ERRATUM TO VOLUME 96

Eckford Cohen, *A class of arithmetical functions in several variables with applications to congruences*, pp. 355-381.

The fourth sentence of the sixth paragraph of §1 (p. 356) and Corollary 18.2 (p. 377) should be deleted and replaced by the following:

It is evident that \(\theta_r(m, n) \) is always positive (for example, take \(u = y = 1, x = m - 1, v = n - 1 \) in (1.1)). Define \(\theta'_r(m, n) \) to be the number of solutions of (1.1) such that \((u, v, r) = (x, y, r) = 1, \gamma(r)|ux, \gamma(r)|vy. \) It follows easily that \(\theta'_r(m, n) \) is relatively primitive (mod \(r \)) and that

\[
\theta'_r(m, n) = \begin{cases} 2^{\omega(r)}(r/\gamma(r))^2 & \text{if } (r, mn) = 1, \\ 0 & \text{otherwise}, \end{cases}
\]

where \(\omega(r) \) is the number of distinct prime divisors of \(r. \)

ERRATA TO VOLUME 101

Page 354, Line 13. Replace “or \(a_{i+1} = 0 \) and” by “\(a_{i+1} = 0, \) and”

Page 364, Line 19. Replace “\(c \in \mathbb{C} \)” by “\(c \in \mathbb{C}. \)” Last two lines and Page 365, Line 1. Replace from “where \(|\text{Re } \theta| \cdots \) through “Therefore,” by “where \(n \) is a positive integer and hence \(|\text{Re } \theta| \leq \pi/2 \) without loss of generality. Thus, \(\pm (-1)^{n-1} \sin \theta = \psi. \) When \(n \) corresponds to \(\varepsilon \psi | \psi | < 1, \) then \(|\text{Re } \theta| \leq \pi/2. \) Therefore,”

Page 365, Line 5. Replace “\(\pm (-1)^{n-1} \sin. \) Therefore, as \(n \to \infty \)” by “\(\pm (-1)^{n-1} \sin \theta \) as \(n \to \infty. \) Therefore,”.

Page 367, Line 7 from bottom. Add a second parenthesis after (3.1.4)

Page 373, Line 3. Replace subscript \(k \) on \(Q \) by subscript \(\kappa. \)

Page 238. Corollary 7.4 is incorrect as stated. The correct statement is the following.

Corollary 7.4'. Let \(G \) be a finite group. \(G \) is abelian if and only if \(H^*(G, \mathbb{Z}) \) is a finite module over the subring generated by \(H^2(G, \mathbb{Z}). \)

Proof. If \(G \) is abelian, then we may show that \(H^*(G, \mathbb{Z}) \) has the desired property by splitting off one cyclic factor at a time, using the Hochschild Serre spectral sequence, and applying induction. The converse follows by considering cyclic subgroups \(H \) in the derived subgroup and by realizing that the hypothesis implies that \(H^*(H, \mathbb{Z}) \) is finite over \(H^0(H, \mathbb{Z}) \cong \mathbb{Z} \) for such an \(H. \)