). Moreover, the cohomology theory with coefficients in LI can

be described in this way; the existence of the coboundary homomorphism of

the cohomology sequence of a pair is due to the fact that there are natural

maps of the suspension SK(R, n) into K(il, n + l) for every n; in other words,

the spaces K(IL, n) are the components of a spectrum(2). In fact, if E= {E„} is

a spectrum, then the groups

77»(X; E) - {X, £}_„ = lim [S"X, En+k]

are generalized cohomology groups of X, in the sense that they satisfy the

Eilenberg-Steenrod axioms [8], except for the dimension axiom. These gen-

eralized cohomology groups are beginning to play a more important role in

algebraic topology; for example, they may well furnish the correct setting in

which to study cohomology operations of higher order. Moreover, E. H.

Brown [4] has shown that, under a countability restriction on the coefficient

groups, every generalized cohomology theory can be obtained in this way.

One may ask whether there is a corresponding situation for homology

theory. The integral homology groups of a space X can be described by the

Dold-Thom theorem [6], as the homotopy groups of the infinite symmetric

product of X. However, the duality between homology and cohomology is

not apparent from this description, nor is it clear how to generalize it. Exam-

ples of generalized homology theories are known; for instance, the stable

homotopy groups. Like the homology and cohomology groups, the stable

homotopy and cohomotopy groups satisfy Alexander duality [26]. Given a

cohomology theory, one might then define the corresponding homology

groups as the cohomology groups of the complement of X in a sphere in which

X is imbedded. While this definition is perfectly satisfactory, it is awkward

to work with because of the many choices involved. For practical as well as

for aesthetic reasons, an intrinsic definition is to be preferred.

A rewording of the definition of the generalized cohomology groups de-
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fined above suggests a possible definition of the corresponding homology

groups. Given a space X and a spectrum E, the function spaces F(X, E„) of

maps of X into E„ themselves form a spectrum F(X, E), and we have

77»(Z; E) « x-n(F(X, E)).

The mapping functor F plays a role in topology analogous to that played by

Horn in group theory. We seek an analogue of the tensor product; this is

provided by the reduced join /\; in fact, the reduced join and mapping func-

tors are adjoint functors in the sense of Kan [13] because of the well-known

relation

F(XA Y, Z) m F(X, F(Y, Z)),

valid for well-behaved spaces. Now if X is a space and E a spectrum, then

E/\X is again a spectrum and we define the generalized homology groups

Hn(X;E) = irn(E/\X).

We prove that the generalized homology groups satisfy the Eilenberg-Steen-

rod axioms, except for the dimension axiom. With an appropriate notion of

pairing of spectra, we can define cup- and cap-products. Using these we then

prove an Alexander duality theorem. Moreover, we characterize the class of

manifolds satisfying Poincaré duality for arbitrary spectra; it includes the

n-manifolds of J. H. C. Whitehead [35] and of Milnor [19].

The results of this paper were announced in [32].

§2 is devoted to general preliminaries, and §3 to homology and homotopy

properties of the reduced join. Most of the results of these sections are well-

known. §4 is devoted to properties of spectra. In §5 the generalized homology

theories are introduced and the Eilenberg-Steenrod axioms proved. §6 is

devoted to setting up the machinery of products, and in §7 the duality theo-

rems are proved. In §8 we make use of Brown's theorem to prove the analo-

gous result for homology theories.

2. Preliminaries. Let V?0 be the category of spaces with base-point having

the homotopy type of a CW-complex. More precisely, an object of W0 is a

space X with base-point x0, such that there exists a CW-complex K with

base-point ko and a homotopy equivalence of the pairs (X, {xa}) and

(K, {ko} ) ; and a map of Wo is a continuous, base-point preserving map.

Let W be the category of spaces (without distinguished base-point) hav-

ing the homotopy type of a CW-complex. Let P be a fixed space consisting

of exactly one point />0. If IGW, let X+ be the topological sum of X and P;

then (X+, po) is an object of W0. If X, YE°W and/: X-> Y, then/ has a unique

extension/+: X+—»F+ such that f+(po) =po, and/+ is a map in Wo. The cor-

respondences X—>X+, /—>/+ define a functor +: W—»W0. Evidently we may

regard W as a subcategory of Wo.

In what follows, we shall use the terms "space" and "map" to refer to
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objects and maps of "Wo! the terms "free space" and "free map" will refer to

objects and maps of "W.

Let n be a positive integer. By "w-ad" we shall mean an «-ad

(X; Xx, ■ • • , Xn-x\ #0) having the same homotopy type as some CW-w-ad

(K; Kx, • • " , 7f„_i; fa). A 2-ad is also called a pair. We say that A is a sub-
space of X if and only if (X; A ; x0) is a pair. The ra-ads form a category "W".

Similarly we define the category *W" of free «-ads.

The category *WB was introduced by Milnor [18].

If (X, A) is a pair, let X/A be the space obtained from X by collapsing A

to a point, the base-point of X/A. Then X/A is a space, called the quotient

space of X by A.

Let Xx, • • • ,Xnbe spaces with base-points xxo, • • • , xno. Let X = IJ"_ ! X,-

be the cartesian product of the Xit with base-point #0 = (*io, • • • , xno). Let Ti

be the set of all points (*i, • • • ,xn) such that ¡t, = xto, and let T(Xi, • • • , X„)

= U"_, T.-. It follows from [18, Proposition 3] that the (« + l)-ad

(X; Tx, ■ • • , T„; Xo) belongs to *W¡}. The n-fold reduced join of the Xi is the

space A"_! Xi = XxA • ■ ■ AXn = X/T(Xi, ■ ■ • ,Xn); let l\x, = XxA ■ ■ ■ Axn

be the image of (*i, • • • , xn) in AX,-. If/,: Xf-*Yi are maps (t = 1, •••,»)

and /= 11/«, then f(T(Xx, • • • , Z„))C7,(Fi, • • • , F„); hence / induces a
map i\fi=fxA ■ ■ ■ /V»: AZi-^AF,-. Clearly, if /,~// (» = 1, • • • , n) then
A/,~A//. Thus the «-fold reduced join is a covariant functor which pre-

serves homotopy.

If X and Fare spaces, their sum is the space X\/ Y= T(X, Y) ; if/: X-+X',

g: Y-*Y', then the restriction olfXg to XV Fis a map/Vg: IV F-*Z'V F';
and/cü/', g~g' imply fVg—f'Vg'. Thus the sum is also a covariant functor

preserving homotopy.

The sum is evidently commutative and associative and the «-fold reduced

join symmetric in its arguments (up to natural homeomorphism). However,

associative laws for the «-fold reduced join do not always hold.

Let Xx, • • • , X„ be CW-complexes. Then X = JlX,- is a closure-finite

complex, but may fail to have the weak topology [35]. Let w(X) = X, reto-

pologized with the weak topology; i.e., a subset A of X is closed in w(X) if

and only if, for every compact set C of X, A C\ C is closed in X. Then w(X)

is a CW-complex, and the identity map 1: w(X)—*X is continuous.

Lemma (2.1). The identity map 1 : (w(X), xö)—*(X, Xo) is a homotopy equiv-

alence.

Proof. Let xx = (xn, • • • , xnx) be a point of X. Then the map which sends

the point xQXk into the point yQX such that y, = a:,i (Í9ík), y* = x, is a

continuous map

»*: (Xk, xkx)-+(X, xx)

and also a continuous map
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**' : (Xk, xki) —> (w(X), xi).

It is well known that if *>1, the induced homomorphisms

ikt: 7Ti(Xk, xki) —♦ tí(X, xi),

iit: Ti(Xk, xki) -» n(w(X), Xi)

form injective direct sum representations of the groups ití(X, xi),wí(w(X), xi) ;

while the obvious modification of the above statement holds for ¿ = 0, 1.

Since 1 o i¿ =ik, it follows that 1: w(X)—>X is a singular homotopy equiva-

lence. We have already observed that X£Wo; it follows from [18, Lemma l]

that 1 is a homotopy equivalence.

If cr is any subset of {1, • • • , n}, let X, be the set of all points xEX such

that Xi = xjo for all i $<r. Let X'9 be the corresponding subspace of w(X). Then

X, is naturally homeomorphic with H,-e, Xt, and it is clear that Xi is

homeomorphic with w(Y\iz*Xi). Since Xc(~\Xr = X,c\T, XiC\Xi =X'cc\T, it

follows from Lemma (2.1) by induction on n that, if T{ is the subspace cor-

responding to Ti, then

Corollary (2.2). The identity map

1: (w(X); 27, • • • , 2V ; *,) -> (X; Tu • • • , T„; x0)

is a homotopy equivalence.

Let T'(Xi, • • • , Xn) = U?.i H, and let

w(Xi A • • • A Xn) - W(Z)/r(Ä-„ • • • , X„).

Then

Corollary (2.3). FAe ma/>

w(Xi A • • • A Xn) - Xi A • • • A Xn

induced by 1: w(X)—*X is a homotopy equivalence.

We now show that the n-fold reduced join satisfies associativity laws up

to homotopy type. Any desired associative law can be obtained by iteration

from (2.4) below.

Let Xi be spaces (not necessarily CW-complexes) for t = l, ■ • • , n. Let

{ffi, • ■ • , <rr} be a decomposition of {l, • • • , n\ into disjoint subsets, and

let Yk = A<e»t Xi. Then there is a natural map

p:   Â Xi^k Yk
,_i it—i

such that, if XiG-^i (*'=1, ■ ■ • , n), and if yk = A ien xit then

¿(As,) = Ay*;
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p is one-to-one, continuous, and onto, but need not be a homeomorphism.

However, we have

(2.4). The map p: AX<—>A F* is a homotopy equivalence.

Proof. Since the fe-fold reduced join functors preserve homotopy, we may

assume that the X( are CW-complexes. The map p induces a map

p':w(l\Xi)->w(i\w(Yk))

which is one-to-one, continuous, and onto, and is an isomorphism of com-

plexes. Since both spaces are CW-complexes, p' is a homeomorphism. The

diagram

P'
w(l\Xi) !->w(/\w(Yk))

1| |1

Ax, ^>A F*

is commutative, and the identity map w(AX,)—>AX, is a homotopy equiva-

lence, by (2.3). The identity map w(Aw(F*))—>A F* is the composite

^(A^F^-^A^F^-^A F*;

the first map is a homotopy equivalence, by (2.3); the second is a reduced

join of maps which are again homotopy equivalences. Hence p is a homotopy

equivalence.

The case w = 3 of (2.4) was proved by Puppe [23, Satz 18].

We also note

(2.5). If all but one of the spaces n*e». X* i5 compact then p is a homeo-

morphism.

This follows easily by several applications of [34, Lemma 4].

Let (X, A) be a pair and suppose that A is closed in X. Let i: A QX.

Then, for any space F,

(2.6). The map i At: AAY-+XAY is an imbedding, and its image is a

closed sub space of X AY.

Under these conditions, we may consider A A Y as a closed subspace of

XAF.
Suppose further that p: X—>X/A is the identification map. Then

(2.7). If X is compact, then pAt:XAY-+(X/A)AY sends A AY into
the base-point and induces a homeomorphism of X A Y/A A Y with (X/A) A Y.

Let X, Y, Z be spaces, and let t"i: X-+X\/ F, i2: F-»IV F be the natural

injections. Then iif\U XAZ-+(XV Y) f\Z and *,A1: Y/\Z-*(X\/Y) AZ
induce a map

h: (X AZ)\/ (Y AZ)^(Xy Y) A Z.

(2.8). The spaces (XAZ)W(YAZ) and (X\JY)AZ are homeomorphic

under fa
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If F is a space, X a compact space, it follows from [18, Theorem 3] that

the space F(X, Y) of all maps of X into Y, with the compact-open topology,

is a space in Wo; the base-point of F(X, Y) is the constant map of X into

the base-point of Y. If/: X'—*X, g: Y—>Y', the correspondence h—»g ohof

is a map F(f, g) : F(X, Y)^F(X', F) ; and if/~/', g~g' then F(f, g)^F(f', g').
Clearly F is a functor: 3C0X W0—*W0, where 3C0 is the full subcategory of com-

pact spaces in Wo; F is covariant in its second argument and contravariant

in its first.

UfEF(XAY, Z), let fEF(X, F(Y, Z)) be the map defined by

f(x)(y) =f(xAy).

It follows easily from standard work on the topology of function spaces (cf.

[10; 12]) that

(2.9). The correspondence /—>/ is a homeomorphism of F(X/\Y, Z) with

F(X,F(Y,Z)).
UfEF(X, Y), xEX, let eB(f, x)=f(x). It follows from (2.9) that e0 is

continuous; since e0 maps F(X, Y)\JX into y0, we have

(2.10). There is a continuous map e: F(X, Y)/\X—*Y such that e(f/\x)

=f(x)forallfEF(X, Y),xEX.
The map e is called the evaluation map.

Let 7 be the free unit interval, and let T be the unit interval with base-

point 0. Let r = S° be the subspace {0, l} of T, and let S = Sl=T/t. The

cone over X is the space TX = TAX, and the suspension of X is the space

SX = S AX. The loop-space of X is the space QX = F(S, X). These operations

are evidently covariant functors: Wo—>Wo.

It follows from (2.4), (2.5), and commutativity of the reduced join that

(2.11). The spaces SX A Y and X ASY have the same homotopy type; if X

or Y is compact, they are homeomorphic.

Furthermore, we have

(2.12). If X is a compact space, then the spaces F(SX, Y), F(X, flF), and
QF(X, Y) are naturally homeomorphic.

(2.13). S"AX is naturally homeomorphic with X.

Let [X, Y] be the set of homotopy classes of maps of X into F; if/: X—*Y,

let [f] be the homotopy class of/. Then [ , ] is a functor on W0XW0 to the

category of sets with base-points. If/: X'-+X and g: Y—*Y', let

/*=[/, l]:[X,Y]->[X',Y],

gt= [l,g]:[X,Y]^[X,Y'];

then

[/"if] = flogt - gtofl.

(2.14). If X and Yare compact, then [XAY, Z] and [X, F(Y, Z)] are in

natural one-to-one correspondence.
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If X is compact, the sets [SX, Y] and [X, ßF] have natural group struc-

tures, and

(2.15).  The groups [SX, Y] and [X, OF] are isomorphic.

(2.16). The two natural group structures on [SX, ßF] are identical and

abelian.

(2.17). Ifn^2,the groups [SnX, Y] and [X, ßBF] are abelian.

(2.18). Iff: X'-+X, g: Y-+Y' are maps, then

(Sf)*:[SX, Y]->[SX', Y],

gt: [SX, Y] - [SX, Y'],

f*:[X,QY]->[X',QY\,

(Ug)f:[X,üY]-^[X,ÜY']

are homomorphisms.

Since the reduced join functor preserves homotopy, so does the suspension

functor. Hence the correspondence f—*Sf induces a map S*: [X, Y]
->[SX, SY].

(2.19). The map S*: [SX, Y]->[S2X, SY] is a homomorphism.

Similarly the loop functor induces a map ß*: [X, F]—>[ßX, OF], and

(2.20). The map ß*: [X, ßF]->[ßX, ß2F] is a homomorphism.

3. Homology and homotopy of the reduced join. If (X, A) is a pair, G an

abelian group, let Hn(X, A; G), Hn(X, A; G) be the singular homology and

cohomology groups of (X, A) with coefficients in G. If X is a space with base-

point Xo, let Hq(X; G), SQ(X; G) be the singular groups of the pair (X, {x0}).

Let (X, A) be a pair, and let p: X-^X/A be the identification map. Then

p induces homomorphisms

P*:Hn(X, A;G)^Hn(X/A;G),

p*: Hn(X/A ; G) -> 77B(X, A ; G),

and we have

(3.1). The above homomorphisms p*, p* are isomorphisms.

In fact, let/: (X, A)-*(K, L) be a homotopy equivalence, and let g: (K, L)

—*(X, A) be a homotopy inverse of/. Then/, g induce maps /: X/A-+K/L,

g: K/L—+X/A, and it is easily verified that / is a homotopy equivalence with

homotopy inverse g. The diagram

Hn(X,A;G)àHn(K,L;G)

ÍP* , IP*
Bn(X/A;G)^Hn(K/L;G)

is commutative. It is well known that />*: Hn(K, L; G) «77„(7Í/L; G). Since

/♦ and /* are isomorphisms, (3.1) follows for homology. The proof for co-

homology is similar.
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Let (X, A) be a pair and suppose A is a closed subset of X. By (2.6) and

(2.13) we may regard X and TA as subspaces of TX. Moreover, XVJTA/TA

is naturally homeomorphic with X/A. Let p': XKJTA-+X/A be the com-

position of this homeomorphism with the collapsing map of XVJTA into

XVJTA/TA. Furthermore, XUTA/X is naturally homeomorphic with SA.

Let p" : XVJTA-^SA be the composition of this homeomorphism with the

collapsing map. Clearly />' is a homotopy equivalence. If q: X/A-^XKJTA is

any homotopy inverse of /»', the map p"oq:X/A—*SA will be called a

canonical map.

Let C(X) be the normalized singular chain-complex of the space X, and

let C(X) be the factor complex C(X)/C({x0}). If (X, X0) is a pair and Y a

space, the Eilenberg-Zilber map [9] is a chain map f of C(X) ®C(Y)

into C(X XY); and f maps C(X) ® C({y0}) + C(X0) ® C(Y) into
C(XX {yo}{JXoX Y). Assume that Xa is closed in X. Then the identification

map of XX Y into ^A F sends the pair (C(XXY), C(XX {yo} WI0X F))
into (C(XA Y), C(X0A Y)). The composite map induces in turn a chain map

C(X)/C(X0) ®C(Y)^ C(X A Y)/C(Xo A Y),

and hence, for any pairing A ®B—*C of coefficient groups, a homomorphism

A: HP(X, Xo; A) ® Hq(Y; B) -^ Hp+q(X A Y, X0 A Y; C),

called the homology cross-product. If uEHp(X, X0; A), vEHq(Y; B), let

m A" be the image of u ®v under this map. Suppose A =Z, the additive group

of integers, B = C, and the pairing is the natural one. Let iEHi(T, T; Z) be

the homology class of the identity map of T into itself, regarded as a singular

simplex, the vertices of T being taken in the order 0, 1; and let sEBi(S; Z)

be the image of i under the identification map T—+S. Then the A-products

with i and s are homomorphisms

iA:Hq(Y;B)^Hq+i(TY, Y; B),

«r* = «A: HAY; B)^Ha+i(SY; B).

It follows from the Künneth Theorem that i A and a* are isomorphisms; <r* is

called the homology suspension.

Let lEHo(S°; Z) be the image of i under the boundary homomorphism

of (T, S°). The name is justified by the fact that, if w£775(F; B) then

1 A « = « E Bq(S° A Y; B) = Hq(Y; B)

under the identification S0A Y with Y. It follows that

(3.2). If uE3q(Y; B), and if d*: Hq+i(TY, Y; B) -> 77q(Y;B) is the bound-
ary operator of the homology sequence of the pair (TY, Y), then

d*(i A u) = u.

Lemma (3.3). If h: X/A^>SA is a canonical map, the diagram
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77„+i(X, A) ~+ Hn(A)

I p* l er*

77„+1(X/A) -+ Hn+x(SA)
fa

Proof. Let X'=XUTA, A' = TA. Consider the diagram (Figure 1) in

which all the homomorphisms are induced by inclusion maps, except that

d*, dx, and d2 are the boundary operators of the homology sequences of the

appropriate pairs, p* and p2 are induced by the identification map X-+X/A,

and px and p2 by the identification A'—*SA. The upper right and lower left

corners are commutative; since A' is contractible, d2 and ix are isomorphisms,

and the remainder of the diagram satisfies the hypotheses of the "hexagon

lemma" [8, 1.15.1]. Hence

l2 o d2l o d* = — ii o ir1 o h.

Since the triad (X'\ A', X) is proper, h and l2 are isomorphisms. Now pi

= pl o ix, and therefore q* = ir1 o pi-1; also p¿' =px o i2. Hence

fao p* = px   o it o ir1 o pí~l o />* = pC oi2o ir1 o lx

= — p{' o/jO dïl O d* = — p2   o dr1 o 3*.

It remains to show that p2'od2~1=o*.

Let uQHn(A). Then, by (3.2),

d2(i A u) = u,

and therefore d2~1(u)=iAu. Clearly p2'(i Au) = s Au; hence p2'o r3r1 = <r*.

This completes the proof.

Consider the maps p: S AX A Y-+SA(XAY), p': S AX A Y-+(SAX) A Y
of (2.5) ; they are homotopy equivalences, and therefore the composition

pj o pc*: Hn+1(S(X AY);C)-+ Hn+x(SX A F; C)
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is an isomorphism for any group C. Hence the homomorphism or,: Hn(XA Y; C)

->77n+i(SXA F; C) defined by

o~l = p* O p*x O er*

is an isomorphism. Similarly, the map p" : S AX A Y—>XA(SA Y) defined by

p"(t AxAy) = xA(tAy)

is a homotopy equivalence. Hence the homomorphism or: Hn(XAY;  C)

-^Hn+x(XASY; Q defined by

(TR  =   pi' O pi"1 O tT*

is an isomorphism. Clearly

(3.4). If uQHp(X; A), vQHq(Y; 73), then

<tl(u A») = <r*M A v,

o-r(u A v) = (-1)"« A <r*v.

The cohomology cross-product is a natural pairing

A: Bp(X; A) ® 77»(F; 73) -> ñ*+<(X A Y; C),

defined in terms of a pairing A ®B-+C. Let s*QH1(S; Z) be the element such

that the Kronecker index (s*, s)=i. Then

s*A: 7?«(F; 73) -> 77«+i(5F; 73)

is an isomorphism ; let

<r*: H<+1(SY; 73) -> 77«(F; 73)

be the inverse of s*A-

The homomorphisms

o*L: Ë»+l(SX A Y; C) -^ H"(X A F; C),

o*R: H»+KX A SY; C) -» H"(X A F; C)

are defined analogously to ol, or, and we have

(3.5). If uQHp(SX; A), vQH*(Y; 73), then

* *
(tl(u Av) = a u A v;

and if uQHp(X; A), vQH«(SY; 73), then

<rR(u A v) = (-1)"« A<r v.

Suppose now that F is a finite CW-complex. Let Yp be the ^-skeleton of

F if p^O, Yp={y0} if p<0; and CP(Y) =HP(YP, F""1). The "filtration" of

F by the subspaces Yp induces a "filtration" of XAF by the subspaces
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XAYV; the latter "filtration" in turn gives rise to a bigraded exact couple

[17]; cf. also [31]. Let [Et\ be the associated spectral sequence. The follow-

ing facts are immediate consequences of the corresponding facts for the

spectral sequence of the fibration XX F—>F:

(1) The A-product is an isomorphism

Ët(X) ® CP(Y) « Ep,q;

(2) under the above isomorphism, the boundary operator d1: E*>t—*E¿_lit

corresponds to ( —1)«(1 ®d), where d: CP(Y)—>C„_i(F) is the boundary operator

of the reduced chain complex of Y;

(3) E?Piq~Hp(Y;Hq(X));
(4) dr: Er-*Er is trivial for r ^ 2 ;

(5) there is a filtration

Hn(X A Y) = Jn D • • • D Jo D /-i - 0

of 3n(XAY) suchthat

Jp/Jp-i ** Ep¡n-p ** Ep,n-p w Hp(Y; Hn-P(X)).

Moreover, the spectral sequence from E2 on is natural, and the filtration of (5) is

natural.

Suppose moreover that Hi(X)=0 for 0^i<r. Then /„ = /„_,; hence

(3.6). There is a natural projection

t: Hn(X A Y) -» Hn-r(Y; Hr(X)).

The naturality of (3.6) will be used in §5.

We now consider the behavior of (3.6) under suspension. The suspension

homomorphism o>: Br(X) —> Hr+i(SX) induces a homomorphism

cr**: Hn-AY; 77r(X))-^77„_r(F; Hr+i(SX)).

Consider the diagram

77„(XA F)   -^77B_r(F;77r(X))

(3.7) I CTL i O"**

77B+i(5X A F) -^ 77B_r(F; HT+i(SX)).

(3.8). The diagram (3.7) is commutative.

Proof. Let (D, E) be the exact couple for X A Y, ('D, '£) that for SX A Y

— S(XA Y). Then the homomorphism <tl maps D into 'D and E into 'E, and

it is easily verified that the pair of homomorphisms (cj>, ̂) defined by

0= (-l)*+<crL:Dp,q-+'Dp,q+i,

^ = (-l)p+VL: Ep,q->'Ep,q+i

is a map of couples of degree (0, 1). (Note that ah is not a map of couples; the

diagram
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Ë'p.q * tJp,q—X

1<TL Itrr,

Ep,q+X —* Dp,q

is anticommutative.) Moreover, the map 0: 77(XAF)—>H(SXAY) defined

by

6 = (-l)v£: 77„(X AY)-* Hn+x(SX A Y)

sends Jp into 'Jp, and induces homomorphisms 6P of the successive quotients

such that the diagram
2

JpiJp—\       * rlip.n—P

(3.9) e,i 1*
2

Jpj Jp— x     *   tLPln—jy+X

in which the horizontal arrows represent the isomorphisms of (5) above, is

commutative.

Consider the diagram

HT(X) ® Cn-r(Y) -* E\-r,r

(3.10) (-l)B<r*®l| 1*1

Hr+l(SX)  ® Cn-r(Y) -» 'TiL.r+1

in which the horizontal arrows represent the isomorphisms of (1) above, given

by the A-product. This diagram is clearly commutative; under either route,

an element u®c is mapped into (-l)ViiiAc Passage to homology in (3.10)

gives the commutative diagram

77n_r(F;77r(X))-> TiL.r

(3.11) (-i)v**i 4*2

2

77„_r(F; Hr+l(SX)) -+ '£B_r,r+i.

Commutativity of (3.9) and (3.11) and the definition of dp show that (3.7) is

commutative.

(3.8) settles the behavior of it under suspension of X. We now consider its

behavior under suspension of F. Consider the diagram

77„(X A F) ^ 77„_r(F; 77r(X))

(3.12) Io-r i(-l)V.

77B+i(X A SY) -^ 77„_r+1(5F; 77r(X)).

(3.13). The diagram (3.12) is commutative.
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Proof. Let (D, E) be the couple for XA Y, {'D, 'E) that for XASY. Note

that SYp is the (p + i)-skeleton of SY. Define <p, \p, 0, as in the proof of (3.8),

to be ( — 1)"<tb, where n is the total degree. Then (<j>, yj/) is a map of couples,

and the diagram corresponding to (3.9) is commutative. The commutative

diagram corresponding to (3.10) is

HAX)®Cn-r(Y)->'En-r.r

(3.14) (-l)-'(l ®«r«)| ifc

Ër(X) ® Cn-r+l(SY) -» '¿Ln,r.

The commutativity of (3.12) now follows as before, passing to homology from

(3.14).
Let SnEHn(Sn; Z) be defined inductively by

Í1 = s,

Sn+l  —   O+Sn-

The Hurewicz map n: wn(X) = [Sn, X]—>Ën(X) is defined by

n(\f]) - M*.).
It is a homomorphism for n è 1. Clearly -n : ir„—*Bn is a natural transformation

of functors.

(3.15). The homotopy and homology suspensions correspond under r¡; i.e.,

the diagram

Sw
trn(X) —» Tn+l(5J0

if iv

Bn(X) Z Ën+l(SX)

is commutative.

For iíf:S"-^>X, then

V(S*[f])   =  f(l A/)   =   (1 A/)*(5n+l)

= (1 A/)*(i Ai») = iA/a

= <7*(/*j„) = o-^if/]).

We now consider the homotopy groups.

(3.16). If X is (p — 1)-connected and Y is (q — 1)-connected, then XAY is

(p+q—A)-connected. Moreover, if p+q>\,

rrp+q(XAY)~BP(X)®Bq(Y).

Proof. We may assume that X and F are CW-complexes, and that X"'1
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= {xo}, F«-!= {y0}. By Corollary (2.3), the natural map of w(XAY) into

XAF is a homotopy equivalence. Hence it suffices to prove (3.16) for

w(XAY). But w(XAF) is a CW-complex whose (p+q — l)-skeleton is a

single point; hence X A F is (p + q — 1)-connected. The calculation of

Tp+t(XAY) follows from the Kiinneth and Hurewicz theorems.

There is also a A-product in homotopy. Let /: Sp—>X, g: S*—>F; then

fAg: SpASq—>XAY. It is known (cf. [l]) that the correspondence (/, g)
—->/Ag induces a homomorphism

A: t,(X) ® irq(Y) -* ,*.,(* A F).

We have the homotopy analogue of (3.5) ; if

SL: Tn(X AY)-+ rn+x(SX A Y),

SR:Tn(S A Y)-*irn+x(XASY),

are defined by analogy with ol, or, then

(3.17). If uQtp(X), vQwq(Y), then

SL(u A v) = S*u A v,

Sr(uAv) = (-l)puAS*v.

We also have

(3.18). The homology and homotopy A-products correspond under the

Hurewicz map, i.e., the diagram

rrp(X) ® rq(Y)-> x^(X A F)

lv® v iv

Hp(X) ® Hq(Y) -A» Hp,.q(X A Y).

is commutative.

4. Spectra(2). A spectrum Eisa sequence(3) {7in| nQZ} of spaces together

with a sequence of maps

e„ : SEn —* En+X-

If E, E' are spectra, a map /: E—*E' is a sequence of maps

/„:£„-+£»'

such that the diagrams

SEn —* En+x

Sf»l ,     l/n+l

SEn —* En+X

(') By a sequence we shall always mean a function on all the integers.
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are homotopy-commutative. Two maps /, /' are homotopic if and only if, for

each n, /n—/»' • Clearly, the spectra form a category S.

Remark 1. A spectrum can equally well be described by specifying the

spaces En and maps ë„ : £„—>QEn+i. We say that E is an Q,-spectrum if and

only if every map «„: En—>£lE„+i is a homotopy equivalence.

Remark 2. If En, e„: SEn—>En+i (or ë„: En—>fi£„+i) are defined for m = m0,

we can specify a spectrum by defining En inductively for n <w0 by

En =  QEn+l,

«n: En E üE„+i.

Example 1. Let Sn be the M-sphere, and let <r„: SSn-^Sn+1 be the identity

map. Then S= {Sn, an\ is a spectrum, called the spectrum of spheres.

Example 2. Let II be an abelian group, and let K(TL, n) be an Eilenberg-

MacLane complex of type (II, »). Let in+iEHn+1(K(Ii, n + l); II) be the

fundamental class. Let k„: SK(T1, m)—>K(H, n + l) be a map such that

Kn*(in+l)   =  V*-l(in) E H^SK^, »JjH),

Let K(H) be the spectrum so defined; K(R) is called an Eilenberg-MacLane

spectrum.

Example 3. Let U be the infinite unitary group [3]. There is a canonical

homotopy equivalence [28]

/: U -» ü2U.

Let En= Uiinis odd, E„ = ßt/if m is even. If n is odd, let vn: SU—>fl£7be the

map correspoding to/. If m is even, let 5»: ßC7—>Í277 be the identity map. The

resulting spectrum U is called the unitary spectrum.

Example 4. Let E be a spectrum, X a compact space. Let £„' =E„AX,

and define e„' : 5E„' —>E„'+i to be the map

SEi = S A Ei = 5 A E„ A X~-► En+i A X = Én+i.

Let EAX be the spectrum so defined.

Example 5. Let £ be a spectrum, X a compact space. Let El =X A£„,

and define €„' : SE'„—»E„'+i to be the map

S£»'=5AIA£,->IA5A En-^ X A En+h

where the map S AX AEn-*X AS AEn interchanges the first and second

factors. Let XAE be the resulting spectrum. In particular, let SE=SAE;

SE is called the suspension of E.

Note that the maps xAe—»eA^ of XAEn into E„AX defines a map of

XAE into EAX.
Example 6. Let E be a spectrum, X a compact space. Let Fn = F(X; E„).

Define <pn: SFn—>E»+i as follows: if/GF„, sES, xGX, then
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<Pn(sAf)(x) =e„(s A/(*));

4>n is continuous, since the corresponding map

(sAf)Ax-*en(sAf(x))

is the composition of e„ with the map

1 A«
sAfAx-uA/(i),

where e is the evaluation map, and e is continuous by (2.10). Then {F„, <bn}

is a spectrum F(X, E).

In particular, if £ is a spectrum, ÇIE=F(S, E) is a spectrum, the loop-

spectrum of E.

By (2.12) there is a natural homeomorphism

W- F(SX, Et) -+ ÜF(X, Ek).

A calculation shows that the \pk define an isomorphism

Í-.F(SX,E)-+ÜF(X, E)

of spectra.

The spectrum E is said to be convergent if and only if there is an integer

TV such that £#+,- is ¿-connected for all îg:0. Note that the spectra S and

K(H) are convergent, but U is not.

Lemma (4.1). Let E be a spectrum, TV an integer. Then there exists a spec-

trum E' and a map f: E'—>E such that

(1) El =Eiandfi:E!QEtforalli<N;
(2) E'if+tis (i— 1)-connected for all i^0;

(3) fa: Tj(El) ~TTj(EA for aUi^N+l, j^i-N.

Proof. If t^TV+1, let Ef be the path-component of the base-point in Ef.

Since SEn is 0-connected, en maps SEN into E§+1. Since SEf is 0-connected,

e{ maps SE¡0) into E¡0+\ for all sfeJV+1. Then the E¡0) (i^N+t) and the
Ei (i^N), together with the maps «, or é,-|E<0>, form a spectrum E(0), which

is mapped into E by the inclusion maps. Clearly it suffices to prove the theo-

rem for E(0); i.e., we may assume that £< is 0-connected for i^TV+1.

We now construct El as an (i — TV— 1)-connected fibre space over E,- by

the method of [5; 29]. Let i^TV+1, and let £* be a space containing £,-

such that

(1) (Ef, EA is a relative CW-complex [30];

(2) the inclusion map induces isomorphisms

T,(Ei) « Ti(E*) (j=\i-N-l);

(3) *j(E?) = 0 (jki-N).

It follows that
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m,(Et, E¡) = 0 (j ¿ i - N),

*/£,*, Ei) « rr^i(Ei) (j è i - N + 1).

Let Ei be the space of paths in E* which start at the base-point and end in

Ei, and let fi-.Ei —>Ei be the end-point map. Then ir,(E/) »^(Ef, £,-);
hence Ei is (*— iV— l)-connected. Consider the composition of e,: SE —»E,+i

with the inclusion map E,+i—»£*+i. Since (S£*, SEi) is a relative CW-

complex, obstruction theory applies [7; 30] ; the obstructions to extending the

above map lie in the groups

n>+i(SE?, SE<; rj(E?+i)) « H'(E?, £,; *v(£f+i)).

Since (£*, £,) is (i — N)-connected, the cohomology groups of (£*, Ei) with

any coefficients vanish if j^i — N. H j^i — N+1, then 7r>(£*+i)=0. Hence

there exists an extension ef : SEf—»Ef+i of the above map, and another ob-

struction argument shows that the homotopy class of e* rel. SE,- is uniquely

determined. Let E¿ be the space of paths in 5£* which start at the base-point

and end in SE,-. Composition with t? is a map h: E<—»E.'+i. Define &,: SE¡ —*Fi

by

Ht Au)(s) = tA u(s) (uEEi,tES,sE I).

Finally, let e,' = é, o /fe¿: SEi —>Ei+i. Clearly the diagrams

SEi —* Ei+i

Sfil i/»+i
SEi —> £,+i

are commutative.

To complete the definition of E', it remains to define a map e'N: SEn

—*£#+!. Let K be a CW-complex, /: SEx—>K a homotopy equivalence,

g: K—>5£jv a homotopy inverse of/. The homotopy groups of £#+i vanish in

all dimensions; hence the fibre of ftf+i: £#+1 has vanishing homotopy groups.

Therefore the map é# o g: K—>SEn can be lifted to a map h: K-^E'x+i such

that fn+i o h = éjv o g. Let t'it = h of: SE'jf—*En+i; then

fff+iOtff =/y+iO hof = eNo go/^i ew.

Remark. It follows from the results of [18] that all the spaces constructed

in the proof have the homotopy type of CW-complexes.

Let £ be a spectrum, n an integer (not necessarily ^0). Let t\: irn+k(Ek)

—>7TB+ib+i(£t+i) be the composite

(4.2) *"„+*(£*) —*Tn+k+ i(SEk) —» irB+i+i(£t+i),

whenever n^—k. Then the groups Tn+k(Ek), together with the homomor-
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phisms e\, form a direct system. The «th homotopy group ir„(E) is defined to

be the direct limit of this system. Iff: E—>E' is a map of spectra then the dia-

grams

S* ekt
rrn+k(Ek) —» xn+*+i(SE*) —* x„+*+i(£*+i)

ifkt i(Sfk)t   ,      i Ma
S* ekf

Tn+*(E* ) —> irn+k+x(SEk ) —+ Tn+k+x(Ek'+x)

are commutative; hence the/*/ induce a homorphism f7:xB(E)—^»(E').

For example,

(1) x„(S) is the stable homotopy group of the «-stem;

(2) x0(K(lï)) «IT, 7r„(K(lT)) =0 for «^0;

(3) 7r„(t/) = 0 (« odd), xB(I7) «Z (« even).

Consider the spectrum SE of Example 5 above, and the groups irn+i(5E).

The suspension homomorphism 5*: 7rn+*(E*)—*7r„+*+i(5E*) map the groups of

the direct system for 7r„(E) into those for xB+i(SE) ; however, they do not de-

fine a map of the direct systems. For consider the diagram

5* €**
»■„+*(£*) —> xn+*+i(5£*) —* xB+*+i(£*+i)

|5* ,        J,5*
o* ekf

iTn+k+i(SEk) —* Trn+k+2(S2Ek) —» x„+*+2(5£*+i)

in which the top row is (4.2) and the bottom is (4.2) for the spectrum SE.

Let /: Sn+k-*Ek represent aQir„+k(Ek). Then the element a' = 5*e*#5*(a) is

represented by the map /' : 5B+*+2—>5E*+i defined by

f'(tx A t2 A s) = tx A e*(/2 A f(s)) (s Q 5-+*, ii, t2QS),

while the element a." = eifS*.S*(a) is represented by/", where

f"(tx A h A s) = t2 A ek(tx Af(s)).

The map txAhAs—rt2AtxAs of Sn+k+2 into itself has degree —1. Hence

«"=-«'.

It follows that the maps ( — 1)*S*: xB+*(E*)—►Xn+t+i^E*) define a homo-

morphism of the direct system for x„(E) into that for wn+x(SE) and therefore

define a homomorphism

S*:x„(E)->xn+1(5E).

Theorem (4.3). For any spectrum E, S* is an isomorphism.

Proof. Let aEKernel S*, and let a'Qir„+k(Ek) be a representative of ct.

Then, for some Z^O, the image of S*a' in xB+*+i+i(SE*+I) is zero. Replacing

a' by its image in xB+*+i(E*+¡), we may assume that 5*a' = 0.

Suppose that E is convergent. Choose TV so that £#+,- is ¿-connected for
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all i^O. We may assume that k>n+2N+l. Then Ek is (k — /Y)-connected,

and n+k<2k — 2A7— i = 2(k — N) — 1; hence S*: irn+k(Ek)-^Tr„+k+i(SEk) is an
isomorphism [2 ] and therefore a' = 0. Hence a = 0.

In the general case, by Lemma (4.1), we can choose a spectrum E' and

map /: E'—>£ such that £/ =£,-, /,•: £¿ CE, for i^k and £*+,- is (* — l)-con-

nected for *s£l. Then a' represents an element a*GirB(£') and ft(a*)=a.

Since S*a' = 0, it follows that S*(a*) = 0. Since £' is convergent, a* = 0. Hence

a = 0 and therefore S* is a monomorphism.

The proof that S* is an epimorphism is similar; it is first proved for con-

vergent spectra, and therefore arbitrary spectra by means of Lemma (4.1).

The correspondence [SH+k, ilEk] = [Sn+k+1, Ek] of (2.15) is an isomorphism

<*>*: 7rB+*(0£fc) ̂ irn+k+i(Ek). Let tpk: SQEk—>QEk+i be the maps of the spectrum

ÜE (see Example 6, above). Then the diagrams

t>k
T„+k(tiEk) —* 7rn+*+i(i2£jfc+i)

i «*       ¡, i «t+i

ek
T„+ifc+l(E*) —» 7Tn+Jb+2(£*+l)

are anti-commutative. Hence the isomorphisms

(—1)*«*: ir„+4(0£t) —> irB+i+i(£t+i)

induce an isomorphism

G>:irB(OE)->7rn+i(E).

Let E be a spectrum. The suspension in homology is an isomorphism

o-*: Hn+k(Ek) —» 77n+jfc+i(S£jfc);

the groups Hn+k(Ek) form a direct system under the composite homomor-

phisms et* o er«: Hn+k(Ek)->Hn+k+i(Ek+i). The nth homology group of E is the

direct limit

77n(£) = lim Hn+k(Ek)
k

of this direct system. Let n: 7rB+*(E*)—>Hn+k(Ek) be the Hurewicz homomor-

phism. Then the diagram

S* erf
trn+k(Ek) —* vn+k+i(SEk) —» 7T„+i+i(£*+i)

iv iv iv

Hn+k(Ek) —r Hn+k+i(SEk) —» /Jn+Jfc+i(Ejfc+i)

is commutative by (3.15) and naturality. Hence r/ induces a homomorphism

n:7r„(£)^77„(£)
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of the direct limits.

D. M. Kan (unpublished) has proved a Hurewicz theorem for spectra in

the semi-simplicial setting. Since we do not need the Hurewicz theorem in

what follows except in a special case, we content ourselves with the trivial

observation that

(4.4). For any abelian group II,

n: to(K(H)) « Ho(K(lY)).

Just as in the case of the homotopy suspension, the homomorphisms

<r*: 77n+*(E*)—>77B+*+i(SE*) do not induce a homomorphism of Hn(E) into

Hn+x(SE) ; the diagram

~ <r* _ e** _
77„+*(£*) —* Hn+k+x(SEk) —* 77n+*+i(£*+i)

i <r* i er*

77B+*+i(5£*) —■* 77n+*+2(52£*) -+ Bn+k+i(SEk+x)
<r* <**

is anti-commutative (because the map «*' involves the "twisting map" txAh

—>t2Atx of S2 = SAS into itself, and this map sends s As into — s As). Hence

a homomorphism

(4.5) d*:77B(E)^77B+1(5E)

is defined by the homomorphisms

(-l)V*: 77n+*(£*) -* 77B+*+1(5£*).

Clearly, in view of the definition of S* and (3.15), we have

(4.6). The homomorphisms S* and d* correspond under the Hurewicz map;

i.e., the diagram

S*
TTn(E)  -» Tn+x(SE)

I n I n

7?B(E) -» 77B+1(5E)
d*

is commutative.

5. Generalized homology theories. Let (P be the category whose objects

are finite free CW-complexes and whose maps are arbitrary continuous free

maps. Let (Po be the category whose objects are finite CW-complexes with

base-vertex and whose maps are all base-point preserving maps. Let (P2 be

the category of pairs in (P; i.e., the objects of (P2 are pairs (X, A), where X is

a free CW-complex and A is a subcomplex of X, and whose maps are all

continuous maps of pairs. Let ft be the category of abelian groups and homo-

morphisms.
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The suspension operation is a covariant functor S: <?0—>(Po. Let T: (P2—>(P2

be the covariant functor defined by

T(X, A) = (A,0)    for any (X, A) Q (P2,

T(f) =/| (A,0):(A,0)^(73,0)foranymap/:(X,A)-»(F,73)in(P2.

A generalized homology theory ^ on (P is a sequence of covariant functors

77B: (P2->ft,

together with a sequence of natural transformations

dB:77B->77B_io7/

satisfying the following conditions:

(1) 7//o, fxQ®2 are homotopic maps, then Hn(fo) =H„(fx) for all n.

(2) If (X; A, B) is a triad in (P such that X = A\JB, and if k: (A, AC\B)
Q(X,B),then

Hn(k): Hn(A, A H 73) « Hn(X, 73)

for all «.

(3) If(X,A)Q<?2,andifi:(A,0)Q(X,0),j:(X,0)Q(X,A),thenthe
homology sequence

dn+x(X,  A) Hn(t) Hn(j)
-> Hn+x(X, A) » Hn(A,0) —y-U HniX, 0) —A^+ Hn(X, A)

dn(X,A)
-> Hn-x(A, 0) -> ■ • •

of (X, A) is exact.

In other words, a generalized homology theory satisfies the Eilenberg-

Steenrod axioms [8], except for the dimension axiom.

A generalized homology theory |j on (P0 is a sequence of covariant functors

77B:(Po->ft,

together with a sequence of natural transformations

<rn : 77B —» 77B+i o S

satisfying the following conditions:

(1) 7//o, fxQ(?o are homotopic maps, then 77„(/0) = 77„(/i).

(2) If XQ(90, then

o-n(X):Hn(X) «77n+i(5X).

(3) If (X, A) is a pair in (P0, i: A QX, and if p: X-+X/A is the identifica-
tion map, then the sequence

Hn(i)   _ Hn(p)   _

77B(A) -^A 77„(X) -^4 77B(X/A)
is exact.
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Suppose £ is a generalized homology theory on (P. If (X, Xo)E<Po, then

(X, {xo})E(?2Aet

Hn(X,xo) = 77B(X, {*„}).

If/: (X, xo)—>(F, yo) is a map in (P, we may regard/as a map in (P2; let

Hn(f) = 77n(/): 77n(X, {x0}) -> 77n(F, { F„}).

If (X, Xo)E<Po, define crn(X): Hn(X)-*Hn+i(SX) to be the composition

-Hn+i(p)od-\

where

d: Hn+i(TX, X) -> Hn(X, {xo})

is the boundary operator of the homology sequence of the triple (TX, X, {xo})

(as in ordinary homology theory the homology sequence of a triple in (P is

exact, and Hq(TX, {x0}) = 0 for all q; cf. [8, I, 8.1, 10.2, 11.8] and note that

the dimension axiom is not used), and where />: (TX, X)—*(SX, xo) is the

identification map.

The standard argument (cf. [ó] or [14]) shows that the §= {77B, o-„} so

defined is a generalized homology theory on (P0, and that the correspondence

§—>§ is a one-to-one correspondence between generalized homologies on (P

and on (Po. The inverse correspondence can be described as follows. Let $ be

a generalized homology theory on (P0. Then if (X, A)E(P2, let

77„(X, A) - Hn(X/A).

To define dn(X, A):Hn(X, A)->Hn-i(A, 0), let A: X/A-*SA be a canonical
map as in §3, and let ¿»"„(X, -4) be minus the composite

Hn(h)   _            (T.-iU)-1 _
77n(X, 4) = TUX/M)-^ 77B(S¿)-i-U F^i(il) = 77n_i (,4,0).

Let E= {£«, «n} be a spectrum. For any XE&o, let

77„(Z; E) = 7r„(E A X).

If/: X—>F is a map in (P0, then the maps 1 A/: EkAX—»E* A F are the com-

ponents of a map

1 A/:EAA--^EA F;

let

Hn(f; E)   =   (1 A/)#: Tn(E AX)-» 7TB(E A   F).

Clearly 77„(  ; E) is a covariant functor.

Let XE&o. Then a„(X; E):Hn(X; E)->77B+i(SX; E) is defined to be the
composition
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77B(X; E)

= xB(E A X) 4 xB+1(5 A E A X) *i Tn+x(E A 5 A X) = 77n+i(SX; E),

where /: SAEAX—+EASAX is induced by the map sAeAx—>eAsAx of
5A£* AX into EjcASAX (note that / is an isomorphism of spectra because

of (2.5) and the remark after Example 5 of §4). Clearly o„( ; E) is a natural

transformation.

Note that

(5.1). (TB(X; E) is induced by the homomorphisms

(-1)*Sr: x„+*(£* A X) -> xB+*+i(£* A SX).

Let i&(E) be the pair of sequences {77n( ; E), on( ; E)}.

Theorem (5.2). For any spectrum E. !&(E) is a generalized homology theory

on (Po.

Proof. If /, f':X-+Y are homotopic maps, then, for every k, (lAf)*

= (lA/')*:Tn+*(E*AX)-*xB+*(E*AF). Hence (1 A/)#=(l A/OM.e., Bn(f;E)

= 77B(/';E).
By Theorem (4.3), S* is an isomorphism; hence on(X; E) is an isomor-

phism.

Let (X, A) be a pair in (P0, let i:AQX, and let p:X-+X/A be the

identification map. For each k, we have the commutative diagram

*■„+*(£* A A)-*-t xn+*(£* A X)--* xB+*(£* A X, £* A A)

(5.3) (lAí)í   ^^ 1(1A*')#

xn+*(E* A (X/A))

in which the top line is exact. (We have identified E*AX/£*A^4 with

£*A(X/A) by (2.7).)
Suppose that E is convergent and choose TV so that Ejv+< is ¿-connected

for all ¿>0; we may assume w+7V^2. By (3.16), EN+iAX and EN+iAA are

¿-connected, and therefore (£#+,-AX, En+íAA) is ¿-connected. Let A*

= T(EN+iAA), X* = (EN+iAX)\JT(EN+iAA). By the Blakers-Massey triad

theorem [21, Theorem 3.4], the triad

(X*; A*, EN+i A X)

is (2î+1)-connected, at least if i^2. Then the inclusion map induces iso-

morphisms

Tj(EN+i A X, EN+i A A) « xy(X*, A*)

for/^2i. It follows that

(5.4) (1 A P')f. Tj(EN+i A X, EN+i A A) « Tj(EN+i A (X/A))



250 G. W. WHITEHEAD [February

for j ^ 2i.

Suppose that k^n+2N. Then Ek is (k — iV)-connected and (k — N)

^n+N^2; hence n+k^2(k-N). Thus (5.4) holds with i = k-N,j = n+k.
Thus, in the diagram (5.3),

Kernel (1 A p)t = Image (1 A i)t

for k sufficiently large. Since the direct limit of exact sequences is exact

[8, VIII, 5.4], the sequence

(1 A i)t                     (1 A P)t
(5.5)        7r„(E A A)-'-+ Tn(E A X)-V-U Tn(E A (X/A))

is exact, provided that the spectrum E is convergent.

Let E be an arbitrary spectrum, and let «GKer(l Ap)i- Choose a repre-

sentative a'Eirn+k(EkAX) of a; increasing k if necessary, we may assume

a' E Ker (1 A p)f. xn+*(£* A X) -» irn+k(Ek A (X/A)).

By Lemma (4.1), there is a convergent spectrum E' and a map /: E'—>E such

that Ei = Ei, /,: £,' C £<, for i ^ k. Then a' represents an element

a*G7TB(E'AX) such that ft(a*)=a; and (lAp)t(a*)=0. Since E' is con-

vergent, the sequence (5.5) for E' is exact; hence there is an element

ßEirn(E'AA) such that (1 A*>(|8) «a*. Then (lAi)t(ftß) =ct. Hence, for any

£, Ker(l Ap)#CIm(l At)í- Since the opposite inclusion is trivial, the exact-

ness of (5.5) is established for any arbitrary spectrum E, and the proof of

Theorem (5.2) is complete.

Let P be a free space consisting of just one point. If § is a generalized

homology theory on (P, the coefficient groups of S& are the groups Hn(P). If §

is a generalized homology theory on (P0, the coefficient groups of ^> are the

groups 77B(S°). Since P+ is naturally homeomorphic with S°, the coefficient

groups of corresponding theories are naturally isomorphic.

Let E be a spectrum. Then EAS° can be identified with E. Hence

(5.6).  The coefficient groups of §(E) (or of §(£)) are the homotopy groups

ofE; specifically Hn(P; E) «77B(S°; E) «*■„(£).

Corollary (5.7)(4). 7/II is an abelian group, then &(K(H)) is the (unique)

homology theory on <P with coefficients in II.

We now make explicit the isomorphism of Corollary (5.7). Let

(5.8) **: 77n+i(X(n, *) A X) -» 77B(X; 77*(X(II, *)))

be the projections of (3.6). By (3.8) and naturality, the diagrams

Hn^(K(ja, k)) A X) -^Hn^iSKiu, k) A X) faA1HgM^(g(n, * + i) a X)

I TO 1 irt+i i Tcic+i

Hn(X;H„(K(U, *))) -►77B(X;77t+1(5í:(n, *)))->Hn(X;Hk+1{K(Il, k + I)))
o"** «**

(4) A weaker version of this result was proved by the author in [31 ].
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are commutative (e*** is the coefficient group homomorphism induced by

«**: Bk+x(SK(H, &))—>77*+i(7!C(n, fe+1))), and therefore define a homomor-

phism

*: 77B(E:(n) A X) -» 77B(X; 8o(K(IÏ))) « 8n(X; II).

of the direct limits. Composition of « with the Hurewicz map

n: »,(K(n) A X) -» £rm(x(n) A X)

is a homomorphism

Pn(X) : 77B(X; K(U)) -» 77B(X; H).

Clearly p„ is a natural transformation of functors. Because of (3.13) and (5.1),

the diagram

P„(X)     _
77„(X; K(U)) > 77„(X; n)

<rB(X; K(H)) | | <r*

77n+i(5X; X(n))-—-+ Bn+x(SX; II)
pB+i(5A)

is commutative. Hence p is a map of homology theories.

Theorem (5.9). The natural transformation

p: fen)) - $(n)
¿5 a» isomorphism.

Proof. By the uniqueness theorem of Eilenberg-Steenrod [8, III, 10.1 ],

suitably modified in accordance with the fact that we are dealing with a

homology theory on (P0, it suffices to prove that

Po(S°): Bo(S°; K(U)) « 770(5»; II),

i.e., that the composite

x,(JC(n) A S°) -^ B0(K(a) A S°) -^ 77„(S°; II)

To(x(n))-► 77o(7<:(n))
n

is an isomorphism. But n is an isomorphism, by (4.4), and (5.8) is an isomor-

phism for every k; hence p is an isomorphism.

A generalized cohomology theory §* on (P is a sequence of contra variant

functors

77": (P2—> ft

together with a sequence of natural transformations

5B: 77"-1o T-+ 77"
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satisfying axioms analogous to those for a generalized homology theory. Sim-

ilarly, a generalized cohomology theory §* on (Po is a sequence of contra-

variant functors

77": (Po -» ft

and a sequence of natural transformations

<r»: B»+i o S-> B*

satisfying the appropriate axioms. The two kinds of theories are again in

one-to-one correspondence $*—>&* via:

77«(X, A) = B"(X/A),       H"(X, xo) = 77»(X, {x0});

S"(X, A) - - 77"(Â) o «r-U)"1,

where «: X/A—+SA is canonical;

<r»(X) = - r1 o 77»+1(/>),

where o: 77"(X, {x0})->77n+I(rX, X) is the coboundary operator of the

cohomology sequence of (TX, X, {x0}), and /»: (7X, X)—>(SX, {x0}) is the

identification map.

Let E be a spectrum, X£(P0. Let

77»(X; E) = t-„(F(X, E)).

If/: X-»Fis a map, then the maps F(f, 1): F(Y, Ek)->F(X, Ek) are easily

verified to define a map /': F(Y, E)^>F(X, E). Let

H"(f) = /,: 7r_B(F(F, E)) -> x_B(F(X, E)).

Clearly 77" is a contravariant functor.

Let XG(Po. Define o-(X) : 77"+1(SX; E)->77"(X; E) to be the composition

iff tù
^_„_i(F(SX, E)) A T_B_i(fiF(X, E)) -» 7r_B(F(X, E))

where it:F(SX, E)—>Í2F(X, E) is the isomorphism given in §4, Example 6,

and w is the isomorphism of §4. Clearly <rn is a natural isomorphism.

We omit the proofs of the following statements, which are analogous to

(5.2), (5.6), and (5.7).

(5.10). For any spectrum E, $*(£) = { 77", <rn} is a generalized cohomology

theory on (P0.

(5.11). The coefficient groups of §*(E) (and of §*(£)) are given by

77»(F; E) « 77»(5°; E) « x_„(E).

(5.12). If II ¿s öm abelian group, then ÍQ*(K(Il)) is the (unique) cohomology
theory on (P with coefficients in II.

Of course, (5.12) is well known.
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We now give an alternative description of the generalized cohomology

groups which will be useful in subsequent calculations. We have

77"(X; E) = x-„(F(X, £)) = lim x*_„(£(X, £*)) = lim rq(F(X, Eq+n)).
k q

Now

x,(F(X, Eq+n)) = [S», F(X, Eq+n)} « [X A 5«, £i+B] « [S'X, Eq+n],

so that

77B(X; E) « lim [S«X, £,+„].

Thus an element of 77n(X; £) is represented by a map of 5"X into £B+J. One

can verify that the homomorphism [S5X, £,+„]—>[Sa+1X, E,,+B+i] which cor-

responds to the homomorphism irq(F(X, Eq+n))—>x5+i(F(X, Eî+n+i)) of the

direct system for x_„(F(X, E)) is the composition

[S'X, Eq+n] —^ [S»+iXS£s+„]%£ [S'+lX, Eq+n+x};

i.e., if/: S«X—»£4+B represents a£77n(X; E), then so does eq+n o Sf: 5«+1X

—*Ec+B+i. Moreover, if g: F—>X is a map, then 77"(g; E)(a) is represented by

/o5«g: S«Y-+Eq+n. Finally.if/: S*(SX)->£B+5+i represents aG77B+1(SX;E),

then/ represents (-l)B+1(r"(X; E)(a)QBn(X; E).

As the notation suggests, 77n and 77" are really functors of two variables.

For example, let X be a fixed space £<Po and let g: E^>Fbe a map of spectra;

then the maps g*Al: £*AX—>£*AX are the components of a map ¿Al:

FAX—»FAX, and thereby induce a homomorphism

77B(X; g): Bn(X; E) -> 77„(X; F).

The reader may verify that

(5.13). If f: X—> F ¿s o ma/> ¿« <P0 awd ¿: E—>F ¿5 a map of spectra, then the

diagram

Bn(X;g) „
77B(X;E) >77„(X;F)

77n(/; E) | J, Bn(f; F)
Hn(Y;g) _

77B(F;E) > 77„(F;F)

¿s commutative.

(5.14). 7/ g: E—>F is a ma/) of spectra, then the diagram

Bn(X;g)      _
77B(X; E)-^^-> 7Yn(X; F)

«r»(X; E) | 1 <r„(X; F)
Hn+x(SX;g)   M

Hn+x(SX; E)-—-^ Hn+xiSX; F)
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is commutative.

Similar results hold for cohomology. But we shall not pursue this subject

further.

In what follows, if Eis a spectrum, §(E) and £>*(E) will be the generalized

homology and cohomology theories on (P which correspond to the ones we

have defined on (P0. We shall make the customary abbreviations: e.g.,/* for

Hn(f;E),diorda(X, A), etc.
Remark. Homology and cohomology theories are really defined on the

suspension category S(P0. We have preferred to work in (P0 (or (P) since the

axioms are normally formulated there.

(5.15). If XE&o and X is acyclic (over the integers), then, for any spectrum

E, 77i(X;E) = 77«(X;E)=0.
For SX is simply connected and therefore contractible ; hence 77„+i(SX; E)

= 77«+1(SX; E) =0 for all q. Since <r* and <r* are isomorphisms, the conclusion

follows.

Corollary (5.16). If X, Y, and f: X-+Y are in (P0, and iff*: Hq(X; Z)
«77S(F; Z)for all q, then, for any spectrum E,/*: 77g(X; E) «77„(F; E).

6. Products. In ordinary homology theory, a pairing A ®B—*C of coeffi-

cient groups gives rise to various products. If one studies these products,

one sees that they can be described in terms of a family of mappings

fPtq:K(A, p)AK(B, q)-*K(C, p+q). A study of the relationships between
the maps/p.j and the spectral maps suggests a notion of pairing of two arbi-

trary spectra to a third. In this section we define the notion of pairing and

study the resulting products.

More specifically, suppose that A, B, and C are spectra, and that f : (A, B)

—>C is a pairing. The pairing f gives rise to pairings f*: irr(A) ®-Kq(B)^>irp+q(C)

of their homotopy groups. Now homology and cohomology groups of a space

X are homotopy groups of certain spectra associated with X; accordingly,

we shall associate with f four pairings of such associated spectra. Thus we

obtain four types of products; these are "external" products, analogous to the

cross- and slant-products in ordinary homology theory. "Internal" products

are then constructed by the Lefschetz method [15] (cf. also Steenrod's ac-

count of Lefschetz' work in [11 ]) with the aid of a diagonal map.

Let A, B, C be spectra, and letfp,q: ApABq-+C„+q be a double sequence

of maps. Consider the diagram (Figure 2) in which the maps X, u are defined

by

X(sA(aAb))= (sAa)Ab,

p(sA(aAb)) = aA(sAb).

Because of (2.5) we may identify S(AP ABq) with SAApABq; it follows that
X and p are continuous. The maps a' and ß' are defined to make the two left-

hand triangles commutative; and ap, ßq, yP+q are the maps of the spectra
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ap A 1
►Ap+i A 73,

S(AP A Bq)

p+i.ï

j>+«' *Cp+t+t

7p.«+i

1 AP,
»Ap A 73,+1

Figure 2

A, B, C. The three maps/p+i,, o a', 7p+, o Sfp,q, fp,q+x o j3' represent elements

6', 6, 6" of the group [5(APA73„), CP+î+i]. We say that the/,,,, form a pairing

f: (A, B)-+C of A with E to C, if and only if, for each (p, q),

(6.2) 0' = 0= (-l)p6".

Example 1. Let A * (* = 1, 2, 3) be abelian groups, and let Ai = K(Ai). Let
h: Al®A2—>A* be a pairing. Let ¿JG77P(A1J; Ak) be the fundamental classes.

Let i],A^QHp+q(AlAA\; A*) be the A-product of ip and tj defined by the
pairing h. Let /„,„: ijA^2,^'+t be the map such that /£,(**+,) «¿JA**
Then the maps/,,,, define a pairing f: (.A1, A2)—>.A8.

Example 2. Let E be a spectrum, and let S be the spectrum of spheres.

Let/p,,: SpAEq-+Ep+q be the composite

SpEa ^S^E^x
s*-Vi ip+,-1

• SEp+,-1-:—► Ep+d-

Again the fp>q are the components of a pairing f : (S, E)-+E; we call f the

natural pairing.

Let/p,,: EpASq—>Ep+q be a map representing ( — i)pi times the element

of the group [EpAS1, Ep+q] represented by the map

E,A& >S*AEp-^+Ep+q,

where f: (S, E)—>E is the natural pairing (if q = 0, the set [EpA-S1«, £p+<,] may

fail to have a group structure, but ( —l)pi=l; thus the homotopy class of

/p,, is uniquely defined for all p, q). Then the f'Ptl define a pairing f: (E,S)-*E,

which is also called the natural pairing. (Note that, if E=S, the two natural

pairings coincide, up to homotopy.)

Let f: (A, B)—»C be a pairing. Define

/*,j: Xp+*(A*) ® x,+l(73,) —> Xp+,+*+i(C*+i)

by
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f'k,l(u ® V)  = fk,lt(u A !>),

where uAvEirP+q+k+i(AkAB{) is the homotopy A-product of §3. Then

/*,z+i(m ® ßiv) = fk,i+if(u A ßitS*v)

= (A.i+iott A0i)M«AS*d)

= (-l)^k(fk.i+ioß')(SL(» A v)) by (3.17)

= (-l)*(y*+, o SfkMSL(u A v)) by (6.2)

= (-l)Pyk+t(fk,i*(u A»))

= (-l)%fe+l(/*,l(M ® v)).

Similarly,

fk+i.i(ctkU ® v) = yk+i(fk,i(u ® v)).

Therefore the homomorphisms

(-1)PÍ/m: Tp+*(^*)   ®  TTq+l(BÎ) -* TTp+^t+KCt+l)

commute with the homomorphisms of the direct systems for irP(A), irq(B),

irp+q(C) and therefore define a pairing

U'-*p(A) ®Tt(B)^irp+q(C).

For example, let f: (S, A)-^i4, f : (.A, S)-+A be the natural pairings, and

let íEto(S) be the element represented by the identity map S°—J>S°. Then it is

clear that

(6.3). IfvEirq(A),then f*(t'®!/)=»= f*'(if®*).
Let X, F£(Po, and let f : (A, B)-*C be a pairing of spectra. By (2.9), (2.5),

and (2.10), the operation of forming the A-product of maps is a map

F(X, Ap) A F(Y, Bq) -* F(X A Y, Ap A Bq);

composing this map with

fp,é: F(X AY,APA Bq) -» F(X A Y, C^),

we obtain a map

/p,q: F(X, AP) A F(Y, Bq) -» F(X A Y, C»,).

Lemma (6.4). The maps fVil define a pairing

f\ (F(X, A), F(Y, B)) -> F(X A Y, C).

Proof. We must prove that the diagram analogous to (6.1) satisfies the

relations analogous to (6.2); i.e., we must compare the three routes from

S(F(X, AP)AF(Y, Bq)) into F(XAF, Cp+5+i) suggested by (6.1). Let sES,
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fQF(X, Ap), gQF(Y, 73,). Then the upper route sends sA(fAg) into the

map hx: XAF—>Cp+,+i defined by

hx(x Ay) = /rti,s(«»(s A/(*)) A g(y));

the middle route sends it to the map h defined by

h(x Ay) = yp+q(s A (/(*) A g(y)));

the bottom to the map h2 given by

**(* Ay)- fp.q+A[f(x) A ßq(s A g(y))).

Let/: S—>S be a map of degree ( — l)p, and let 772: S(ApABq) AI—>Cp+q+1
be a map (which exists because of the second of the relations (6.2)) such that

H2(u A 0) = fp+x,q(ß'M),

H2((s A (a A b)) A 1) = yp+q(j(s) A/„..(a A b)).

Define

772: S(F(X, Ap) A F(Y, 73,)) A 7 ~> F(X A Y, Cp+,+i)

as follows; if sQSJQF(X, A,), gQF(Y, 73,), tQI, xQX, yQY, then

(6.5)     B2((s A (/ A g)) A t)(x A y) = H2((s A (fix) Af(y))) A t).

Evidently 772, if continuous, is the desired homotopy. By (2.9), 772 is con-

tinuous if the right side of (6.5) depends continuously on the point

((sA(f Ag)) At) A(xAy)• Since X, F, 7, S are compact Hausdorff spaces, it

follows from three applications of Lemma 4 of [34] that

((S A (FiX, Ap) A F(Y, 73,))) A D A (X A Y)

is an identification space of

S X F(X, Ap) X F(Y, 73,) X 7 X X X F.

Hence, it suffices to prove that the right side of (6.5) is a continuous function

of the six variables (s,f, g, t, x, y). By (2.10), the evaluation maps (/, x)—>/(x)

and (g, y)^>g(y) are continuous. Since 772 is continuous, the result follows.

The proof of the first relation of (6.2) is similar.

We now define three further sets of maps

fl,q: (Ap A X A F) A F(X, 73,) -* Cp+, A F,

/p,,: (Ap A X) A (73, A F) -^ Cp+, A X A F,

/p,,: F(X A F, Ap) A (73, A Y)-+ F(X, Cp+q)

as follows.

First, let Fq = F(X, 73,), and consider the map
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Ap A X A Y A Fq-+ Ap A F, A X A Y^ Ap A (Fq A X) A Y

1A « A1                               ,              ,           /,,SA1-> Ap A Bq A Y -+ (Ap A Bq) A Y —-> C^9 A F

in which the first map permutes cyclically the last three factors, the second

and fourth are the natural maps, and e: FqAX—*Bq is the evaluation map.

Let h: (APAXA Y) AFq-*ApAXA YAFq be a homotopy inverse of the natu-

ral identification. The composition of the above map with h is the map/p,a.

Next, consider the map

Ap A X A Bq A Y-* Ap A Bq A X A 7-* (A, A Bq) A X A Y

/».« A 1—-> C^ AX AY

where the first map interchanges the second and third factors and the second

is  the  natural   map.   Let   h': (APAX)A(BqAY)^>ApAXABqAY be  a
homotopy inverse of the natural identification. Then /'„ is the composition

of the above map with h'.

Finally, consider the map

F(X A Y, Ap) ABqA Y-*(F(X A Y, Ap) A Bq) A Y

-> F(X A Y, Ap A Bq) A Y -> F(Y, F(X, Ap A Bq)) A Y

e F(l,/P,,)
-+ F(X, Ap A Bq)       'JP'% F(X, C^),

where the first map is the natural identification, the second is induced by

the map fAb-^g, where g(x) =f(x) Ab, the third is induced by the homeo-
morphism of (2.9), composed with the map induced by the "twist" XAY

—>FAX, and e is the evaluation map. As before, let h": F(XAY, Ap)

A(BtAY)—*F(XAY, Ap)ABqAY be a homotopy inverse of the natural

map. Then /JfJ is the composition of h" and the above map.

Lemma (6.6).  The maps fp%q (i = 2, 3, 4) define pairings

\2: (A AX AY, F(X, B)) -» C A Y,

f»: (A AX, B A Y)^C AXA F,

f4: (F(X A F, A), BAY)-* F(X, C).

The pairings fj give rise, in turn, to pairings

A

\

A

/

H>(X; A) ® H"(Y; B) -* 77"+«(X A Y\ C),

77„(X A F; A) ® H*(X; B) -» 77B_8(F; C),

HP(X; A) ® Hq(Y; B) -* 77^S(X A F; C),

77»(X AY; A)® Hq(Y; B) -» 77»-»(X; C),

which are analogous to the four standard external products in the usual
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homology theory. Specifically, if uQHp(X; A)=w-P(F(X, A)), vQB"(Y; B)
= x_,(F(F, B)), then

«A»= fÍ(« ®v)Q x_p_,(F(X A F, C)) = B*\X A Y; C).

UzQBn(XAY; A)=irn(AAXAY), wQB"(X; E)=x_,(F(X; B)), then

x\w = f*(z ® w) Q xB_,(C A F) = 77B_,(F; C).

If 2G77p(X; A)=TP(AAX), wQBq(Y; E)=x,(EAF), then

2 A to = f*(Z ® w) G Xp+,(C A X A F) = 77p+,(X A F; C).

Finally, if aG77B(XAF; A) =x_n(F(XAF, A)), zG77,(F; S)=x,(BAF),
then

«A - fj(« ® 2) G x_n+,(F(X, C)) = 77B_Î(X; C).

We now describe these products in terms of representative maps. First,

let g: SkX-+Ap+k, h: SlY->Bq+l represent uQB"(X; A), vQB«(Y; B). Then

it follows from the discussion of §5 and the relevant definitions that uAv is

(_l)¡>(3+¡) times the element represented by the map

S»+l(XAY) = S*AS'AXA F->S* A X A S'A F

ZAh   A       AD     /**••*'„
-* Ap+ic A -Dí+í-► Lp+,+*+¡,

where the first map interchanges the second and third factors.

Let g:S"+*^Á*AXAF, Ä: S'X->73,+, represent zG77„(XAF; A),
wQBq(X; B). Then z\w is (— l)B(«+i> times the element represented by the

map

Sn+k+t = Sn+kASllAA\AkAXA y AS'^AkAS'AXA Y
(6.8)

1 A A A 1                            fk.q+t A 1
-► Ak A Bq+l A Y -^±-> Ck+q+l A Y,

where the second map permutes cyclically the last three factors.

Letg:Sp+k-^AkAX,h:S"+l^BiAYrepresentzQBp(X; A),wQBq(Y; B).
Then zA^f is (— l)pl times the element represented by the map

5f+í+w = SP«A5,+¡l^itAIA£(A F-+A*A73,AXA Y
(6.7a)

^^ic*+tAXAF,

where the second map interchanges the second and third factors.

Finally, let g: Sk(X A Y) -* An+k and h: S"+l ->Bl A Y represent

wG77B(XAF; A), zQBq(Y; B); then u/z is (-l)ni times the element repre-

sented by the map
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1 A*A1S*+«+i A X = S* A S"+l A X->S*A£iA FAX
(6.8a) i

-^S" A X A Y A B,--► An+k A 75«^Á Cn+k+t,

where the second map interchanges the second and fourth factors.

It is clear that:

(6.9). If<p:X-^X',yp: Y-+Y', uEH»(X'; A), vEH"(Y'; B), then

(4> A *)*(« A») = <t>*u A pv E H»+°(X A Y; C).

(6.10). Ifdy.X'^X, 4>: Y->Y', zEHn(X'AY; A), wEH"(X; B), then

((<*> A *)*«)> = iMA**«0 E Hn-q(Y'; C).

(6.9a). If4>:X-*X',^: Y-*Y', zEHp(X; A),wEHq(Y; B),then

(<p A t)*(z Aw) = <M A iM> E 77^8(X A Y; C).

(6.10a). If<p:X'-^X, 4>: Y-*Y', uEH»(XAY'; A), zEHq(Y; B), then

((cb A *)*«)/* = 4>*(u/t*z) E H"-"(X'; C).

We next consider the behavior of the above products under suspension.

Let

o*l: 77»(SX A Y; E) -* H^(X A Y; E),

at: 77»(X ASF; E) -* #«-»(* A Y; E),

o-l: Hn(X A Y; E) -» 77n+i(SX A Y; E),

o-r: Hn(X A Y; E) -* 77B+,(X A SY; E)

be the homomorphisms induced by the suspension operations in cohomology

and homology, defined in the same way as the corresponding operations of §3.

(6.11). IfuEHp(SX; A), vEH"(Y; B), then

a*uAv = ctl(u A f) G Ü**-\X A F; C).

Proof. Let g: Sk(SX)-^Ap+k, h: SlY-*Bq+i represent u, v. Then g: S*+1X

-*Ap+k represents ( — \)vo*u. By (6.7), a representative of ( — í)pít+t)uAv is

the composite of two maps; the map S*+i+1AXAF into S*ASXAS'AF
which sends the point sAtAs'At'AxAyESkASAS'-1ASAXAY into
(sAt'Ax) A(tAs'Ay), followed by the map/f+l|5+iO (gAh). From the de-

scription of a* given in §5, the same map represents (— i)p+q+p<-q+l'>o-*(uAv).

On the other hand, a representative of ( —1)"( — 1)(p-1)(î+!)o-*mAî' is again

the composite of two maps; the first is the map of S*+!+1 AX A Y into S*+1X

AS'F which sends 5 At As' At' Ax Ay into (s At Ax) A(s'At'Ay), and the
second is/,,+*,„+! o (gAh). The map

sAíAí'A/'-^íAí'A/Ai'
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of Sk+l+1 into itself has degree (—1)!. Hence o*uAv and a* (»A») differ only

in the sign
f — \y+p+(p-i)(q+l)+P+q+p(q+i) — 1_

By similar arguments, we have

(6.12). IfuQHp(X; A), vQH<(SY; B), then

uA<r*v= (-t)po*R(u Av)Q Ë**-\X A Y; C).

(6.13). 7/zG77„(XAF; A), wQH°(SX; B), then

z\o*w = (-l)"<rLz\w Q Bn-q+x(Y; C).

(6.14). 7/zG77B(XAF; A), wQH«(X; B), then

<r*(z\w) = <rRz\w G 3n-q+x(SY; C).

(6.11a). IfzQHp(X; A), wQHq(Y; B), then

(t*z A w = <rL(z Aw)Q 77p+,+i(5X A F; C).

(6.12a). IfzQHp(X; A), wQHq(Y; B), then

zA<r*w= (-iy<TR(z Aw)Q 77p+,+1(X A SY; C).

(6.13a). IfuQH"(XASY; A), zQËq(Y; B), then

u/a*z = (-1)Vä«/z G 77b-«-1(X; C).

(6.14a). If uQH"(SXAY; A), zQHq(Y; B), then

o*(u/z) = o*Lu/z Q H"-*-\X; C).

As a special case of the \-product, we have the Kronecker index, defined

as follows. The \-product defines a pairing

77„(X A S°; A) ® H»(X; B) -+ Hn-q(S«; C) = x„_,(C).

Identifying X with XAS0 as in (2.13), we obtain a pairing

7?B(X; A) ® 77«(X; B) -* xB_,(C).

If uQHn(X; A), u'QH"(X; B), let (u, u') be the image of u®u' under the

above map. Evidently:

(6.10b). If<t>:X'-+X, uQHn(X'; A), u'QH-(X; B), then

(<p*u, u') = («, <b*u') Q xB_,(C).

(6.13b). IfuQHn(X; A), u'QH«(SX; B), then

(u, <r*u') = (-l)B(<r*M, «') G x„_,+i(C).

Suppose, in particular, that X = 5°; then 77B(X; A)=irn(A), H"(X; B)

=T-q(B), and it is clear that, with these identifications, (u, u') = f*(u®u').
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We now define the "internal" products. It will be more convenient to

phrase the definitions in terms of the "non-reduced" theory. Let (X; Xi, X2)

be a triad in (P. Then the diagonal map A: X—»XAX, followed by the A-

product of the natural projections n: X—»X/Xi, ir2: X—>X/X2, sends XiUX2

into the base-point, and thereby induces the map

S: x/Xx u X2 -» X/Xi A X/Xt.

If f : (A, B)-»C is a pairing of spectra, uQH"(X, Xx; A), vQH«(X, X2; B), let

u KJ v - S*(m A v) Q Hp+«(X, Xi U X2; C).

Similarly, if zG77B(X, XrWX2; A), wQH"(X, Xx; B), let

z r\ w = Ä*z\w G 77„_,(X, X2; C).

Let 0: (X; Xi, X2)—*(Y; Yx, Y2) be a map of triads. Then <p induces maps

<Pi-. X/Xi-+Y/Yi and <p12: X/XiUX2-> F/FXU F2. Moreover, the diagram

Ä
X/Xi VJ X2-> X/Xi A X/X2

1012 i 0i A 4>i

F/FXU Fs^r^F/FiA F/F2
A

is commutative. Hence it follows from (6.9) and (6.10) that

(6.15). IfuQH"(Y, Yx; A) and vQH»(Y, Y2; B), then

<¡>*(u \j v) = 4>*u \j <p*v Q Hp+«(X, Xx VJ X2; C).

(6.16). IfzQHn(X, XiWX2; A) and vQH«(Y, Yx; B), then

4>*zr^v = 0*(2 ^ 4>*v) Q Hn-q(Y, Y2;C).

We now apply (6.11)—(6.14) to obtain formulas for the behavior of the

cup- and cap-products under boundary and coboundary operators. We first

prove a lemma. Let (X, A) be a pair in (P, and let X: X/A^*X\JTA be a

homotopy inverse of the natural map px: XVJTA-+X/A. Let p2:X\JTA

-+SA be the natural map. Let h = p2o\: X/A-+SA, so that h is a canonical

map. Let i: A QX, and let Ä: X/A-+X/A AX, A: A-+A AA be the diagonal
maps. Let <px, <fa: X/A-+SA AX be the maps defined by

<Px = (h A 1) o A,
(6.17) V '

02 = (1 A ¿) o SA o h

(we are identifying SA AX and 5(^4 AX) under the natural equivalence).

Then

Lemma (6.18). The maps <px and <j>2 are homotopic.
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Proof. Since pi is a homotopy equivalence, it suffices to prove that

#i o pi and cpi o pi are homotopic. Define d: X\JTA-*(X\JTA) AX by

d(x) = x A x,

d(t A a) = t A a A i(a).

The diagram

X\JTA

Pi

X/A

Í»A1
SA AX

AA1

is homotopy-commutative ; in fact, the square is strictly commutative, and

(A A l)o(/»i Al) = (hopi) Al = (pioXopi) Al^/>2 A 1

since X is a homotopy inverse of pi. Thus we have shown that <j>i o pi is

homotopic to (/»2AI) o d.

On the other hand,

4>iO Pi = (1 A ») o SA o h o Pi cs¿ (1 A i) o SA o p2

and one verifies immediately that the latter map is equal to (p2Al) o d.

Let t: S(AAA)-*AASA be the map which sends sA(aAa') into

aA(sAa'), and let &':X/A-*XAX/A be the diagonal map.

Lemma (6.18a). The maps <pi, <p2: X/A-^XASA defined by

ti = (1 A h) o Ä',

d>2 = (i A D o t o (SA) o h

are homotopic.

(6.19). Let (X, Xi) be a pair in (P, i:XxEX, and let uEHp~l(Xi; A),
»G77«(X; B). Then

S(u w i*v) = du w v E H»+<>(X, Xi;C).

Proof. Consider the diagram (Figure 3 ; for brevity we have omitted the

names of the coefficient spectra). The diagram is commutative, by (6.9),

(6.11), naturality of a*, and finally (6.18), which is used to prove commutativ-

ity of the lower right hand corner (we have again taken the liberty of identi-

fying SXiAXx with S(XiAXi)). The image of u®v by the route which goes

along the top and down the right-hand side is — 8(u^i*v); its image under
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Hr-^Xx) ® H'(X)1^1-*.H'-KXÙ ® H'(Xx)—ft—»J/Ht-ií*, A Xi)     A*   >H"+^(Xt)

<r*® 1 <r* ® 1

1 ®i* A (SA)*H'iSXi) ® H"(X)-»H'iSXx) ® £T«(X,)—^77»+«(.S*i A X,)  v      > H"*<iSXi)

À\ /i\Aï)*
Hk+^SXx A X)

(/«AD*

->H>+*(X/Xi)

h* <8> 1

H'(X/Xi) ® i?'(X)-^—^Hp^X/Xx A X)
A*

h*

Figure 3

the route which goes down the left-hand side and then along the bottom is

— bu\Jv. By commutativity, they are equal.

Similarly, using (6.18a) instead of (6.18), we have

(6.20). Let (X, Xi) be a pair in (P, i:X2CX, and let uQHp(X; A),
vQHr-^Xi-, B). Then

S(i*u ̂  v) = (-1)»» uät£ 77"+«(X, X2;C).

The analogous results for the cap-product are proved similarly.

(6.21). Let (X, Xx) be a pair in (P, i: XxQX, and let zQHn(X, Xx; A),

wQH*(Xx; B). Then

i*(dz r\w) = (- l)Bz r\ ow Q Hn-q-x(X; C).

(6.22). Let (X, X2) be a pair in (P, i':X2CX, and let zQHn(X, X2; A),
wQH"(X; B). Then

d(z r\w) = dzr\ i*w Q 77B_,_i(X2; C).

Steenrod [27] has given systems of axioms which characterize cup- and

cap-products in ordinary homology theory; full details were to have appeared

in vol. 2 of [8]. Suppose A, B, Care Eilenberg-MacLane spectra, and the pair-

ing (A, B)—»C is that induced, as in Example 1, above, by a pairing of the

coefficient groups A®B-+C. Then (6.19), (6.20), and (6.15) become (3.2),

(3.3) and (3.4) of [27]. For the cap-product, (6.21), (6.22), and (6.16) become

(3.7), (3.8), and (3.9) of [27], except for sign; however, if we change the

definition of the cap-product given above by inserting the sign ( —1)"«+«, our

signs agree with Steenrod's. Hence

Theorem (6.23). If A, B, C are Eilenberg-MacLane spectra and f: (A, B)

—>C is induced by a pairing A ®B—*C of their coefficient groups, then, under the

isomorphisms of (5.7) and (5.12), the cup-product defined above reduces to the

usual cup-product, while the cap-product defined above reduces to (— 1)B«+« times

the usual cap-product.
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It should be noted that the definition of the ordinary cap-product is not

absolutely standard; for example, Whitney's original definition [36] differs

from ours by the sign ( — 1)*, where k is the binomial coefficient Cq+i,2.

We now define a second kind of cup- and cap-product. These products will

be used in §7.

Let K be a finite simplicial complex, and let K' be the first barycentric

subdivision of K. Let L be a subcomplex of K. The supplement [2] L* of L in

K is the subcomplex of K' consisting of all simplexes, none of whose vertices

are in L'. There is a natural imbedding of K into the join of L and L*; the

point xEK is mapped into the point (1— t)y+tz of the join if and only if x

lies on the line-segment yz and divides it in the ratio t: 1 — t; we shall identify

K with its image in the join. Let

N(L) = \(\-t)y + tzEK\lú 1/2},

N(L*) = {(Í - t)y + tz\ t ^ 1/2};

then N(L) is a closed neighborhood of L and N(L*) is a closed neighborhood

of 7,*, K = N(L)\JN(L*). Moreover,

£ is a deformation retract of N(L),

L* is a deformation retract of N(L*),

N(L*) is a deformation retract of K — L.

Let M be a subcomplex of L. Then N(M)EN(L), M*DL*, and N(M*)

3N(L*). Hence K is the union of the three sets N(M), N(L*), and

N(L)C\N(M*). Moreover, LC\M* is the supplement of M in L. Hence we

can define a map A': K-*N(L)/N(M) AN(M*)/N(L*), called the reduced
diagonal map, by

/,(*) A x'(*) (* E N(L) r\ N(M*)),
A (x) = <

I* (x E N(M) \J  N(L*)),

where w: N(L)-*N(L)/N(M), ir': N(M*)-*N(M*)/N(L*) are the natural

maps, and * is the base-point. Combining A' with the A- and slant-product

pairings, we define cup- and cap-product pairings

H»(N(L), N(M);A) ® H°(N(M*), N(L*);B) -» H»+*(K; C),

Hn(K; A) ® H*(N(L), N(M); B) -+ Hn-q(N(M*), N(L*);C)

for any pairing f: (A, E)—>Cof spectra. Specifically, if uEH"(N(L), N(M);A),

vEH"(N(M*), N(L*); B), zEHn(K; A), wEH*(N(L), N(M); B), let

U \J v = A'*(w A v),

z r~\ w = A* z\w.

Since the inclusions (L, M)E(N(L), N(M)) and (M*, L*)E(N(M*), N(L*))
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are homotopy equivalences, we may regard these products as pairings

H"(L, M; A) ® H*(M*, L*;B)^ H^(K; C),

Hn(K;A)®H*(L,M;B)-+Hn-q(M*,L*;C).

Note that, if K = L and M= 0, these products agree with the earlier ones.

We now prove three lemmas which will establish properties of the cap-

product useful in §7. The first two are easily verified; we prove only the third

in detail.

Lemma (6.25). Let £0707,3 be subcomplexes of K. Let

ix: TV(72)/TV(Zs)-> N(Lx)/N(L>),

ix*: N(L?)/N(Lx*)-*N(L?)/N(L2*)

be the maps induced by the appropriate inclusions. Then the diagram

A'
K -> N(L2)/N(L>) A N(Lt*)/N(L2*)

A'i iñAl

N(Lx)/N(Lt) A N(L?)/N(Lx*) -——> N(Lx)/N(L>) A N(L?)/N(L2*)
1 An'

is commutative.

Lemma (6.26). Let Lx~2>Li2)L% be subcomplexes of K, and let

i2: N(Lx)/N(Lt)   -+N(Lx)/N(L2),

ii : N(L2*)/N(Lx*) -» N(L?)/N(Lx*)

be the maps induced by the appropriate inclusions. Then the diagram

A'
K -► N(Lx)/N(Lt) A N(L?)/N(Lx*)

A' 1 | i2 A 1

N(Lx)/N(L2) A N(L2*)/N(Lx*) ——> N(Lx)/N(L2) A N(L3*)/N(Lx*)
1 An'

«s commutative.

Lemma (6.27). Let 7072 be subcomplexes of K. Let

k: N(Lx)/N(Li)->SN(Li),

k': K/N(L2*)^>SN(L2*)

be canonical maps, and let t2 : N(L2*)—>N(Lf)/N(Lx*) be the identification

map. Then the diagram (Figure 4) in which r interchanges the first and second

factors, is homotopy-commutative.
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K
A' - N(L,) A K/N(L?)   lAk'< N(L,) A SN(L¡)

N'Ld/mMAN'LfimL?)-

JlAS^

mLjASAm^mLf)

-tSAWàANW/NiL?)
kAÍ

Figure 4

Proof. It suffices to prove that this is so for particular canonical maps,

which we now construct. We first describe a homotopy

Q: K X I -> K VJ T(N(Li))

of the inclusion map which shrinks N(L2) to the vertex of its cone. Let

x = (i-t)y+tz with yG7,2, zG7,2*; if 0<f<l, let *=l/2y+l/2z. Then

Q(*,s)

(1 - *) A *
(4/ - 1 - s) A x

(i-t + s/A)y +(t- s/4)z

(1 + s - t - st)y +(st + t- s)z

(0 á t é 1/2),

(1/2 £ t á (* + 2)/4),

((* + 2)/4áíá¡3/4),

(3/4 ^ í ^ 1).

Note that the points of L* are stationary. Let Qi be the end-value of the

homotopy, so that &: (K, N(Li))-*(KVT(N(L2)),*). The induced map
Q{ : K/N(L2)-*K\JT(N(L2)) is a homotopy inverse of pi: K\JT(N(L2))
—*K/N(L2), and therefore the composition of Q{ with the projection

p2 : K\J T(N(L2) ) ->SA7(7,2) is a canonical map k0. Explicitly, if ir : K-+K/N(L2)

and p : T—>S are the identifications, then

iko(ir(x)) = <   ,
\p(U - 2) A *

if t g 1/2, or / ^ 3/4,

if 1/2 á t á 3/4.

Note that, since 7-07,2, the above deformation leaves N(Li) in N(Li)

\JTN(Li). Hence ¿ = ifeo| N(Li)/N(Li) is also canonical.

A similar construction, with the roles of L2 and Lf interchanged, shows

that a canonical map k': K/N(L2*)—>SN(L2) is given by

if t £ 1/4, or l è 1/2,

if 1/4 £ * Í» 1/2,
*V(*)) = j*

\p(4t -DA»

where tt' : K-+K/N(L2) is the identification map.

Now consider the two maps <fn, <h- K-^SN(L2)AN(L*)/N(L?) which are

to be proved homotopic. If xEN(L2), then
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(6.28) 0i(s) = /*
\p(4t - l) A xA*i(x)

(t û 1/4, or t ^ 1/2),

(l/4á<ál/2);

if xQN(L2*), then <b2(x) = * and f^l/2; hence (6.28) holds for all xQK.
Similarly, if xQN(Lx)C\N(L2*),

(6.29) 4>i(x) = {*
\p(4t-2)AxAiri(x)

(t ^ 1/2, or t ^ 3/4),

(1/2S/2Í3/4);

if xQN(L2), then 02(x) = * and ¿a 1/2; if xQN(Lx*), then 02(*) = * and
t2' (*)=■*; hence (6.29) likewise holds for all xQK.

Define <p: K->SN(L2) AN(L2*)/N(Lx*) by

* (t =\ 1/4, or t ^ 3/4),

0(s) =   p(2l - 1/2) A {(5/4 - t)y + (t - 1/4)«}

[ A W {(3/4 - t)y +(t+ 1/4)«} (1/4 g í ^ 3/4).

The homotopy $> defined by

« g 1/4, or / fc_(* + 3)/4(* + 1)),

p((4t - l)(s + l)/2) A {(1 - I + (1 - s)/4)y + (/ - (1 - s)/4)z}

A »'{(1/2 -(t- 1/4)(1 - s))y + (1/2 + (t - 1/4)(1 - s))z}

(1/4 ^ / Ú (s + 3)/4(s + 1),

$(x, s) =

deforms <p into 0i. A similar homotopy deforms <p into <j>2.

The basic properties of the cap-product needed in §7 can now be estab-

lished. Let LxZ)L2ZALa be subcomplexes of K. Let f: (A, B)—>C be a pairing

of spectra, and let zQHn(K; A). We consider the cap-product as a pairing

of the form (6.24). Consider the diagram

(6.30)

>H'(Li, Li)

\,zr\

Í2

'H'(Lx, L3) -

lzr\

->fl«(Is, Li) - -fl«+'(£i, £») -

lzr\

Hn-<,(Ll , L\ ) -► Hn-giL} , L\ ) -—> ¿/n_,(Z,3 , hi ) -> Hn-Q-liLl , L\ ) '

in which the upper row is the cohomology sequence of the triple (Li, L2, L3)

with respect to B, while the lower row is the homology sequence of the triple

(Li*, L2*, Lx*) with respect to C.

Theorem (6.31). The two left-hand squares of the diagram (6.30) are com-

mutative; the third is commutative up to the sign ( — 1)B+1.

Proof. Let wQH«(N(Lx), N(L2); B). Then

z rs i2*w = A*z\i*w = (i2 A l)*A*z\w by (6.10),

¿2* (z r\ w) = »j* (A* z\w) = (1 A U )*A* z\w by (6.10) ;

the equality of these elements follows from Lemma (6.26).
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The commutativity of the middle square follows by a similar argument

from Lemma (6.25).

The third square breaks up into two parts:

j*                           3
H"(L2, U) —-► 77«(72) -► 77'+1(7i, L2)

(6.32) [zr\ t \zrs \zr\

En-q(Lf, L2*) -^-» 77„_8(X, L2*)-> 77„_i_i(72*, Lf)

where/: N(L2)^N(L2)/N(L3) and f: N(L3*)/N(L2*)-*K/N(L2*) are induced
by inclusion maps. The left-hand square in (6.32) is the left-hand square in

the diagram analogous to (6.30) for the triple (L2, L%, 0) and is therefore

commutative. The right-hand square in (6.32) is the right-hand square in

the diagram analogous to (6.30) for the triple (Li, L2, 0). Hence we may

assume L3 = 0. Let wEH^N(L2) ; B). Then

— z r\ dw = z r~^ /fe*<r*-1w = A* z\k*o*~1w

= (k A 1)*A*' zV"1™ by (6.10)

= (-1)«+Vl1 (k A l)*A*z\w by (6.13)

where k is a canonical map as in Lemma (6.27). Also

— d(z r~\ w) = — d(A*z\w) = 7r2*<r_1£*(A*z\w)

= xUa-Hil A k')*A*z\w) by (6.10)

= X2*(o-fi (1 A k')*A*z\w) by (6.14)

= (1 A WWU A *')***'*> by (6.10)

= ctr\í A S7r2')*(l A *'M*'*\w

= <rlV»(l ASW)*(1 A k%A¿z\w.

By Lemma (6.27), we have

d(z r\ w) = ( — l)"+1z r\ ow.

Corollary (6.33). If L\, M\, L2, Mi are subcomplexes of K such that

LiDMi^JLi, Mi(ALi~)M2, and if i: (L2, M2)E(LU Mi), ï:(M?, L?)
E(M2, L2), then the diagram

i*
H"(Li, Mi)-> 77«(72, M2)

[zr\       _ J, zr\

77„_a(M,*, Lf) -X H„-q(M2*, Li*)

is commutative.
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For i can be decomposed as the composite (L2, M2)Q(Lx, M2)Q(Lx, Mx)

and the diagram is the composite of two diagrams, each of which is com-

mutative, by Theorem (6.31).
7. Duality theorems. Our objective in this section is to prove duality

theorems of Poincaré and Alexander type. The Alexander duality theorem is

found to hold for subcomplexes of a sphere, without restriction on the spec-

trum involved. On the other hand, the Poincaré duality requires some hypoth-

eses on the manifold or on the spectra ; the class of manifolds for which Poin-

caré duality holds for arbitrary spectra is characterized; it properly contains

the class of Bi-manifolds.
Throughout this section we fix a spectrum A, together with a pairing

f: (A, A)->A and a map g: S-+A. Let f): (S, A)->A, 6': (A, S)-+A be the
natural pairings. Let ioQiro(S) be the element represented by the identity

map S°-*S°, and let i = gt(io)Q'Ta(A). We assume

(7.1). The diagram

S» A Aq g" A l >AP A äJ A gt AP A Sq

"P,t\. /P.» yS hp,q

Ap+q

is commutative.

It follows easily that

(7.2). If uQirq(A), then \*(i®u)=U(u®i)=u.
Examples of such spectra are S, U, and K(A), where A is a ring with

unit.

A spectrum B, together with a pairing g: (A, B)-+B, will be called an

A-module if and only if the diagrams

Sp A 73, gpA1.ApA73,

are commutative, f = {kp,q\ being the natural pairing (S, B)—*B.

As before, we have easily

(7.3). IfuQirp(B), then 8*(**®«)=«.
Note that every spectrum may be considered as an S-module. If A is a

ring with unit and 73 is a left A -module, then K(B) is a K(A)-module.

Remark. We may assume that S is a subspectrum of K(Z). If B is a

spectrum, one may ask whether the natural pairing (S, B) can be extended

to a pairing (K(Z), B)-*B; if this is so, then B is a 7C(Z)-module. Suppose
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S is a K(Z)-module which is a convergent Q-spectrum; then, if k is sufficiently

large and / is fixed, the homomorphism

gk.l
Bn+t(Bi; Z) « Tn+k+i(K(Z, k) A Bi)-> Vn+k+i(Bk+t) •» Tn+i(Bi),

is a left inverse of the Hurewicz homomorphism n: irn+i(Bi)—>Bn+i(B¡; Z). It

follows from an argument due to Moore [22, Theorem 3.29] that the k-

invariants of Bt vanish; hence B is essentially a product of Eilenberg-Mac-

Lane spectra.

By n-manifold we shall mean a compact connected triangulated space K

which is a homology M-manifold in the sense that K has the same local ho-

mology groups, at each point, as an M-sphere. Let K be an M-manifold.

By the Hopf theorem, H»(K; S) ~H»(K; Z); let *,' EH"(K; S) be à gen-
erator, and let z' = H"(K, é)(z0')EHn(K; A).

We say that K is A-orientable if and only if there is a class zEHn(K; A)

such that

(z, z') = iE To(A).

Such a class z is called a fundamental class.

Theorem (7.4). Let K be an A-orientable n-manifold and let zEHn(K; A)

be a fundamental class. Let L and M be subcomplexes of K such that 7,DM.

Then, for any A-module B,

(7.5) Zrs; H°(L, M;B) ~ Hn-q(M*, L*; B) for all q.

Proof. The proof proceeds in four steps. In the first, we show that (7.5)

holds when L is a vertex and M = 0. In the second, we prove (7.5) when L

is a simplex of K with boundary M. We then show that (7.5) holds when

(L, M) is replaced by (Lp, Lp_i), Lp being the union of M with the /»-skeleton
of L. The general result is then achieved by a standard kind of spectral se-

quence argument.

Step 1. Suppose that L is a vertex, M=0. Then M* = K, and L* is the

complement of the barycentric star of L. It follows that K/L*, and therefore

also K/N(L*), is a homology M-sphere. The constant map h: N(L)—*L is a

homotopy equivalence; composing A': K—*N(L) AK/N(L*) with »AL we

obtain a map A": K-+LAK/N(L*) homotopically equivalent to A'. Now

LAK/N(L*) can be identified with K/N(L*); under this identification, A"

becomes the identification map /»: K—*K/N(L*).

Since K is a manifold, K/N(L*) is a homology M-sphere, and it follows

that, for any spectrum C,

Hq(K/N(L*); C) « 77,(5»; C) « 77a_n(S°; C) = r»-(Ç).

We proceed to make this isomorphism explicit.

Let j: S-*K(Z) be the natural map. Then the diagram
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Ën(K/N(L*) ; S) J-X H"(K/N(L*) ; Z)

lp*         . ïp*
H"(K; S)-—> 77-(X; Z)

is commutative and, by the Hopf theorem, both homomorphisms/* are iso-

morphisms. Since p*: Hn(K/N(L*); Z)-+Hn(K; Z) is an epimorphism, so is

p*: Bn(K/N(L*); S)->Hn(K; S). Choose a class z{ QHn(K/N(L*); S) such

thatp*(zi)=Zo'.

Let h: K/N(L*)—*Sn be a representative of »{. Then it is clear that

A*: Hq(K/N(L*); Z) ~77,(SB; Z) for all q. By (5.16),

Â*: Hq(K/N(L*); C) « 77,(5-; C)

for all q and for every spectrum C.

The iterated suspension <xn: 77,_B(5°; C)—>77,(5"; C) is an isomorphism

for all q, C. Hence

0 = ^-"o A*: Bq(K/N(L*); C) « 77,_B(S°; C) = x,_„(C).

Consider the diagram

Hn(L A K/N(L*) ; A) ® 77«(7; B) A Bn.q(K/N(L*) ; B)

I
Hn(K/N(L*) ; A ® H«(L; B) 0

0® 1 I

xo(A) ® x_,(5) -> rr-q(B).
Ö*

(The unlabelled arrow is induced by the natural identification LAK/N(L*)

= K/N(L*).) We claim that this diagram is commutative. In fact, the dia-

gram can be enlarged to the diagram (Figure 5). Using (6.10) and (6.14),

we see that the upper parts of the diagram are all commutative, and it

suffices to verify that the lower region is commutative. But this is immediate,

from the definitions of the slant product and g*.

This being so, it remains to verify that <b(p*(z)) = ±i.  For then, if

u'QH«(L, B), we have

0(2 r\ «') = 0(A*'z\w') = 8*(0(7>*2) ® «')

= ± fl*(* ® «') = + «',

and therefore zr\ is an isomorphism with inverse ±0.

Now 0(^>*(z)) =o-*"A*£*(z), and

i =  (2, 2') =  (2, á*(20')) =  (2, g*P*z{).
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Ên(K/N(L*) ; A) ® H"(L; B) *-H„(L A K/N(L*) ; A) ® H"(L; B) -X Ën^(K/N(L*) ; B)

A*®1                                           (1A/>)*®1 A*

77n(5»; A) ® H"(L; B) ,*-■-Bn(L A S"; A) ® II-(L; B)---> 77n_,(S»; B)

»*® 1

770(5"; A) ® H'(L; B) * HULAS';

<TR® 1

A) ® H'(L; B) ■

n(A) ® «■-,(«)-

Figure S

\

8*

K*

-»77_,(5»;B)

-» t^(B)

Let z2' =A*-1(zi )G77"(S"; S); thus

* = (z, é*P*h*zí ) = (z, p*h*é*zl ) = (h+p+z, é*zi )

by (6.10a) and the analogue of (5.13) for cohomology. Now z2 generates the

infinite cyclic group H"(Sn; S) and therefore z3 =o*nz[ generates 77°(S°; S)

= 7T0(S); thus zl = +i'o. Hence

i = ± (A*/>*z, ¿*(7*-nio) = ± (h*p*z, cr*~ngtio)

= ± (<r+-nA*/»*z, ¿) = ± (<t>(p*(z)), i)

by (6.13a) and the analogue of (5.14) for cohomology. But clearly

(<K/>*(z)), i) = U(<t>(P*(z)) ® i) = <K/>*(z))

by (7.2). This completes Step 1.

Step 2. We next prove, by induction on /», that (7.5) holds whenever L

is a /»-simplex of K and M = L. We have already proved the case /» = 0. As-

sume that (7.5) holds for all simplexes of dimension less than /», and let £

be a /»-simplex. Choose a (/» —l)-face F oî E and let F' be the union of the

remaining (/»-l)-faces, so that Ê = F\JF', F = FÍ\F'. It follows(6) that

È* = F*r\F'*, F* = F*\JF'*. Let ¿: (F, F)C(£, F') and ife': (£'*, £*)
C(F*, F*) be the inclusions. The diagram

S                                       k*
#«(£, £; E) <-77«"1(£, F'; B)-> H*-l(F, F;B)

-zr\[ [zrs [zr\

77„_3(£*, £*;E) <-i7„_5+i(F'*, £*;E)^U Hn-q+i(F*, F*; B)

is commutative, by Theorem (6.31) and Corollary (6.33). Now 5 is an iso-

morphism, since F' is a deformation retract of E, and k*, k¿ are isomorphisms

(s) It is easily verified that if L, M are any subcomplexes of K, then (VU M)*—L*r\ M*

and(Z,r\ M)*=L*\J M*.
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by the excision axiom. The right-hand z^ is an isomorphism by induction

hypothesis. Therefore, it suffices to prove that d is an isomorphism, i.e., that

77*(F'*, £*; B)=0 for all k. It suffices in turn, by (5.15), to prove that

F'*/E* is acyclic (over the integers). Now F'* = E*U77(F), where D(F) is

the dual cell of F; and E*i\D(F) is the closure of the complement of D(E)

in the boundary D(F) of 77(F). But D(F) and 77(E) are acyclic, and D(F) is a

combinatorial manifold which is a homology sphere ; by the Alexander dual-

ity theorem, E*i\D(F) is acyclic. Hence D(F)/E*(~\D(F) = F'*/E* is acyclic.

Step 3. Let L, M be subcomplexes of K such that LZ)M. Let Ei, • • • , E,

be the ^-simplexes of L — M; then

*

Zp = Lp-x W U Ei,

(7.6) EiC\Lp-x = Ei,

EiC\EjQLp-x if**/.
Hence

L* = ¿p*_in n e*,

(7.7) £? U ¿p*_i = £,*,       "

E*\JE*DLp*-x if**/.

Let /<: (£<, ÈX)Q(LP, Lp_x), and let // : (V_i, L*)Q(È*, £*). Since (7.6)
holds, it follows from the direct sum theorem [8, III, 2.3c] that the homo-

morphisms

¿f : 77«(LP, ¿p_i; B) -> 77«(Ff, £,•; B)

form a projective representation of Hq(Lp, Lp_i; S) as a direct sum. (Observe

that the proof of the direct sum theorem does not use the dimension axiom.)

A similar argument shows that the homomorphisms

/«: 77„_,(7p*_i, L*; B) -* 77B_,(£,*, Ef ; S)

form a projective representation of Hn-q(Lp*-x, Lp*; B) as a direct sum. By

Corollary (6.33), the diagrams

it
H"(LP, Lp-x; B) -^ 77»(£,-, £,-; B)

izrs .i izrs

Hn-q(L*.x, L*; B) -^ 77n_,(£f, Ef; B)

are commutative, and the truth of (7.5) for the pair (Lp, Lp-x) now follows

from Step 2.

Step 4. We can now prove (7.5) in general. We have

L = Ln D Ln-x D • • O ¿o D ¿-i = M,

M* = 7_i* DLo*D ■•■DL* = L*,
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while 7^ = 7, if p>n, Lp = Mil /»<0, LP*=L* if p>n, Lp* = M* (p<0). The
above nitrations give rise to two bigraded exact couples

<g = (D, E; i, j, 5), *<g = (*D, *£; *i, *j, d),

where

Dp,i = hp+<(L, L^i; B), *7>* = 77n_„_a(7p*_i, LA; B),

E™ = HP+«(LP, 7p_i; B), *£™ = 77„_1J_a(73*_i, 7/; B)

while the sequences

ti i
. . . _>   J5P+1,<,_1—>   />•*—»   £p'5—»   7)p+1'«—» • • •

*i *j d
.   .   . _» *£)p+l,q-l_>*DP.V-jL+*ßp,t-» *])P+\.q—*  .   .   .

are the cohomology and homology exact sequences of the triples (L, Lp, 7-p_i)

and (7/-1, Lp*, L*) respectively. Let @r, *@r be the (r —l)st derived couples,

and let dT, *dT be their derived operators.

Note that 7>'« = *7>« = 0 if p>n, while Ep^ = *Ep-" = 0 if /><0 or p>n.
It follows by standard arguments (cf. [31, §4]) that EvT<q = Ev4l and *E*'4

= *£'+i provided that r^max(/> + l, m—/» + 1). Moreover, let J»-« be the

image of the injection

H**(L, 7p_i; B) -+ 77*+«(7, M; B)

and let */"■« be the image of the injection

Hn-p-q(L*_i, L*;B)-> Hn-^M*, L*;B).

Then

D'-o = Hr(L, M; B) = /»•' D 71*-1 D • • • D /»••*-• D 7"+1'r-»-1 = o,

•ZM = 77„_r(JI7*, L*; B) = */0-' D •/»••", D • • • D */»•-" D *jn+i.r-n-i

= 0,

and

eT « f/j"1"-1',     *e7 « •/'7*/+1*«~\

Thus the spectral sequences associated with the couples @, *(S converge in a

strong sense.

Define tp: D-+*D, \p: £->*£, by

<p(w)  =  (-1)(»+D(P+«)Z A» (idg Dp'q),

$(w) = (_i)(»+D(p+i)z a w (wE Ep-");

it follows from Theorem (6.31) that (<p, yp) is a map of © into *@.

By Step 3 of the proof, yp: £*>.«—>*£"■« is an isomorphism. It follows that
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xpr: £™ « *£?■' for all r, and therefore that fc.: E™ « *E™.

The map 0: Dr-°—♦*Dr'° maps 7P'5 into *7"'a and the induced homomor-

phism of Jp.*/J*+i-9-i into *7P'V*7P+1,!,~1 isi/v Hence it follows by an induc-
tive argument, starting with 0: /n+i,r-n-i_^*jn+i,r-n-i> tnat <£: £r.o

= Hr(L, M; B) «77„_r(M*, L*; B) = *Dr-°. This completes the proof.

Corollary (7.8) (Poincaré duality theorem). If K is an A-orientable

n-manifold, and zQH„(K; A) is a fundamental class, then, for any A-module B,

zrs: H*(K;B) « 77B_,(X; B).

Suppose now that A = S. Let /: S —» K(Z) be the natural map. If

zQHn(K; S) is a fundamental class, so that (z, z') = ioQiro(S), then

/*(*„) = /*(«, z') = (/*2, /V) = (7*2, «„' ) G to(X(Z)) « Z,

and since U(io) is a generator and the Kronecker index reduces to the usual

one, we see that K is orientable and 7*2 is a fundamental class with integer

coefficients. Hence the homomorphism

/*: Hn(K;S)->Hn(K;Z)

is an epimorphism. Conversely, if K is orientable and /* is an epimorphism,

it is easy to see that K is S-orientable,

Let ¡Co be a base-point in K. Then Hn(K; S) is the »th stable homotopy

group 2„(£), and it follows easily that K is S-orientable if and only if the

Hurewicz homomorphism SB(X)—>77B(7£) is an epimorphism. Suppose that

K is differentiable ; then a recent result of Milnor and Spanier [20] shows that

K is S-orientable if and only if its stable normal bundle is fibre-homotopically

trivial. It follows that every Il-manifold in the sense of Milnor [19] is S-

orientable. Clearly every Il-manifold in the sense of J. H. C. Whitehead [33]

is S-orientable.

If K is S-orientable, we have seen that Poincaré duality holds for arbi-

trary spectra. Moreover, once a fundamental class has been chosen, the

duality is natural (for maps of spectra), i.e., if h: B-^>C is a map of spectra,

then

7i*(2 r\ u) = 2 r\ 7i*(m)

for all uQH«(K; B).
Conversely, we have

(7.9). If K satisfies Poincaré duality naturally, i.e., if there exist natural

isomorphisms

Pq: H<(K;  ) « 77B_,(X;   )

over the category of spectra, then K is S-orientable.

Proof. The diagram
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Po(S)
H°(K;S)->Hn(K;S)

i Po(K(Z))    i
H°(K;Zy-^-^Hn(K;Z)

is commutative. To show that /*: Hn(K; S)—>77„(/T; Z) is an epimorphism,

it suffices to show that /*: H°(K; S)—*H"(K; Z) is an epimorphism. Let P

be a point, g: K-^P. Then the diagram

g*
to(S) = 77°(P; S) ^ H°(K; S)

if* „       1/*

*o(K(Z)) = H°(P; Z) ^ 77°(X; Z)

is commutative.  But /*: tt0(S) ~tto(K(Z))  and g*:H°(P; Z)~H°(K; Z).

Hence /* o g*: ir0(S) «77°(7C; Z) and it follows that /* is an epimorphism.

Another consequence of Theorem (7.4) is

Corollary (7.10). If K is a proper, nonempty subpolyhedron of S" and if

K' ES"—K is an (n — l)-dual(*) of K, and xo, x¿ are base-points of K, K', then

H«(K;B) ~Bn-q-i(K';B)

for any spectrum B.

Proof. We can find a triangulation of (Sn, K) so fine that K' is contained

in the supplement K* of K in Sn relative to this triangulation. If i: K' EK*,

then

h: 77t(Ä:') « Ëk(K*)

for all k; it follows by (5.16) that

Ù: Bk(K';B) « Hk(K*;B)

for any B. By Theorem (7.4), with K replaced by Sn (note that S" is S-

orientable)

H*(K, xo; B) « 77B_a({*o}*, K*; B)

« Hn^i(K*, xo*; B)

where x* is a base-point of K*.

We conclude with a remark which was suggested to us by J. H. C. White-

head. It is known(7) that the Hurewicz map S„(X)—*H„(X) is a ©-isomor-

phism [24], where C is the class of torsion groups. Hence if K is an arbitrary

(') n-dual in the sense of [26].
(') A proof of this fact can be found in the mimeographed notes Lectures on characteristic

classes by John Milnor (Princeton, 1957), p. 108, Lemma 9.
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orientable manifold and if zQHn(K; S) does not belong to the kernel of

/*, the entire proof of Theorem (7.4) can be reworded in terms of ©-isomor-

phisms and we have

(7.11). If K is a compact connected orientable triangulable n-manifold, then

there is a class zQH„(K; S) such that

z^:77«(X;B)^77B_,(X;B)

is an isomorphism modulo the class of torsion groups.

8. Brown's theorem. In this section we outline a proof of the following

theorem.

Theorem 8.1. Let § be a homology theory on (P0, and suppose that the

groups 77,(5°) are all countable. Then there is an Q-spectrum E and a natural

isomorphism

T: §(E) ~ £.

Moreover, E is unique in the sense that, if E' is an ^.-spectrum and

T: §(£') « §

is a natural isomorphism then there is a map

f: E^E'

such that each /,: £,—>£,' is a homotopy equivalence.

This theorem is the analogue of one proved by E. H. Brown [4] for co-

homology theories. The proof consists of constructing a cohomology theory

^>*, using the duality theory developed by Spanier in [25]. Brown's theorem

then provides a natural isomorphism T*: ÍQ*(E) «^j*. Using duality and the

slant-product of §6, we then construct T: §(F)—>^. We assume familiarity

with Spanier's paper. (Caution: Spanier defines SX as XAS, rather than

SAX, but this does not affect the arguments.)

Let XGCPo, and let u: YAX-*Sn be a duality map [25, §5]. Let Tq(u)

= 77B_,(F). If u': F'AX—>5m is also a duality map then there is a unique

5-map <xQ{Y, Y'}m-n such that, if k is sufficiently large and f:SkY

—>5*+n_m F' is a representative of a, then the diagram

5*

/Al

Sk+n-mY'  A  X

VAX
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is homotopy-commutative ([25, (5.11)]; if k = m — n £: 0, then

a = Dm(u', Sku){l} Q{SkY, Y'} = { F, F'}*, and if k < 0, then
a = Dn(S~ku', u){l}). Define y(u, u'): T(u)-*T(u') to be the homomorphism

a*: Hn-q(Y)-+Hm-q(Y') induced by a. (Note: a* is the composition

77„_,( F) -^ 77n_,+*(5*F) -^ 77n_,+*(5*+B-F')-> 77m_,(F').)

Then it is easy to verify that

y(u, u) = identity,

y(u', u") o y(u, «') = ^(m, u")

for any three duality maps u, u', u". Thus the groups Tq(u) and homomor-

phisms y(u, u') form a transitive system in the sense of [8, p. 17]; accordingly

we may define Hq(X) to be the unique group associated with this transitive

system.

Let/: X—»X' be a map in (P0. Choose duality maps

u: F AX ->5B,

«': F'AX'-»5\

If aG{X, X'} is the 5-class of/, let ß = Dn(u, u')aQ{ Y', Y}. It is easily

verified, using [25, (6.3)] that the homomorphism

77«(/):77'(X')-+7?«(X)

corresponding to /3*: 77n_,(F')—>77B_,(F) is independent of the choices of the

duality maps, and that 77a: (P0—>Q. is a contravariant functor. Since |3 depends

only on the 5-class of/, the homotopy axiom is satisfied.

Let XG(Po, and let u: FAX—>5" be a duality map. Then the map

Su
Y AS AX-+S A Y AX->S»+\

in which the first map interchanges the first two factors, is a duality map

v. Y A5X->5B+1.

It follows from [25, (6.2)] that the homomorphism of 77«(X) into 77«+1(5X)

induced by the identity map of Tq(u) = 77„_,( F) =r,+i(i;) induces an isomor-

phism 0U: H"(X)^H"+1(SX). If u': F'AX->5m is another duality map, then

0w = (-t)m-»6u.

Therefore the isomorphism (— l)n0„ is independent of u. Let <r*: 77S+1(5X)

» Hq(X) be the inverse of this isomorphism. Clearly <r* is a natural trans-

formation.

Finally, if (X, A) is a pair in (P0, then the exactness of the sequence
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H«(p)   m          H*(i)   _
H*(X/A) ■—A+ H"(X)--A H<(A)

follows from [25, (6.10)].

We have thus defined a cohomology theory ^* = {Hq, a*} on (Po. Evi-

dently 775(S°) «77_a(S°); hence these groups are all countable. By Brown's

theorem [4, Theorem II ] there is an ß-spectrum Eand a natural isomorphism

T*: §*(E) « $*.

We now construct a natural transformation

T: §(E) -» §.

Let X£(P0, and let u: YAX—>Sn be a duality map. Let s be the natural gen-

erator of 77n(Sn; S) and let x = u*(s)EËn(YAX; S). By means of the natural

pairing (S, £)—>£, the slant product by a; is a homomorphism

x/:77a(X;£)-*77"-HF;E).

Brown's mapping is an isomorphism

T*. Hn-„(Y; E) -+ 77"-«(F).

Using the duality map u' : X A Y—*Sn which is the transpose of u, we obtain

an isomorphism

£?»-«( F) « 77a(X).

The composite of the above homomorphisms is a homomorphism

F„:77a(X;E)-+77a(X).

The following facts are easily verified, using the properties of the

/-product given in §6 and the results of [25]:

(1) FSu=(-l)"Fu: 7?a(X; E)->77a(X).
(2) If Mi: FiAX—>S" is a duality map and/: F—>Fi is a map such that

the diagram

FAX

/Al

FiAX
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is commutative, then TU=TU1: 7Î,(X; F)—>77,(X).

(3) If Mi: FiAXi-*5" is a duality map and/: X—>Xi, g: Fi—>F are maps

such that the diagram

g A 1
YxAX-->Y AX

1A/4 iu

YxAXx->5B
Ml

is commutative, then the diagram

77,(X; E) —% 77,(X)

/*| I/*
77,(Xi; F) -—> 7?,(Xi)

is also commutative.

(4) Let v: FA5X—»5B+1 be the duality map used in the definition of a*.

Then the diagram

77,(X; £) —% 77,(X)

<r* i I cr*

77,+1(5X;£)-—^77,+i(5X)

commutes except for the sign ( —1)"+1.

It follows from (1) and (2) that the homomorphism

T = (-l)cn.iTu: 77,(X; E) -* 77,(X)

is independent of the duality map u; from (3) that T is a natural transforma-

tion of functors, and from (4) that T commutes with suspension. Hence

T: |)(F)—>§ is a natural transformation of homology theories.

It remains to prove that T is an isomorphism. If X = 5°, we may choose

Y = S° and u: 5°A5°—»5° to be the obvious homeomorphism; then x/ is the

identity map of 77,(5°; F) =x,(E) = 77-«(5°; F). Hence T: 77,(5°; F) « 77,(5°).
The fact that T is an isomorphism on <P0 now follows by standard methods.

Finally, suppose that T: §(F)—*§, 7': |)(F')—>|) are natural isomor-

phisms. Then T~l o T': |)(E')—>§(£) is a natural isomorphism. We can then

turn the above proof "inside out" to construct a natural isomorphism of

|)*(E') with |)*(F). Application of Brown's theorem then proves the unique-

ness.

Corollary (8.2). Let X, YQ&o, and let u: YAX-+S" be a duality map.

Then, for any spectrum E,
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u*s/:Hq(X;E) « H"-"(Y; E).

Thus we have again proved the Alexander duality theorem, in the more

general form suggested by [25]. It is likely that a theorem, similar to (7.4),

containing both Alexander and Poincaré duality, could be proved in a similar

way. We prefer the present version of (7.4) because the version of Poincaré

duality given there is parallel to the usual one in the sense that the isomor-

phism is given by a cap-product. On the other hand, (8.2) has the advantage

of being more general than (7.11), as well as being parallel to the standard

version of Alexander duality. For these reasons, as well as because we obtain

(8.2) "free of charge" from the proof of Theorem (8.1), we have included

both versions of Alexander duality.

Remark. It would be desirable to have a proof of Theorem 8.1 which does

not depend on Brown's theorem. It is not known whether the countability

hypothesis is necessary for Brown's theorem. It is not inconceivable that a

direct proof of Theorem 8.1 without the countability hypothesis could be

found. If so, the above procedure could be reversed to prove Brown's theo-

rem without the countability hypothesis.
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