ON RIESZ AND RIEMANN SUMMABILITY

BY

DENNIS C. RUSSELL(1)

This paper investigates an inclusion relation between summability of a series of real or complex terms by Riesz typical means and by a generalised form of Riemann summability. We begin by defining the two summability methods.

Riesz’ typical means. Let \(\kappa \geq 0 \), \(0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_n \to \infty \), and write

\[
A^\kappa_\lambda(\omega) = \sum_{\lambda_\nu < \omega} (\omega - \lambda_\nu) \nu a_\nu \quad \text{for } \omega > \lambda_0,
\]

\[
A^\kappa_\lambda(\omega) = 0 \quad \text{for } \omega \leq \lambda_0.
\]

If \(\omega^{-\kappa} A^\kappa_\lambda(\omega) \to s \) as \(\omega \to \infty \) then we write

\[
\sum_{n=0}^{\infty} a_n = s(R, \lambda_n, \kappa);
\]

if \(A^\kappa_\lambda(\omega) = O(\omega^\kappa) \) then \(\sum a_n \) is bounded \((R, \lambda_n, \kappa) \). In the case \(\kappa = 0 \) we note that

\[
A^\kappa_\lambda(\omega) = A^0_\lambda(\omega) = \sum_{\lambda_\nu < \omega} a_\nu = a_0 + \cdots + a_n = A_n
\]

for \(\lambda_n < \omega \leq \lambda_{n+1} \) \((n = 0, 1, \cdots)\). It is well-known that \(A^\kappa_\lambda(\omega) \) is absolutely continuous in any finite interval of values of \(\omega \), for \(0 < \kappa \leq 1 \), and differentiable with continuous derivative if \(\kappa > 1 \); in fact,

\[
(1) \quad \frac{d}{d\omega} A^\kappa_\lambda(\omega) = \kappa A^{\kappa-1}_\lambda(\omega) \quad (\kappa > 1), \quad \frac{d}{d\omega} A^1_\lambda(\omega) = A_\lambda(\omega) \quad (\omega \neq \lambda_n).
\]

As shown in Hardy and Riesz [9] or Chandrasekharan and Minakshisundaram [5], we also have, for \(\kappa \geq 0, \rho > 0 \),

\[
(2) \quad A^{\kappa+\rho}_\lambda(\omega) = \frac{\Gamma(\kappa + \rho + 1)}{\Gamma(\kappa + 1)\Gamma(\rho)} \int_0^\omega (\omega - t)^{\kappa-1} A^\rho(t) \, dt.
\]

We shall employ the limitation theorem for Riesz means:

If \(A^\kappa_\lambda(\omega) = O(\omega^\kappa) \), \(\kappa \geq 0 \), then, for \(r = 0, 1, \cdots, [\kappa] \),

Received by the editors August 17, 1961.

(1) This paper was written while the author was a Fellow at the 1961 Summer Research Institute of the Canadian Mathematical Congress.
\(A_\lambda^*(\omega) = O(\omega_\lambda^{\Delta_{\lambda}}), \)

where \(\lambda_n < \omega \leq \lambda_{n+1} \) and \(\Delta_n = \lambda_{n+1} / (\lambda_{n+1} - \lambda_n) \).

The form of this theorem stated in [9, Theorem 22] and [5, Theorem 1.62] (we use \(O \) in place of \(o \)) is \(A_\lambda^*(\omega) = O(\lambda_{n+1}^{\lambda_*}) \); the stronger form (3) is a special case of a result of Borwein [1, Lemma 2].

Finally, we need the “consistency theorem” for Riesz means:

(4) \(\text{If } A_\lambda^*(\omega) = O(\omega^\kappa), \quad \kappa \geq 0, \text{ then } A_\lambda^*(\omega) = O(\omega^p) \quad \text{for } p \geq \kappa. \)

Riemann summability. Let \(\mu > 0, 0 \leq \lambda_0 < \lambda_1 < \cdots < \lambda_n \to \infty, \)

\[f_\mu(x) = \left(\frac{\sin x}{x} \right)^\mu (x \neq 0), \quad f_\mu(0) = 1; \]

if the series

\[R_\lambda^\mu(h) = \sum_{n=0}^{\infty} a_n f_\mu(\lambda_n h) \]

converges for each \(h \) in a deleted neighbourhood of the origin, and if \(R_\lambda^\mu(h) \to s \) as \(h \to 0 \), then we write

\[\sum_{n=0}^{\infty} a_n = s \quad (R, \lambda_n, \mu). \]

The case where \(\lambda_n = n \) and \(\mu \) is a positive integer is usually known as Riemann summability. The more general definition above has been given by Burkill [2] for \(\mu = 1, 2 \), and by Burkill and Petersen [4] for \(\mu \) rational with odd denominator (which ensures that \(f_\mu(x) \) is real); alternatively, for any \(\mu > 0 \) we may define \((\sin x)^\mu = e^{\mu x}(\sin x)^\mu \) when \(x > 0, \sin x < 0, \) and \(f_\mu(-x) = f_\mu(x) \). In fact, any definition is suitable for our purpose, which ensures that

\[\frac{d}{dx} (\sin x)^\mu = \mu(\sin x)^{\mu-1} \cos x, \quad (\sin x)^\mu \leq 1 \quad (\mu > 0), \]

\[(\sin x)^\mu \sim |x - \pi n|^\mu \quad (x \to \pi n); \]

and since \(f_\mu(x) \) is an even function we may suppose throughout, in the definition of \((R, \lambda_n, \mu) \) summability, that \(h > 0 \).

Burkill [3] has shown that if \(\lambda_0 = 0, 0 < \mu \leq \lambda_{n+1} - \lambda_n \leq q, \) and \(\kappa \) is a positive integer, then summability \((R, \lambda_n, \kappa) \) implies summability \((R, \lambda_n, \mu) \) for \(\mu > \kappa + 1 \) (and \(\mu \) rational with odd denominator). Burkill and Petersen [4] have proved this for \(\kappa = 1 \), remarking that from the point of view of applications (for instance, to the theory of almost periodic functions—see, for example, [2] and [11]) it would be desirable to proceed from a nonintegral Riesz
mean to an integral Riemann mean. The present paper furnishes such a result, which also contains the theorem referred to above; we prove, more generally, the following

Theorem. If \(\sum_{n=0}^{\infty} a_n = s(R, \lambda_n, \kappa) \), \(\kappa \geq 0 \), and if \(\sum_{n=1}^{\infty} \lambda_n^\mu \lambda_n^{-\mu} \) converges, where \(\lambda_n = \lambda_{n+1}/(\lambda_{n+1} - \lambda_n) \) and \(\mu > \kappa + 1 \), then \(\sum_{n=0}^{\infty} a_n = s(R, \lambda_n, \mu) \).

In the special case \(\lambda_n = n \), \((R, \lambda_n, \kappa) \) is equivalent to Cesàro summability \((C, k)\), and \((R, \lambda_n, \mu) \) becomes ordinary Riemann summability, which will be denoted by \((R, \mu)\); if, in addition, \(\mu \) is a positive integer greater than 1, we obtain a result of Verblunsky [12] that \((C, k) \subseteq (R, \mu)\) for \(0 \leq k < \mu - 1 \), \(\mu = 2, 3, \ldots \); Hardy and Littlewood [7, 8] had proved earlier that \((C, k) \subseteq (R, 1)\) for \(-1 \leq k < 0\). Kuttner [10] has proved that \((R, \mu) \subseteq (C, \mu + \delta)\) for \(\delta > 0 \), \(\mu = 1, 2 \), and that the result is false for \(\mu = 3 \); and he has shown that \((R, \mu) = (R, n, \mu) \subseteq (R, \log n, \mu)\) for \(\mu = 1, 2 \). See also Hardy [6, Appendix III].

Some lemmas are needed. We remark that in general throughout this paper \(K \) will denote a positive quantity independent of the particular variables under consideration, and not necessarily the same at each occurrence; thus, for example, in the first lemma the constants \(K \) may depend on \(\mu \) or \(p \), but are independent of \(x \) or \(n \).

Lemma 1. Let \(p \) be a non-negative integer, and define \(f_0(x) = 1 \).

(a) For any \(\mu \geq p \), \(f_\mu^{(p)}(x) \) is continuous everywhere, and

\[
| f_\mu^{(r)}(x) | \leq K (0 < x < 1), \quad | f_\mu^{(r)}(x) | \leq K x^{-p} (x \geq 1), \quad r = 0, 1, \ldots, p.
\]

(b) If \(\mu > p \) then \(f_\mu^{(p)}(n\pi) = 0 \) \((n = 1, 2, \ldots) ; r = 0, 1, \ldots, p \)\). Also \(f_\mu^{(p+1)}(x) \) is continuous in \((n - 1)\pi < x < n\pi \ (n = 1, 2, \ldots) \) and, in each such interval, satisfies the inequality

\[
| f_\mu^{(p+1)}(x) | \leq K n^{-p} \left\{ (n\pi - x)^{\mu-p-1} + [x - (n - 1)\pi]^{\mu-p-1} \right\}.
\]

Proof. We first note that, for each non-negative integer \(s \),

\[
| f_1^{(s)}(x) | \leq K (0 < x < 1), \quad | f_1^{(s)}(x) | \leq K x^{-1} (x \geq 1);
\]

the first of these inequalities is an immediate consequence of the fact that \(f_1(x) \) has a power series expansion with infinite radius of convergence, while the second follows from the formula

\[
f_1^{(s)}(x) = \sum_{k=0}^{s} \binom{s}{k} (-1)^k k! x^{s-k} \sin \left[x + \frac{1}{2} (s - k)\pi \right].
\]

It is clear that \(f_\mu(x) \) is differentiable as often as we please, except perhaps at \(x = \pm \pi, \pm 2\pi, \ldots \); also \(f_\mu^{(p+1)}(x) = (\mu + 1) f_\mu(x) f_\mu^{(p)}(x) \), and on differentiating \(p \) times this gives

\[
(\text{f)} \text{ This inequality is also given (for } \mu \text{ rational with odd denominator) in [3, Lemma 2].}
\]
which enables us to proceed by induction on p. We shall merely verify the inequalities (5) and (6).

(a) Suppose that, for some fixed non-negative integer p and for any $\mu \geq p$, (5) holds; then since $\mu \geq p$ implies $\mu + 1 \geq p$, (5) also holds with $\mu + 1$ in place of μ (and $\tau = 0, 1, \ldots, p$). Further, (8) shows, by (7) and the inductive hypothesis, that $f_{\mu+1}(x)$ is bounded in $(0, 1)$ and is $O(x^{-\mu})$ as $x \to \infty$. Since (5) may be verified directly from the definition of $f_{\mu}(x)$ in the case $p = 0$, it follows that (5) is true for any non-negative integer p and any $\mu \geq p$.

(b) If $\mu \geq p + 1$ then (6) is equivalent to $|f_{\mu+1}(x)| \leq Kn^{-\mu}$ for $0 \leq (n - 1)\pi < x < n\pi$, which has already been proved in part (a) of the lemma. Suppose, therefore, that for some fixed non-negative integer p and $0 < |n\pi - x| \leq \pi/2$ ($n = 0, 1, \ldots$),

$$|f_{\mu+1}(x)| \leq Kn^{-\mu} |n\pi - x|^{p+1}$$

for $p < \mu < p + 1$;

in addition, we already know from (5) and (7) that

$$|f_{\mu}^{(r)}(x)| \leq Kn^{1-\mu} (r = 0, 1, \ldots, p),$$

$$|f_{\mu}^{(s)}(x)| \leq Kn^{1-\mu} (s = 0, 1, \ldots).$$

Now use (8) with $p + 1$ in place of p, together with (9) and (10), and we get

$$|f_{\mu+1}(x)| \leq Kn^{1-\mu} |n\pi - x|^{p+1} + Kn^{1-\mu};$$

or, writing ν for $\mu + 1$,

$$|f_{\nu}(x)| \leq Kn^{1-\nu} |n\pi - x|^{p+2}$$

for $p + 1 < \nu < p + 2$.

Since we may verify (9) directly for $p = 0$, (9) therefore follows, by induction, for any non-negative integer p; and by combining the results for the two halves of the interval $(n - 1)\pi < x < n\pi$, we obtain (6).

Define $A_{n+1}(A_{p+1})$ and $A_{1}(A)$ as before, we now prove

Lemma 2. If $\mu \geq 1$, $\lambda_n < \Omega \leq \lambda_{n+1}$ ($n = 0, 1, \ldots$), then

$$\sum_{\nu=0}^{n} a_{\nu} f_{\nu}(\lambda, h) = A_{1}(\Omega)f_{\mu}(\Omega h) - h \int_{0}^{\nu} f_{\nu}'(\nu h)A_{1}(\nu h)\,d\nu.$$

Proof. Since $f_{\nu}'(x)$ is continuous for any x, when $\mu \geq 1$, and $A_{1}(\nu) = A$, for $\lambda < \tau \leq \lambda_{n+1}$ we have, for $\lambda_n < \Omega \leq \lambda_{n+1},$
\[h \int_0^a f'_\mu(\tau h) A_\lambda(\tau) d\tau = h \left\{ \sum_{\substack{r=0 \atop \lambda_r \neq 0}}^{n-1} \int_{\lambda_r}^{\lambda_{r+1}} f'_\mu(\tau h) A_\lambda(\tau) d\tau + \int_{\lambda_n}^a f'_\mu(\tau h) A_\lambda(\tau) d\tau \right\} \\
= h \sum_{\substack{r=0 \atop \lambda_r \neq 0}}^{n-1} A_r \left[\frac{1}{h} f_\mu(\tau h) \right]_{\lambda_r}^{\lambda_{r+1}} + h A_n \left[\frac{1}{h} f_\mu(\tau h) \right]_{\lambda_n}^a \\
= A_n f_\mu(\Omega h) - \sum_{r=0}^n (A_r - A_{r-1}) f_\mu(\lambda_r h), \]

by partial summation; and this gives (11).

Now to obtain \(R^\mu_\lambda(h) \) we must let \(n \to \infty \) in (11); the following lemma gives sufficient conditions for the existence of \(R^\mu_\lambda(h) \).

Lemma 3. If \(\sum a_n \) is bounded (or summable) \((R, \lambda_n, \kappa)\), \(\kappa \geq 0 \), and if \(\sum \Lambda^\mu_\kappa \) converges, then \(\sum a_n f_\mu(\lambda_r h) \) converges (absolutely) for each fixed \(h > 0 \).

Proof. If \(\sum a_n \) is bounded \((R, \lambda_n, \kappa)\) then by (3) (with \(r = 0 \)), \(A_n = O(\lambda_n^\kappa) \); moreover, for any fixed \(h > 0 \), \(f_\mu(\lambda_r h) = O(\lambda_n^{-\kappa}) \) as \(n \to \infty \). Hence

\[a_n f_\mu(\lambda_r h) = (A_n - A_{n-1}) f_\mu(\lambda_r h) \]

\[= \{ O(\lambda_n^\kappa) + O(\lambda_{n-1}^\kappa) \} O(\lambda_n^{-\kappa}) \]

\[= O(\lambda_n^\kappa + \lambda_{n-1}^{-\kappa}), \]

and the lemma follows.

Lemma 4. Let \(p \) be a positive integer, \(0 \leq \sigma < 1 \), \(\mu > p \), and

\[I(\alpha) = \int_a^\infty (x - \alpha)^{-\sigma} f_\mu^{(p)}(x). \]

Then

\[|I(\alpha)| \leq Kn^{-\mu} \{(n\pi - \alpha)^{-\sigma} + [\alpha - (n - 1)\pi]^{p-\sigma-1}\} \]

when \((n-1)\pi \leq \alpha < n\pi\), \(n = 1, 2, \ldots \).

Proof. Let \((n-1)\pi \leq \alpha < n\pi\); then

\[I(\alpha) = \left\{ \int_a^{n\pi} + \int_{n\pi}^\infty \right\} (x - \alpha)^{-\sigma} f_\mu^{(p)}(x) = J_1 + J_2, \]

say.

Since, by Lemma 1, \(f_\mu^{(p)}(n\pi) = 0 \) and \(|f_\mu^{(p)}(x)| \leq Kx^{-\mu}(x \geq 1) \), we have, for \(\sigma \geq 0 \), \(\mu > p \), on integrating by parts,

\[|J_2| = |\sigma \int_{n\pi}^\infty (x - \alpha)^{-\sigma-1} f_\mu^{(p)}(x) dx| \]

\[\leq Kn^{-\mu}(n\pi - \alpha)^{-\sigma}. \]
Noting that $0 \leq \sigma < 1$, $\mu > p$, $0 < n \pi - \alpha < \pi$, we now use (6), together with the formula

$$\int_a^b (x - a)^{\alpha - 1}(b - x)^{\gamma - 1} \, dx = (b - a)^{\alpha + \gamma - 1} B(\gamma, \alpha) \quad (\gamma, \alpha > 0);$$

then

$$|J_1| = \left| \int_a^b (x - a)^{-\sigma} f_{\mu}^{(p+1)}(x) \, dx \right|$$

$$\leq Kn^{-r} \left\{ \int_a^b (x - a)^{-\sigma} (n \pi - x)^{\mu - p - 1} \, dx \right\}$$

$$+ \int_a^b (x - a)^{-\rho} [x - (n - 1) \pi]^{\mu - p - 1} \, dx \right\}$$

$$\leq Kn^{-r} \left\{ (n \pi - \alpha)^{\mu - p - \sigma} + (n \pi - \alpha)^{1 - \sigma} [\pi^{\mu - p - 1} + (\alpha - n \pi - \pi)^{\mu - p - 1}] \right\}$$

$$\leq Kn^{-r} \left\{ (n \pi - \alpha)^{-\sigma} + [\alpha - (n - 1) \pi]^{\mu - p - 1} \right\}.$$

Since $|I(\alpha)| \leq |J_1| + |J_2|$, the lemma now follows from (12) and (13).

Proof of the Theorem. We may suppose that $\kappa = \sigma + p - 1$, where $0 \leq \sigma < 1$ and p is a positive integer. By (1) and Lemma 2 we have, for $\mu > p$ and $\lambda_n < \Omega \leq \lambda_{n+1}$,

$$\sum_{r=0}^n a_{\lambda_n}(\lambda, h) = A_\lambda(\Omega)f_\alpha(\Omega h) - h \int_0^\Omega f_\alpha'(\lambda h) \, dA_\lambda(\lambda)$$

$$= \sum_{r=0}^p \frac{(-h)^r}{r!} A_\lambda(\Omega) f_\alpha^{(r)}(\Omega h) + \frac{(-1)^{p+1} \kappa p}{p!} \int_0^\Omega A_\lambda^{(p)}(\tau) f_\alpha^{(p)}(\tau h),$$

after p integrations by parts $(A_\lambda(0) = 0)$. Using (2) with $p = 1 - \sigma$, $\kappa = \sigma + p - 1$, and writing $C = \{\Gamma(\sigma + p) \Gamma(1 - \sigma)\}^{-1}$,

$$\frac{1}{p!} \int_0^\Omega A_\lambda^{(p)}(\tau) f_\alpha^{(p)}(\tau h) = C \int_0^\Omega f_\alpha^{(p)}(\tau h) \int_\tau^\tau (\tau - t)^{-\sigma} A_\lambda^{(p+1)}(t) \, dt$$

$$= C \int_0^\Omega A_\lambda^{(p+1)}(t) \, dt \int_\tau^\tau (\tau - t)^{-\sigma} f_\alpha^{(p)}(\tau h)$$

$$= C \int_0^\Omega A_\lambda^{(p+1)}(t) \, dt \{\int_\tau^\tau - \int_\Omega^\Omega (\tau - t)^{-\sigma} f_\alpha^{(p)}(\tau h)$$

$$= I_1 - I_2, \text{ say.}$$

For each fixed $h > 0$, $\sigma > 0$, $\mu > \rho > 1$, for $t < \Omega$, and for all $\Omega \geq h^{-1}$ we have, on integrating by parts and using $\left| f_\alpha^{(p)}(x) \right| \leq K x^{-\mu} (x \geq 1)$,

$$\left| \int_\Omega^\Omega (\tau - t)^{-\sigma} f_\alpha^{(p)}(\tau h) \right| \leq K \Omega^{-\mu}(\Omega - t)^{-\sigma},$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where K is independent of Ω and t. Since, by hypothesis, $A^{x+p-1}_x(t) = O(t^{x+p-1})$, it then follows that, as $\Omega \to \infty$,

$$|I_1| \leq K \int_0^\Omega t^{x+p-1} \Omega^{-\mu}(\Omega - t)^{-\sigma} dt \leq K \Omega^{p-\mu} \to 0.$$

We now observe that, for $r = 0, 1, \ldots, p-1$, (3) and (5) give

$$A^r_x(\Omega) f_{(x)}^{(r)}(\Omega) = O\{|\Omega^r A^{x-r}_x(\Omega)|\} = O\{|\Delta^r_x \lambda^{-r}_x\}| = O\{|\Delta^r_x \lambda^{-r}_x\}| O\{1 + (\lambda_n/A_n)^r\} = O\{|\Delta^r_x \lambda^{-r}_x\}| + O\{|\lambda_n^{x-r}\| = o(1) + o(1),$$

since $\mu > p > \kappa \geq r$ and $\sum \Delta^r_x \lambda^{-r}_x$ converges; while, by (4) and (5),

$$A^p_x(\Omega) f_{(p)}^{(p)}(\Omega) = O\{|\Omega^p \Omega^{-p}\| = o(1).$$

Thus the series on the right of (14) tends to zero as $\Omega \to \infty$, while (by Lemma 3) the series on the left tends to a limit $\mathcal{R}_x(h)$. Hence the integral on the right of (14) tends to a limit; then, since $I_1 \to 0$, we may let $\Omega \to \infty$ in (15) and substitute the result into (14) to give, for $h > 0$,

$$\mathcal{R}_x(h) = C(-1)^{p+1} \int_0^\infty \phi(h, t) t^{-x} A^x(t) dt,$$

where

$$\phi(h, t) = h^p t^x \int_1^\infty (t - s)^{-\sigma} d_{(p)}(\sigma h).$$

The theorem will then follow if we can show that $t^{-x} A^x(t) \to s$ as $t \to \infty$ implies $\mathcal{R}_x(h) \to s$ as $h \to 0+$. By Hardy [6, Theorem 6], sufficient conditions for this are:

$$\int_0^\infty |\phi(h, t)| dt \leq M \text{ independently of } h > 0,$$

$$\lim_{h \to 0^+} \int_0^T |\phi(h, t)| dt = 0 \text{ for every finite } T > 0,$$

$$\lim_{h \to 0^+} C(-1)^{p+1} \int_0^\infty \phi(h, t) dt = 1.$$

For (20) we can apply (16) to sequences $\{\lambda_n\}, \{a_n\}$ satisfying $\lambda_0 = 0, a_0 = 1, a_n = 0 \text{ for } n \geq 1$ to obtain at once
for any $h>0$, since for the sequences in question
\[A_h^t(t) = t^s (t > 0), \quad \Re x(h) = 1. \]
Now the substitution $x = \tau h$, $\alpha = \tau h$ in (17) gives
\[
\int_0^T |\phi(h,t)| \, dt = \int_0^{Th} \alpha^s |I(\alpha)| \, d\alpha,
\]
where
\[I(\alpha) = \int_\alpha^\infty (x - \alpha)^{-\sigma} df^{(p)}(x). \]
Thus both (18) and (19) will follow if we can show that
\[
\int_0^\infty \alpha^s |I(\alpha)| \, d\alpha < \infty.
\]
But by Lemma 4,
\[
\int_0^\infty \alpha^s |I(\alpha)| \, d\alpha = \sum_{n=1}^\infty \int_{(n-1)\pi}^{n\pi} \alpha^s |I(\alpha)| \, d\alpha
\leq K \sum_{n=1}^\infty n^{-\sigma} \int_{(n-1)\pi}^{n\pi} \left(n\pi^\sigma - (n-1)\pi^\sigma + [\alpha - (n-1)\pi]^{s-\rho} \right) \, d\alpha
\leq K \sum_{n=1}^\infty n^{\sigma-\rho} \quad \text{since } \sigma < 1 \text{ and } \mu > \rho
< \infty \quad \text{when } \mu > \kappa + 1,
\]
so that (21) holds and the proof is complete.

References

Mount Allison University,
Sackville, New Brunswick, Canada