Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Abstract ergodic theorems


Authors: Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea
Journal: Trans. Amer. Math. Soc. 107 (1963), 107-124
MSC: Primary 47.10; Secondary 47.25
DOI: https://doi.org/10.1090/S0002-9947-1963-0150611-8
MathSciNet review: 0150611
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] J. Y. Barry, On the convergence of ordered sets of projections, Proc. Amer. Math. Soc. 5 (1954), 313-314. MR 0062340 (15:964c)
  • [2] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci. U. S. A. 17 (1931), 656-660.
  • [3] D. Blackwell, On a class of probability spaces, Proc. Third Berkeley Sympos. on Math. Stat. and Prob. 2 (1956), 1-6. MR 0084882 (18:940d)
  • [4] N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1955; Chapters III-V.
  • [5] R. V. Chacon, On the ergodic theorem without assumption of positivity, Bull. Amer. Math. Soc. 67 (1961), 186-190. MR 0123196 (23:A525)
  • [6] -, An ergodic theorem for operators satisfying norm conditions, J. Math. Mech. 11 1962), 165-172. MR 0147619 (26:5134)
  • [7] S. D. Chatterji, Martingales of Banach-valued random variables, Bull. Amer. Math. Soc 66 (1960), 395-398. MR 0119242 (22:10008)
  • [8] M. M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276-291. MR 0044031 (13:357e)
  • [9] J. Dieudonné, Sur les espaces $ {L^1}$, Archiv. Math. 10 (1959), 151-152. MR 0105016 (21:3763)
  • [10] J. L. Doob, Regularity properties of certain families of chance variables, Trans. Amer. Math. Soc. 47 (1940), 455-486. MR 0002052 (1:343e)
  • [11] -, Stochastic processes, Wiley, New York, 1953.
  • [12] M. Driml and O. Hans, Conditional expectations for generalized random variables, Trans. Second Prague Conf. on Info. Theory, Prague, 1960. MR 0126862 (23:A4156)
  • [13] N. Dunford and J. T. Schwartz, Convergence almost everywhere of operator averages, J. Rat. Mech. Anal. 5 (1956), 129-178. MR 0077090 (17:987g)
  • [14] -, Linear operators, Part I, Interscience, New York, 1958.
  • [15] N. Dunford and J. D. Tamarkin, A principle of Jessen and general Fubini theorems, Duke Math. J. 8 (1941), 743-749. MR 0005784 (3:207a)
  • [16] W. F. Eberlein, Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc. 67 (1949), 217-240. MR 0036455 (12:112a)
  • [17] I. M. Gelfand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. (N. S.) 4 (1938) 235-284.
  • [18] A. Grothendieck, Espaces vectoriels topologiques, Math. Soc. São Paulo, São Paulo, 1958. MR 0077884 (17:1110a)
  • [19] P. R. Halmos, Measure theory, Van Nostrand, New York, 1950. MR 0033869 (11:504d)
  • [20] -, Lectures on ergodic theory, Math. Soc. Japan, 1956. MR 0097489 (20:3958)
  • [21] E. Hille and R. S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 0089373 (19:664d)
  • [22] E. Hopf, The general temporally discrete Markov process, J. Rat. Mech. Anal. 3 (1954), 13-45. MR 0060181 (15:636b)
  • [23] C. T. Ionescu Tulcea, Mesures dans les espaces produits, Atti Acad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 7 (1950). 208-211. MR 0036288 (12:85e)
  • [24] A. Ionescu Tulcea and C. Ionescu Tulcea, On the lifting property. (II). Representation of linear operators on the spaces $ L_E^r,1 \leqq r < \infty $, J. Math. Mech. 11 (1962) 773-795. MR 0145350 (26:2881)
  • [25] -, Abstract ergodic theorems, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 204-206. MR 0133023 (24:A2859)
  • [26] K. Jacobs, Neuere Methoden und Ergebnisse der Ergodentheorie, Springer, Berlin, 1960. MR 0123676 (23:A1000)
  • [27] M. Jerison, Martingale formulation of ergodic theorems, Proc. Amer. Math. Soc. 10 (1959), 531-539. MR 0117782 (22:8556)
  • [28] M. Jirina, Conditional probabilities on strictly separable $ \sigma $-algebras, Czechoslovak Math. J. 4 (1954), 372-380. MR 0069416 (16:1034j)
  • [29] S. Kakutani, Ergodic theory, Proc. Internat. Congress of Mathematicians 2 (1950), 128-142. MR 0045947 (13:660f)
  • [30] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
  • [31] M. Loève, Probability theory, 2nd ed., Van Nostrand, Princeton, N. J., 1960. MR 0123342 (23:A670)
  • [32] O. Nikodým, Sur la mesure vectorielle parfaitement additive dans un corps abstrait de Boole, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in 8$ ^\circ$ 17 (1938), 1-10.
  • [33] C. Pauc, Prolongement d'une mesure vectorielle jordanienne, C. R. Acad. Sci. Paris 223 (1946), 709-711. MR 0018199 (8:256c)
  • [34] R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math 65 (1943), 108-136. MR 0007938 (4:218f)
  • [35] G. C. Rota, Une théorie unifiée des martingales et des moyennes ergodiques, C. R. Acad. Sci. Paris 252 (1961), 2064-2066. MR 0142147 (25:5540)
  • [36] F. S. Scalora, Abstract martingale conrergence theorems, Pacific J. Math. 11 (1961), 347-374. MR 0123356 (23:A684)
  • [37] J. Ville, Étude critique de la notion de collectif, Gauthier-Villars, Paris, 1939.
  • [38] K. Yosida, An abstract treatment of the individual ergodic theorem, Proc. Imp. Acad. Tokyo 16 (1940), 280-284. MR 0002719 (2:105f)
  • [39] K. Yosida and S. Kakutani, Birkhoff's ergodic theorem and the maximal ergodic theorem, Proc. Imp. Acad. Tokyo 15 (1939), 165-168. MR 0000355 (1:59f)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.10, 47.25

Retrieve articles in all journals with MSC: 47.10, 47.25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1963-0150611-8
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society