and \(\lim_i V(y, E_i) > 0 \). Since \(S \) is a sigma algebra, \(E = \cap E_i \subseteq S \); moreover, \(V(x, E) \leq \lim_i V(x, E_i) = 0 \). Finally, since \(y \) is countably additive on \(S \), \(V(y, E) = \lim_i V(y, E_i) > 0 \).

Bibliography

Massachusetts Institute of Technology, Cambridge, Massachusetts

ERRATA TO VOLUME 98

C. C. Elgot. *Decision problems of finite automata design and related arithmetics*

Page 23, Lines 10, 11. Replace each \(f \) by \(\hat{f} \).

Page 23, 3.6(b), Line 2. The words “by a finite number . . . ” should start a new line.

Page 24, Line 9 (second display formula). Replace “\((a, b)\)” by “\((b, a)\)”.

Page 46, 8.6.2, Line 5. Replace “let \(n \) be the maximum” by “let \(n \) be one more than the maximum”.

Line 7. Replace “for some \(n \)-ary \(R \)” by “for some \(R \) which is \(n \)-ary”.

The third sentence (beginning on the sixth line) of §8.6.2 on page 46 is in error but is readily correctable. “It may be seen that \(T_{m+n}^k(A_x M) = S_1 \cup S_2 \cup \cdots \cup S_k \), where \(S_j \), \(j = 1, 2, \cdots, k \), is the set of all infinite \(R_j \)-sequences \(f \) such that \((f \uparrow n) \subseteq E_j \), for appropriate \(R_j, E_j \), and that \(k \) need not be 1. For example, let \(M \) be

\[
\begin{align*}
0 &\in F_1 \land 0 \notin F_2 \land (x \in F_1 \land x \notin F_2 \land \forall x \in F_1 \land x \notin F_2) \land \\
0 &\in F_1 \land 0 \notin F_2 \land (x \in F_1 \land x \notin F_2 \land \forall x \in F_1 \land x \notin F_2).
\end{align*}
\]

Then \(T_2^k(A_x M) \) is the union of the set of all infinite sequences in \(\langle 1, 0 \rangle \) and \(\langle 1, 1 \rangle \) which begin with \(\langle 0, 1 \rangle \) and the set of all infinite sequences in \(\langle 0, 1 \rangle \) and \(\langle 1, 1 \rangle \) which begin with \(\langle 0, 1 \rangle \). Thus, in this case, \(k = 2 \). Let \(Q \) be

\[
\begin{align*}
\forall x \in F_1 \land 0 \notin F_2 \land \forall x \in F_1 \land 0 \notin F_2.
\end{align*}
\]

Then \(A_x M \equiv \forall F_1 \land A_x Q \) and \(T_2^k A_x Q \) is a set of \(R \)-sequences, for the binary \(R \) indicated by the formula, beginning in a designated way and \(T_2^k(A_x M) \) is a projection of \(T_2^k(A_x Q) \). Quite generally it is the case that \(S_1 \cup S_2 \cup \cdots \cup S_k \) is the projection of a set of \(R \)-sequences beginning in a designated way so
that the rest of the argument given may be applied. In particular, if the R_j's are r-ary relations, $r \geq 2$, R may be taken as $R_1 \vee R_2 \vee \cdots \vee R_r$, where the field of R_j is taken as the cartesian product of the field of R_j with singleton j and $(a, j)R_j(b, j) = aR_jb$. We define E_j analogously: $u' \in E_j = u \in E_j$ where $u'(x) = \langle u(x), j \rangle$ for each x. Let $E = E_1 \cup E_2 \cup \cdots \cup E_r$; let $p(\langle a, j \rangle) = a$ for all a, j and let S be the set of R-sequences f such that $(f \upharpoonright n) \in E$. Then $p(S) = S_1 \cup S_2 \cup \cdots \cup S_r$.

ERRATA TO VOLUME 101

N. R. Stanley, Some new analytical techniques and their application to irregular cases for the third order ordinary linear boundary-value problem, pp. 351–376.

Page 363, Line 18. Replace "zeros of Δ" by "zeros of $\Delta(\lambda)$"

Errata to this paper were printed in vol. 102, March 1962, p. 545. Two of the items were incorrectly stated. The correct versions are:

Page 354, Line 13. Replace "$a_{i+1} = 0$ and" by "$a_{i+1} = 0$, and"

Page 364, Line 19. Replace "$c \in$" by "$c \ni$". Last two lines and Page 365, Line 1. Replace from "where $| \Re \theta | \cdots$" through "Therefore," by "where n is a positive integer and hence $| \Re \theta | \leq \pi/2$ without loss of generality. Thus, $\pm (\Re \theta) = \psi$. When n corresponds to $\exists \Re | \psi | < 1$, then $| \Re \theta | < \pi/2$. Therefore,"

$\pm (\Re \theta) = \psi$. When n corresponds to $\exists \Re | \psi | < 1$, then $| \Re \theta | < \pi/2$. Therefore,