
CONSTRUCTIVE ANALOGUES OF THE GROUP OF
PERMUTATIONS OF THE NATURAL NUMBERS

BY

CLEMENT F. KENT«

A portion of the theory of recursive functions is concerned with properties

which are recursive invariants of sets of natural numbers, i.e., properties of

such sets which are invariant under recursive isomorphisms. Thus the group

of recursive isomorphisms, or permutations, of the natural numbers, and cer-

tain related groups of permutations, defined by more "generous" constructiv-

ity conditions are of interest in the theory of recursive functions. In this

paper it is shown that two families of such groups, satisfying two different

kinds of constructivity conditions, have algebraic properties similar to those

of Sx, the group of all permutations of the natural numbers. The group 5«,

has been studied by Schreier and Ulam in 1933 and 1937 in references

[SU(1); SU(2)], and earlier by Onofri, reference [0(1)].

The group S*, is uncountable while all the groups considered in this paper

are countable. Since permutations of the set of natural numbers(2), N, like

permutations of finite sets can be factored into products of disjoint cycles,

two permutations can be said to have the same cycle structure if, in their

disjoint factorizations, there appear the same cardinal number of cycles of

each possible length (including infinity). In Sx, two permutations, Ti and

7T2, are conjugate, iri = <nr2(r~l for some crCS*,, when and only when they have

the same cycle structure. Using the equivalence of conjugacy and cycle struc-

ture, it is shown in [SU(1)] that any normal subgroup, G, of S„, which con-

tains a permutation, it, moving an infinity of numbers, must be all of S*,.

Thus it is shown that S.DFD^DJe} is the unique composition series for

Sa. Here, F is the subgroup of 5«, composed of permutations which are, al-

most everywhere, the identity, while A is the subgroup of F composed of the

even permutations, and e is the identity permutation.

In §1 we show that equivalent cycle structure does not necessarily produce

conjugacy in R, the group of recursive permutations. Nevertheless, in §2,

it is shown that TO-FD^D {e} is the unique composition series for R, and

indeed, for any group Rm of permutations of N, recursive in an arbitrary sub-

set M of N, that RmZ)FZ)AZD {e} is the unique composition series.

Presented to the Society, June 18, 1960 and August 24, 1961 under the titles, Algebraic

structure of the group of recursive permutations and Automorphism group of recursive permuta-

tions; received by the editors June 22, 1961.

(') With the exception of §4, the results of this paper are contained in a thesis presented to

the Department of Mathematics, Massachusetts Institute of Technology, in August, 1960,

in partial fulfillment of the requirements for the Ph.D. degree. The author wishes to thank

Professor Hartley Rogers, Jr. for very considerable encouragment and advice.

(') We always assume that OGiV.
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In §3, we consider a group Ar, defined to be the union

7?* u r; \j r;'kj ■ ■ • u 7?*n)w • ■ •

where the prime denotes the jump operation of the Kleene-Mostowski arith-

metical hierarchy. These permutations are called arithmetical(3), and for a

résumé of basic information regarding this hierarchy see, for example,

[R(l) ]. It is shown in §3 that, in AT equivalent cycle structure again produces

conjugacy, and that Ar^)FZ)AZ) {e} is the unique composition series. The

results of part 3 are applicable to other, analogously defined, groups of

permutations.

In [SU(2)] it is shown that Sx is isomorphic to its group of automor-

phisms. Here, in §4, we show that all of the groups considered above, like S„,

are isomorphic to their automorphism groups.

The presentation of proofs in this paper is informal, in that sets of recur-

sion equations are not always written for functions asserted to be recursive.

This is an application of Church's Thesis in an attempt to present the ideas

of the proofs in sufficient detail that their translation into a formal system for

recursive functions is a routine step. The proofs in §§2 and 4 owe much to

those of [SU(1); SU(2); 0(1)]. In some cases it has been necessary only to

supply effectiveness arguments and in others to make easy replacements of

noneffective arguments by effective ones.

In addition to the notation already introduced, we comment that small

Greek letters are used for permutations of N, small Latin letters for numbers

and number variables, and capital Latin letters for subsets of N (in addition

to the various permutation groups). We use a standard enumeration of the

partial recursive functions of a single variable, denoted

«r-o, 4>u fa, • • • , 4>», - • •

and Ti(x, y, z) for the Kleene T-predicate. In addition, pi(x) and pi(x) are

used to denote the primitive recursive coordinate functions which map N

onto NXN. The characteristic function of a set A, %a, is that function

(0       iixEA,

XA(X)=\1       if* G I,

where A denotes N—A. Other notation is introduced as needed.

1. Conjugacy classes in 7?. As commented earlier, cycle-structure is a

necessary and sufficient condition for conjugacy in Sx, a fact which is central

in the proofs of [SU(1); 0(1)]. As we proceed to show in this section, the

same is not true in 7? (although it is again in Ar). The cycle structure classes

of 7? may be sorted into two categories, those whose cycle structure contains

only finitely many infinite cycles and those whose cycle structure contains

(3) They are the permutations which can be defined by formulas of arithmetic.
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infinitely many infinite cycles. It will be shown that those cycle structure

classes of the first kind are also conjugacy classes, while those of the second

kind are always properly partitioned into two or more conjugacy classes.

If a is a member of R (more generally of Sx) we define 2.ÇA7' to be a

choice-set(4) for a if 2„ is composed of numbers, precisely one drawn from each

of the disjoint cycles of a. The following two lemmas are easily proved and

are stated without proof.

Lemma 1.0. If tt is a permutation of N, then w possesses a choice-set 2»,

which can be expressed in both two-quantifier forms relative to w.

Lemma 1.1. If w has a choice set, 2T, which is recursively enumerable in it,

then each cycle of ir is a set recursive in r.

Theorem 1.2. Let ai and <s2 be two recursive permutations with the same cycle

structure and such that each has only a finite number of infinite cycles. Then <ri

and <r2 are conjugate in R.

Proof. Let C\, C\, • • ■ , C\ be the disjoint infinite cycles of ai and

C\, C\, • ■ • , C\ the disjoint infinite cycles of <x2. Each of the C{ is a recursively

enumerable set and thus

Ii = U C]   and   72 = U c]
«_i ¿-i

are recursively enumerable sets. We note that the complements Fi = N—Ii

and F2=N—I2 are composed of the elements which lie in finite cycles of a\,

respectively <s% F\ and F2 are thus recursively enumerable sets. Then 7i and

I2 are recursive. It follows that the sets C{ are recursive sets.

It is now an easy step to complete the proof by constructing a recursive

permutation, t, which sends cycles of ffi into cycles of <s2, preserving order.

Such a t will give o-2 = to-it~1. The construction details are omitted.

We next note that, if ffi and a2 are conjugate members of R, then the cycles

of ai are carried onto the cycles of a2 by a recursive isomorphism. Thus, there

is a pairing of cycles of ai with cycles of <r2 which preserves isomorphism type.

It is not difficult to construct a recursive permutation, o-0, which is composed

of infinitely many infinite recursive cycles. In the next theorem we show that

there is a recursive permutation, p, in the cycle structure class of (r0, but hav-

ing a creative cycle. By the remarks above, o-0 and p cannot be conjugate^).

(4) This term is introduced in [Af(l)]. The author is indebted to the referee for calling

attention to the close connections of some of these results to those in [M(l); U(l)], and for

several interesting additional results and conjectures (below).

(6) The present statement and proof of Theorem 1.3 follow from suggestions of the referee

which resulted in a great simplification of the original. In addition, Corollaries 1.5 and 1.6 were

obtained from the restated theorem. The referee conjectured that any creative set is the splinter

of some recursive permutation. This can be proved by a slight modification of the present proof.
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Theorem 1.3. Let C be a creative set. There is a recursive permutation, p,

composed of infinitely many infinite cycles, one of which is C.

Proof. In [M(l)] the symbol j is used to denote a one-one recursive func-

tion mapping NXN onto N. If A is an arbitrary recursively enumerable set,

the notation Cy(A) is introduced in [M(l)] to denote the set j(A XN). Such

sets are called cylinder sets. The cylinder set j(A XN) is many-one equivalent

to A. If A is creative, then so is Cy(^4) and thus Cy(^4) is carried onto A by

a recursive permutation, r. We shall construct a permutation, ir, having

Cy(A) as a cycle. Then the recursive permutation p = twt~1 will have A as a

cycle. Thus it suffices to prove the following lemma.

Lemma 1.4. If A is a nonvoid recursively enumerable set, there is a recursive

permutation, ir, composed of infinitely many infinite cycles, one of which is

Cy(A).

Proof. Let A be a nonvoid recursively enumerable set. If A is finite the

proof is trivial. Suppose that A is infinite and that / is a one-one recursive

function which enumerates A. We lose no generality and we simplify the

proof if we define ir as a permutation on NXN. Consider the following dia-

gram of NXN. The arrows in the diagram, present in every row except the

/(0)th row, define the basic pattern of definition for t, to be followed until

interrupted by the procedure below.

f(0),0 f(0),l f(0),2 f(0),3 f(0),4 f(0),5     •   •   •

To simplify further the presentation of the computation procedure we make

the following definitions.

o(p, q, k) = the largest natural number b for which ir~b(p, q) has been de-

fined during the first k stages of the computation procedure.

t(p, q, k) = the largest natural number / for which ir'(p, q) has been defined

during the first k stages of the computation procedure.
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Lk((pi, qî), (pi, qi)) is an instruction to define iri(!,i'5i'*)+1(/»i, qi)

= ir-b(Vi,qi,k)(p2t g2)_

The procedure follows.

Stage 0: Define ir(0, 0) = (0, 1).

Stage A, A>0: Let p and q be chosen so that j(p, q) = k, then proceed with

the following steps, in order.

Step (i) : If (Bi) (O^i^ k &p =f(i) &i is odd) then apply Lk((p, q), (f(0), 0)).
Step (ii): If (3i)(0¿ i ^ A & p = f(i) & i is even) then apply

Lk((f(0),0),(p,q)).
Step (iii): If ir(p, q) is already defined, go to stage A+l.

Step (iv): If ir(p, q) is undefined and (i) (<d^i^k=^p 9^f(i)) then define

Tt(p, q) by the pattern.

Step (v): If ir(p, q) is undefined but (3i)(0^i^k &p=f(i)) then define

w(p, q) — (p, iir(ir~1(p, r) is undefined at stage A)).

This completes the description of the defining procedure for ir. Note

(a) it is a partial recursive function by Church's Thesis,

(b) 7T is a total function, since ir(p, q) is always defined at or before stage

k, where j(p, q) = k,

(c) ir is a permutation,

(d) for any p which is not in A, the pth row of the NXN diagram becomes

an infinite cycle of it,

(e) for any p which is in A, the pth row becomes a part of the cycle which

is built about/(0), 0.

This completes the proof of the lemma.

Corollary 1.5. For any recursively enumerable set A, there is a recursive

permutation with a cycle of the same many-one degree as A. Also, there is a

recursive permutation for which the set, F, of elements of finite algebraic order,

is many-one equivalent to A.

Proof. The first part is proved in the lemma. The second follows from a

modification of the construction of the proof of the lemma which causes all

of the members of Cy(A) to appear in finite cycles.

Corollary 5.3 of [U(l)] states the following.

"The set T of theorems of any consistent system which contains elemen-

tary number theory can be generated from any 4>ET by a one-premise rule

of inference 7?, which, under Gödel numbering, is a one-one recursive func-

tion."

This result, applicable to any theory with a creative set of theorems,

follows as an immediate corollary to the result, proved in [M(l); U(l)],

that every creative set, C, is the x-splinter of a one-one recursive function fx

for any xEC, where the choice of fx depends upon the choice of xEC. A

modification of the proof of Theorem 1.3 shows that the rule 7?, above, can
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in fact be made a recursive permutation, but Theorem 1.3 can be used

directly to prove the following interesting variant of Ullian's Corollary 5.3.

Corollary 1.6. The set T of theorems of any consistent system which con-

tains number theory can be generated from any <pCT by the repeated application

of one of two one-premise rules of inference, R or L, which are mutually inverse,

and whose choice does not depend upon <p.

Proof. The set, Tg, of Gödel numbers of members of T is a creative set.

Consequently, it is a cycle of a recursive permutation, it. We may define R

and L as follows.

To apply R to a formula <j>, obtain the Gödel number x of <b. Evaluate

7r(x) and let Ri4>) be that formula whose Gödel number is irix). To obtain

the rule L, replace R by L and w by ir_1 in the instruction. Clearly, for any

formula <p we have R(L(cb)) — L(R(4>)) =<p. This proves the corollary.

Theorem 1.7. In the group R, a cycle structure class, C, is also a conjugacy

class if and only if it is the cycle structure class of a permutation with finitely

many infinite cycles^).

Proof. The sufficiency of the condition follows immediately from Theorem

1.2. To prove the necessity, take a recursive permutation, <r, with infinitely

many infinite cycles. If a has no finite cycles, the necessity is proven by

Lemma 1.4. In case a has only finitely many finite cycles, then Fc is finite,

thus recursive. There is a one-one recursive function, g, which enumerates

7„, and, since I, is recursive, g can be used to transfer the structure of either

Co, or of the ir of Lemma 1.4 onto I„. In this manner the case of finitely many

finite cycles is proved.

Finally, suppose that a has infinitely many finite cycles. Let / be the re-

cursive function f(x) = 2a: 4" L Define

"i (x) = fo-of~1(x) if x is odd,

ir'(x) — fvf~lix) if x is odd.

The definitions of aó and of ir' are completed for even x so as to transfer the

finite cycle structure of a to the even integers. To do this we define a partial

recursive function A(x) which gives the cr-order of x if x has finite <r-order, and

consider a simultaneous calculation of A(x) for all x. We know that A(x) will

converge for infinitely many x. Define a set X= \xi, x2, Xt, • • • , Xj, • • • },

where the elements are listed in order in which A(x) converges and, for all i,

Xi does not belong to the finite cycle determined by any x¡ for j<i. Then X

is an infinite recursively enumerable set which is a choice-set for the finite

(6) The referee has shown that at least one cycle structure class of infinitely many infinite

cycles splits into infinitely many conjugacy classes. His proof also gave him the present Corol-

lary 1.5, strengthening the original version.
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part of a. Let A(*j) = o,. Then the common definition of cr0' and it' on the even

natural numbers is the following.

(0, 2, 4, • • • , 20»! - l))(2oh 2oi+2,---, 2(oi + o, - 1)) • ■

/       n n / n+1

Í2Eí¡, 2Ë»*+2, •••,2Í £o<-l

Then, 7r' and o-0' have the same cycle structure, which is the cycle structure

of o. They cannot be conjugate, for under conjugation the infinite cycles of

one permutation are pairwise recursively isomorphic to the infinite cycles of

the other. However, like <r0, the infinite cycles of cr0' are all recursive sets

while, like it, one of the infinite cycles of w' is creative. This completes the

proof of Theorem 1.7.

2. Normal subgroups of Rm- In [SU(1); 0(1)], Schreier-Ulam, and previ-

ously Onofri, have shown that

S„DFD AD{e}

is the unique composition series for Sx. In this section we establish, through

a sequence of lemmas, that the analogous result holds for a group Rm, of

permutations recursive in an arbitrary set, Af. It will be shown that

RmDFD AD{e}

is the unique composition series for any such RM. The group F is the sub-

group of Sx composed of permutations moving only finitely many natural

numbers. Each such permutation is recursive and hence, FQRm, for any

MÇLN. Moreover, it is clear that F is normal in RM. The subgroup A, of F,

consists of those finite permutations which are even and hence is a subgroup

of F of index 2, and thus is maximal normal in F. The simplicity of A follows

in the same way that the simplicity of the alternating group on re-letters,

re ̂ 4, is proven.

We shall show that any normal subgroup G, of Rm, which contains a non-

finite permutation, is all of Rm (Theorem 2.1). Hence F is maximal normal

in Rm- Presuming the result of 2.1, it is easily seen, by using the Jordan-

Holder theorem and the elementary isomorphism theorems for groups, that

the only normal subgroups of Rm are those in the composition series

RmDFD AD {«}.

Theorem 2.1. If G is a normal subgroup of Rm, and if G contains a permu-

tation, it, which moves an infinite number of numbers, then G = Rm-

Proof. The proof is contained in four lemmas. The first lemma was ob-

tained in [SU(1)], although here the proof is shortened, while the next two

and their proofs are close to results obtained in [0(1) ]. The level of presenta-

tion in the proofs of these four lemmas, is expository, which means that

>•-
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rix) =

liberal use is made of Church's Thesis, to avoid writing systems of recursion

equations. Henceforth, a permutation which moves an infinite number of

numbers is called an infinite permutation.

Lemma 2.2. If Gis a normal subgroup of Rm, containing an infinite permuta-

tion, w, then G contains a permutation, t, with infinitely many disjoint 2-cycles.

Proof.    Since    it    is    infinite,    we    may    define    an    infinite    set

X= {xo<Xi<x2< • ■ • }, recursive in M, as follows:

x0 = juz(ir(z)  ^ z),

xk = iizl z > max \ir~lix¿), Xi, irix,)) &7r(z) j± z\.

The set Y = X\JirX is infinite, recursive in M, and the elements of Y;

Xo,irixo), Xi,irixi), ■ ■ ■ are all distinct since it is a permutation. We may now

define a permutation, a, recursive in M, as follows:

7r(x)        if x C X,

Xi+i if x C ttX and 7r_1(x) = x; for i even,

Xi-i if x C ftX and 7r-1(x) = Xi for i odd,

x if x ($ F.

If we use a to conjugate w, we get the following picture:

7T  =    •   •   •   , Xo, 7t(x0),   •   ■   •   ,  Xl, 7t(Xi),   •   •   •  , X2, 7r(x2),   •   ■   •  , X3,   (7TX3),   •   •   •

0-7rer 1 =  • • • , x(x0), X\, • • • , ir(xi), Xo, • • • , ir(x2), x3, ■ ■ ■ , 7r(x3), x2, • • • •

Since er is recursive in M, aCRia, and since G is normal aircr~lCG. Then

oiro~lTrCG. Let T = o-ira~1ir. It is easily seen that t has the infinitely many

2-cycles

(x0, Xi), (x2, x3), (#4, x6), • • • , ix2k, x2k+i), • • • ,

and this concludes the proof of Lemma 2.2.

In preparation for the next lemma we note that if X and Y are infinite

sets with infinite complements (such sets we shall call C-infinite), which are

recursive in M, and if fx,fy,fx and/y are one-one functions, recursive in M,

which enumerate the indicated sets, then, there is a permutation, vCRm,

so that, for all x:

o-ifxix)) = fvix),       crifxix)) =fyix).

This result, restated, is that Rm is infinitely transitive with respect to C-

infinite il7-recursive sets, and is immediate. It follows from the next lemma
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that a normal subgroup of Rm is infinitely transitive with respect to C-

infinite Af-recursive sets, if and only if it contains an infinite permutation.

Lemma 2.3(7). Let G be a normal subgroup of Rm containing a permutation,

it, with infinitely many disjoint 2-cycles. If X is a C-infinite set, recursive in M,

and /i and fi are two M-recursive, one-one functions enumerating X, then there

is pEG so that, for all x, p(fi(x)) =fi(x).

Proof. The lemma follows immediately from the following result, (a) : If

X and Y are Af-recursive, infinite sets, with Y a subset of X, and if X— Y

is infinite, then, if fx and/r are one-one Af-recursive functions enumerating

X and Y, there is a piEG so that, for all x, pi(fx(x)) =Íy(x).

To obtain the proof of (a), we define an infinite Af-recursive set, 73, whose

elements are selected from disjoint 2-cycles of the Af-recursive permutation,

it, in such a way that infinitely many 2-cycles of tt are not represented in 73.

We may represent w (effectively in Af) as follows :

7T = (xo, xi)(x2, x3) - ■ ■ (xik, Xik+i) ■ ■ ■ y

where, for all k; X3k<xu+i, xik<Xik+i, and y contains no 2-cycles. Define 73

to be the C-infinite Af-recursive set {¡C4*|A = 0, 1, 2, • • ■ } and let/B be the

Af-recursive function which enumerates 73 in increasing order. Then, by re-

marks preceding the lemma, there is an Af-recursive permutation, £, which,

for all x, gives £(/*(*)) =fx(x). Let <r<=^r^~1. Then oEG. Note that a has the

cycle structure of ir and that distinct elements of X appear in distinct 2-cycles

of cr. By hypothesis of result (a) and the construction of a, the two sets

X \J aX = {/x(0), o-/x(0),/x(l), rfxil), •■■},

XVJ Y = {/x(0),/r(0),/x(l),/r(l), • • •}

are C-infinite, Af-recursive, and, there is llEPm which sends the elements

of XyJcrX onto the elements of X\JY, in the order indicated, i.e., for all x:

fi(fz(x)) =fx(x),        ß(o-fx(x)) =fr(x).

Finally, let pi = po-p~1, and result (a) follows. This completes the proof of

Lemma 2.3.

Lemma 2.4. Let G be a normal subgroup of Rm having the property: If X is

a C-infinite, M-recursive set, and /i and fi two M-recursive, one-one, functions

enumerating X, then there is irEG so that, for all x, w(fi(x)) =fi(x). Further, let

pERm be an arbitrary permutation with infinitely many disjoint 2-cycles and

infinitely many numbers not in 2-cycles, then: (conclusion of the lemma) pEG.

Proof. (It will be noted that the proof depends only on the existence of an

Af-recursive, C-infinite subset closed under p, Ai, which in this case we take

to be the set of elements in 2-cycles.) It is possible, effectively in Af, to de-

(7) The ideas of this proof and the next are from [0(1)].
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compose Ai into an infinite union of infinite Af-recursive sets, which we call

X, Y, A2, As, • • ■ . (When the recursion equations are written, these sets

need not make an overt appearance, the equations for the Af-recursive per-

mutation £ being produced directly. Here however, the aim is exposition and

the idea, rather than the detail of the formal proof is presented.) We denote

the elements of these sets, and Ai, as follows.

X = {xi, Xi, x3, • • ■ },

y = [yi,yt,yt, ■ ■ ■ },

A\ = {an, an, aiz, • ■ • },

A2 = {a2i, a22, a23, • • • j,

Ak = {flu, aki, aks, • ■ • ;,

The sets Ai, A2, As, ■ ■ • are all Af-isomorphic and it is possible (effectively

in M) to produce a sequence of Af-isomorphisms, a2, <r3, at, • • • ; where, for

all i and j,

<n(ai,) = an, i> L/ è 1.

Now, since Ai is an il7-recursive closed set for p, we may define an if-recursive

permutation pi by:

/ \ .    íp(*)       ^íxC Ai,

\x if x (£ Ai.

Next, we use the permutations &i to "induce" permutations p2, p3, pi, • • • ,

on the sets A2, A3, At, • • • , by conjugation; Pi = o-ipiar1. The permutation p¿

possesses, on Ait the same cycle structure that pi has on ^4iand is the identity

on Ai.

The product(8) £ = pip2p3 • • • pk ■ ■ ■ , of the infinitely many disjoint, pi,

is an Jl7-recursive permutation mapping each Ai upon itself and which is the

identity on IU F. Let

A = Y\J Ai\J A2\J AZ\J • • • ;

then A is C-infinite and Ai-recursive. Let its elements, Wi=fA(i), be enumer-

ated by the one-one Af-recursive function fA. Let

B= {{(wo), f(wi), {(an), • "I-

Then A=B and both/¿ and £/U are Af-recursive, one-one functions enumerat-

ing A. By hypothesis, there is pCG so that, for all i, ßfA(i) =£fA(i), or, for all

(8) Of course, there is no infinite product in a permutation group. However, when the

permutations involved act, as here, on disjoint sets of elements the meaning is clear.
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i, n(Wi) =Z(Wi) ; and so that p(X) = X. Thus, p. is the identity on F and may

be represented

M = ßßip2ß3 ■ ■ •

where ß is a permutation on X. We now define an M-recursive permutation v,

as follows:

v(Xi)     =   Xi,

v(aii) = a2i,

v(a2i) = au,

viyn-i) = y<,

v(yii) = an,

and consider the conjugate 6 of p, under v, d = vpv~l. Now, 6 may be repre-

sented

6 = ßp2pzpi • • •

and, since G is normal, 6CG. Then 0_1£G. But, pi=pd~i and thus, piEiG.

To complete the proof, the roles of Ai and ^4i are reversed, to prove that

the Af-recursive permutation

(p(x)       if x C Ä~i,

\x if x C Ai

belongs to G. Then p = piUiCG and the proof of Lemma 2.4 is complete.

Lemma 2.5. Let t be an arbitrary permutation of N. It is possible to express

it as a product, w = ir2iri of two permutations recursive in ir such that both iri and

tt2 possess infinitely many disjoint two-cycles and infinitely many numbers not

in two-cycles.

Proof. While it is possible to give a direct construction which explicitly

determines iri and ir2 simultaneously recursively in w, the following proof is

much simpler and serves the present purpose. We distinguish several cases:

(i) it has infinitely many fixed points.

(ii) 7T has finitely many fixed points, but infinitely many 2-cycles.

(iii) 7T has finitely many elements of order ^2, but infinitely many 3-

cycles.

(iv) it has finitely many elements of order ^3, and therefore infinitely

many elements of order > 3.

In case (i), there is an infinite ir-recursive set, Pi= \pi<p2<pz< • ■ ■ },

where the pi are the fixed points of it. Define:

«"I   =   ipl, P3)ip2)(Pi)(Ps, Pl)(pl)(PÙ   '",

7T2 = iri on Pi.

For xÇJEPi, see comment below.
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Incase (ii) there is an infinite 7r-recursive set Pi= {pi,ir(pi),pi, (^pi), ■ ■ ■}

composed of the numbers in 2-cycles, selected so, that, for all i, pi<ir(pi) and

pi<pi+i. Define:

Tl  =   (Pi,  APÙ)(p2)(T(pl))(p3,  7r(/»3))(/>4)M/»4))

ti = (pi)(ir(pi))(pi, Tr(p2))(ps)(Tr(p*))(pi, t(#0)

In case (iii), there is an infinite 7r-recursive set,

^3  =   {íl, T(Pl), TT2(Pl), Pi, *(Pl),  TT2(Pi),   •   •   •   },

composed of the number in 3-cycles of it, selected so that, for all i, pi<ir(pi),

pi<ir2(pi) and pi<pi+u Define:

ti = (pi)(ir(pi), *KPi))(Pi)(-k(PÙ, t2(/»2)) • • • ,

T2 = (pi, ir(pi))(*\pi))(p2, t(/»2))(x2(/»2))

In each of the cases above, define wi = ir on the complement of P,-, and 7Tj

= identity, on complement P¿.

In case (iv), we proceed as follows. First, we define a 7r-recursive set

X— {xo<Xi<Xi< ■ • • }, by:

Xo = pz (z, tt(z), 7t2(z), 71^(2) are all distinct),

xk=pz (z>xk-i, and z, tt(z), t2(z), tt3(z) are all distinct, and, for no j<k,

— 3gi^3, is z=iri(xj)).

Clearly, X is infinite and the infinite ir-recursive sets X, ir(X), ir2(X) and

r'(X) are all disjoint. Let A =XUTrXKJw2XVJw3X. For xE~I, we define

7Ti(x)=x. For xEA, we proceed as follows: For each index 2A, define ir\ to

have the following 4-cycle:

(xn, ir(x2k), T2(xik), TT3(xik)).

For each index 2A + 1, define wi to have the two 2-cycles:

(Xîk+l, v3(xik+i)), (-¡¡-(xnc+i), T2(xik+i)).

This completely defines tti to be recursive in tv.

We now let 7r2 = 7r7rr1. It is immediate that wi has the properties of the

lemma, and to see that 7r2 also has, we note that, for Xik, 7r2 has the 1-cycles:

(rr(xik)),     (ir2(xik)),     (T3(x2k))

and, for x2k+i, the cycles:

(ir2(x2k+i)),        (v(xu+0, t3(#2*+i)).

This completes the proof of Lemma 2.5.

Returning now to the proof of Theorem 2.1, let G be a normal subgroup

of Rm, containing an infinite permutation. By Lemmas 2.2, 2.3 and 2.4, G

also contains every member of 7?^ which possesses a C-infinite closed set of

natural numbers. By Lemma 2.5 any member tERm can be expressed as
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the product ir27Ti, of two other members of Rm, each of which possesses a C-

infinite closed set (the set of numbers in 2-cycles). Thus G = Rm, and Theorem

2.1 is proved. The following corollaries are immediate consequences of the

fact that F is maximal normal in Rm. Similar results hold for the group Sx,

but are not specifically noted in [SU(1) or 0(1)].

Corollary 2.6. Any recursive permutation (more generally, recursive in M)

can be represented as a finite product of recursive cycles (recursive in M).

Proof. The subgroup of R generated by the cycles is a normal subgroup

containing an infinite permutation. Hence, it is all of R. A similar remark

yields :

Corollary 2.7. For any n^2, any recursive permutation (generally, recur-

sive in M) can be represented as a finite product of recursive permutations (re-

cursive in M) of order n.

3. The group Ar. The group Ar has been defined in the introduction. The

discussion of this section could be phrased more generally; it is applicable in

particular to the group of hyperarithmetical permutations (defined analo-

gously to Ar), and to any group Aru, of permutations arithmetical in an arbi-

trary set, Af.

Theorem 3.1. Two members, iti and ir2 of Ar are conjugate if and only if

they have the same cycle structure.

Proof. The proof of this theorem is straightforward but somewhat tedious.

We describe the idea, and the details can easily be supplied. From known

facts about the arithmetical hierarchy, there is an arithmetical set, Af, such

that both tti and ir2 are recursive in Af. The plan of the proof is to define a

permutation, a, arithmetical in Af, which carries cycles of wi onto cycles of 7r2,

preserving algebraic order. This will establish sufficiency; necessity is im-

mediate.

From Lemma 1.0, there are choice-sets, 2x and 22 for 7Ti and ir2 respec-

tively, arithmetical in Af. It is straightforward to construct a 1-1 partial func-

tion, <p, arithmetical in Af, mapping 2i onto 22, and preserving algebraic

order. It is also straightforward to construct functions, arithmetical in Af,

"identifying," for any x, the elements yi(x) and y2(x), of the respective choice-

sets 2i and 22, belonging to the same 7Ti (respectively ir2) cycle to which x

belongs. In the same way, the "predecessor (respectively successor) number"

of x relative to yi(x) and y2(x) can be given by functions arithmetical in Af.

(The ^-successor number for x is the least k so that 7rf*(x) =yi(x), etc.) In

terms of these arithmetical functions (in Af), the permutation a can be ex-

plicitly defined, to carry each x into an appropriate predecessor (respectively

successor) of 4>(yi(x)). The resulting permutation, a, will be arithmetical in

Af and hence a member of Ar.

Using the result of Theorem 3.1, it would be possible to prove the com-
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position series result for AT (Theorem 3.2) in a manner quite analogous to

that used in [SU(1)]. However, here the result follows almost immediately

from Theorem 2.1.

Theorem 3.2. Let G be a normal subgroup of Ar, containing an infinite

permutation, tr. Then G = AT.

Proof. Ar is the union of groups RMi, AT = \JïL0Rjfi, where Afo = 0 and

Af¿= Mi-i (where the prime denotes the "jump" operation of the arithmetical

hierarchy). We note that, for all i, RmíDRmí-í- Now, ttERmí for some least

i, say i = m.

GC\Rm„ is normal in Rm„- Thus, by Theorem 2.1, Gr\RMm = RMm- More-

over, Gr\RMi = RMi for all i^m, since ttERmí for all i^m. Thus, for all

j'^ra, G^.Rmí- Then G2U"_0 Rmí^2At. Since AT^G, we have ^4r = G, and

Theorem 3.2 is proved.

Corollary 3.3. Ar~2)FZ)AZ){t} is the unique composition series for Ar.

Proof. By Theorem 3.2.

We note, in concluding this section, that corollaries similar to 2.6 and 2.7

can be added here, stating that any arithmetical permutation (hyperarith-

metical permutation) can be expressed as a product of a finite number of

arithmetical (hyperarithmetical) cycles, or as a finite product of arithmetical

(hyperarithmetical) permutations of order re, for any re 2:2.

4. Automorphism groups. In [SU(2)], Schreier and Ulam prove that S„

and its group of automorphisms are isomorphic. Since the center of Sx (and

of the groups of this paper) can easily be shown trivial, this follows from the

result that any automorphism of S«, is an inner automorphism. In this section,

we extend this latter result to a wide family of subgroups of Sx, including all

discussed in this paper. Interestingly, the proof in this case seems to require

the normal subgroup result, Theorem 2.1, specifically Corollary 2.7, while the

proof of the aforementioned result for Sx is independent of the corresponding

normal subgroup result for Sx. The proof we give here is, in detail, identical

to the proof in [SU(2) ], except for the last two parts. We repeat their proof for

completeness.

Let a subgroup, G, of SM be called effectively closed, if the set of permuta-

tions recursive in elements of G is contained in G. All of the groups 7?, Rm,

Ar, of this paper are effectively closed.

Theorem 4.1. Let G be a subgroup of Sx having the following two properties:

(a) G is effectively closed;
(b) GD)F, G^F and for any normal subgroup G' ^ G, containing an infinite

permutation, it is true that G' = G.

Let ip be an automorphism of G. Then there is cr£G so that, for all tEG,

^(TL= <""cr '•
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The statement of the theorem can be shortened to : any effectively closed

subgroup of SK, having the normal subgroup property (b) is isomorphic to

its automorphism group.

Proof. We first note that, if yp is an automorphism of G, t an arbitrary

member of G and Afi and Af2 arbitrary subsets of G, then

(i) ^(r) has the same algebraic order as t.

(ii) If UMi) QM2 and yp-\M2) QMu then ^(Afi) = Af2.
(iii) If C is a conjugacy class of G, then ypiC) is a conjugacy class of G.

Following [SU(2)], we define C* to be the conjugacy class of the trans-

position (1, 2) in G. We shall show that C* is the unique conjugacy class, C,

of elements of order 2, in G with property (a).

(a) If ffi, a2, Ti, t2CC and the products wi and a2r2 are both elements of

order 2, then gïti and o2t2 are conjugate.

Certainly C* is a conjugacy class with property (a). If C is another con-

jugacy class of elements of order 2 in G, then the following possibilities must

be considered for the disjoint cycle factorization of an element r¡ of C.

(1) r¡ has finitely many (^2) transpositions,

(2) rj has finitely many fixed points (possibly none),

(3) rj has infinitely many fixed points and infinitely many transpositions.

Corresponding to these various cases we must show how to pick oi, <r2, n, r2C C

to violate (a).

(1) <r1=(l,2)(3,4) • • • (2«-1,2w);t1=(2W4-1,2«4-2) • ■ • (4n-l,4n);

(t2 = <ti;t2=(1, 2)(2»4-l, 2«4-2) • • • (4ra-3, 4«-2)

(2) The case given is for no fixed points. An obvious modification works

when any finite number of fixed points is assumed.

<n = (2,  3)(1, 4)(6,  7)(5, 8) • • • ; n = (1, 3)(2, 4)(5,  7)(6, 8) • • • ;
a2 = (2, 3)(1, 4)(5, 6)(7, 8) • • • ; r2 = (1, 3)(2, 4)(5, 6)(7, 8) • • • .

(3) ffl=(l, 2)(5, 6)(9, 10) ■ • • ; n=(3, 4)(7, 8)(11, 12) • • • ; a2 = <n;

t,= (5, 6)(9, 10)(13, 14) • • •.

Now, property (a), as a property of conjugacy classes, is preserved under

automorphism and, since by (iii) ip(C*) is some conjugacy class of elements

of order 2 (by (i)), \p(C*) = C*. Following [SU(2)], consider the set Tn

= {(n, x) | xCN} of all transpositions (n, x) as x runs through the set of all

natural numbers, N. By noting that the product of any two elements of T„

is of order 3 and that, when the product of two transpositions is of order 3

they contain precisely one common element, we easily show, using (ii), that

yp(T„) = Tm for some mCN.

The mapping \l'(Tn) = Tm induces a map a: N—>N; ff(n)—m, which is

easily shown to be a permutation. Thus aCSx and we shall ultimately show

a CG, using the effective closure of G.

We define, as in [SU(2)], the isomorphism of G,

3>(t) = <t Y(t)<7.
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It is immediate from the definition of cr that <£(r) is the identity for any

transposition t. Exactly as in [SU(2) ] we show that <£ is the identity for any

element r, of G, of order 2. For completeness we repeat the argument.

Suppose ^(r)=r]7éT, for an element tEG of order 2. Then there is a

natural number XiEN so that r/(xi) =x2t¿t(xi). Let co be the transposition

(xi, x2). Then cot? is of order g 2, while cut is of higher order. This is a contra-

diction, by (i), for

f(ojr) = $(co)$(r) = œrj.

Thus, <£ is the identity for every element of order 2 in G. At this point, in

the proof of [SU(2)], it is immediate that <3? is the identity on all of Sx, for

it is easy to see how to decompose any member of S„ into a product of two

others, each having order 2. In the present case, a corresponding result follows

from hypothesis (b) for G. If (b) holds, then there are infinite permutations

in G, and any normal subgroup of G, containing one such must be all of G.

Thus, as in Corollary 2.7, the subgroup generated by elements of order 2 is

all of G. Then, any element of G is a finite product of elements of order 2 in

G, and thus $ is the identity on G.

It follows that \p(r) =oto~x for all tEG. We now use the effective closure

of G to argue that a EG. Let t be the recursive permutation (hence recursive

in every element of G).

r = ( • • • , 7, 5, 3, 1, 2, 4, 6, • • • ),

errera =(•••, <r(7), o-(S), a(3), <r(i), <r(2), <r(4), „(6), • • • )

is a member of G, since \¡/ is an automorphism of G. But, it is clear that a set

of recursion equations for or can be written in terms of crrcr-1, and hence, cr is

recursive in an element of G. Thus, by effective closure, a EG. The proof of

4.1 is now complete.

Corollary 4.2. Every automorphism of any of the groups Rm, or Ar, is an

inner automorphism.
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