Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The Liouville theorem for a quasi-linear elliptic partial differential equation


Authors: S. Elwood Bohn and Lloyd K. Jackson
Journal: Trans. Amer. Math. Soc. 104 (1962), 392-397
MSC: Primary 35.47
DOI: https://doi.org/10.1090/S0002-9947-1962-0139840-6
MathSciNet review: 0139840
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] Lars V. Ahlfors, Complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1978. An introduction to the theory of analytic functions of one complex variable; International Series in Pure and Applied Mathematics. MR 510197
  • [2] Serge Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927), no. 1, 551–558 (German). MR 1544873, https://doi.org/10.1007/BF01475472
  • [3] James Serrin, On the Harnack inequality for linear elliptic equations, J. Analyse Math. 4 (1955/56), 292–308. MR 0081415, https://doi.org/10.1007/BF02787725
  • [4] L. Bers and L. Nirenberg, On linear and non-linear elliptic boundary value problems in the plane, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 141–167. MR 0076982
  • [5] E. Hopf, Elementarie Betrachtungen über die Losungen partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Sitzungsberichte Preuss. Akad. Wiss. 19 (1927), 147-152.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.47

Retrieve articles in all journals with MSC: 35.47


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1962-0139840-6
Article copyright: © Copyright 1962 American Mathematical Society