
RECURSIVE FUNCTIONAL^ AND QUANTIFIERS
OF FINITE TYPES II(»8)

BY

S. C. KLEENE

In 1957 we put about half of the material we then had on this subject into

Part I [37] of this paper and [18]. (Not all of the topics intended for inclusion

in Part II were mentioned in Part I.)

Now in 1961, with this Part II and [39; 40; 41 and 42] written, our project

seems to us still as far from completed as it seemed in 1957, and we are planning

a Part III. (Not all of the topics which we said in Part I would be in Part II are

treated in the present series of papers.)

Early in §9 of this Part II we give the Kreisel result cited in Footnote 17 at the

end of Part I. The remainder of §9 continues the analysis of substitution of func-

tions begun in IV, XXII and XXIII (cf. 3.10). This analysis is fundamental for

the derivation in §10 of a version of the first recursion theorem (extending IM

Theorem XXVI p. 348 to higher types of variables under a restriction on the

functional). That in turn underlies our proofs in [39; 41 and 42] that only func-

tions general (or partial) recursive in the present sense (§3) are comprised by

appropriate extensions to higher types of Turing-machine computability, of

2-definability and of general (or partial) recursiveness in the Herbrand-Gödel

style. By [40], and the latter portions of [41 and 42], conversely all general (or

partial) recursive functions in the present sense are comprised. (Cf. end 3.2.) In

§11 of this Part II, a start is made toward the discussion of the extensions to

higher types of the degree concept of [25 and 19] (cf. the introduction to Part I)

and of transfinite hierarchies (e.g. [14, §§6-9] or [16, §§4-7]).

9. Substitution of functions. 9.1. We consider the "stages" in the computation,

or attempted computation, of {z}(a) for a given a, where z is an index for a 4.1,

arranged on a "tree", as at the beginning of 5.3. However, we consider the

vertices or "positions" y in the tree as occupied not by expressions "{zT}(o,,)"

but by (ny + l)-tuples (zy,ay) where ayis an ny-tuple and zy is an index for ar

We call this tree the computation tree for {z} (a). Although, at each position

y,(zy,ay) is always defined as an ny + 1-tuple, {zy}(ay) as a number mayor may

not be; when it is, we speak of this number as the value of(zy,ay) (or of {zy} (ay)).

The computation tree for {z}(a) is similar to that for {z}[a,a},---,aT]

considered later in 5.3, with the following differences. Here the number ny + 1

of objects in the tuples (zy,ay) in general varies within a tree, while there the

number r + 2 of objects in (zy,ay,a.\, ■■■,ary) was fixed throughout. Here we are
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constructing the tree only as far as we can with the quantities that are available ;

specifically, at a node we fill the upper next position when and only when the

computation of the tuple at the lower next position can be completed with the

determination of its value, while there we used a function n of position y giving

a true or fictitious value to permit the upper next position to be filled simulta-

neously with the lower one. Finally, here at an application of S1-S3, S7, or of

S9 with the a not an index for the b, we terminate the branch in question (with-

out carrying out the application), while there we repeated the r + 2-tuple before

the application ad infinitum.

Remark 8. The computation tree for {z}(a,b,o",b) where z is an index for

(a,0,0",b) and (z)0 = 5 begins as follows:

(z,a,b,a,b)      ((z)3,a-l,ba_„b,o;b)       (a ba).

\z,a - l,b,ff,b) _     ((z)3,a-2,i>a_2,b,<7,b)       (~ ba_,).

(z,2,b,<x,b)       ((z)3,l,bi,b,ff,b)       (a b2).

(z,l,b,ff,b)       ((z)3,0,b0,b,o,b)       (a b,).

Xz,0,b,<7,b)-((z)2,b,a,b)       (a b0).

We write "~ b" to mean "with value b if defined". A branch containing the

lower next position at each of the first a nodes can in any case be constructed

as far as its a + 1-position occupied by ((z)2,b,<r,b). Only if the computation of

that tuple can be completed with the determination of the value b0 = {(z)2) (b, o, b)

can the tuple ((z)3,0, i>0,b,cr,b) be supplied for a branch which instead in-

cludes the upper next position at the ath node. Similarly only if the value

b, = {(z)3}(0,b0,b,o-,b) exists can the tuple ((z)3,l,b1,b,ff,b) be supplied for a

branch which instead includes the upper next position at the a —1st node, etc.

The corresponding tree for the computation of {yn(z,w,p)}(a,b,b,c) begins as

follows (cf. Case 5 for XXII in 4.2):

(yn(z,w,p),a,b,b,c)       (F,a,a,b,b,c) -

(G, a, b, b, c)       (with value a).

(E,a,b,b,c,a)        (yB((z)3,B,p),a-l,ba_1,b,b,c,a)       (a ba).

(E,a-l,b,b,c,a)      (yn((z)3,B,p,),a-2,ba-2,b,b,c,a)

\ (* K-Ù-

(E,2,b,b,c,a)        (yn((z)3,B,p),l,b„b,b,c,a)       (=*b2).

(E,l,b,b,c,a)      (y„((z)3,B,p),0,bo,b,b,c,a)      (a bj.

(E, 0, b, b, c, a) - (y„((z)2,A, p), b, b, C, a)

(a bn).
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For (completely defined) o = Xz{w}(a,ti,b,c,x), the b0,bx,---,ba, so far as they

exist in the first figure, exist and have the same values in the second, by the fol-

lowing reasoning. The b0 in the first exists and = {(z)2) (b, o, b) only if the latter is

defined; but then by XXII and the construction of A,{(z)2}(b,o-,b) = {y„((z)2, A,/?)}

(b,b,c,a), which is the b0 for the second figure. Similarly for bx,b2,---,ba-x,ba,

successively.

LIII. Let z be an index for a. Then {z}(a) is defined, or undefined, accord-

ing as each branch in the computation tree for {z} (a) terminates at an application

of S1-S3 or S7, or there is a branch either infinite or terminating at an appli-

cation of S9 with the a not an index for the b. In the first case, each tuple in

the tree has a value; in the second case, no tuple along a branch of the kind

described has a value, each tuple at a position below such a branch 5.11 has

a value, and such a branch is uppermost (i.e. at each node it contains the upper

next position when both next positions are in the tree).

Proof. Part I. Assume {z}(a) is defined. We show by induction on {z}(—)

(end 3.8) that each branch terminates at an application of S1-S3 or S7, and each

tuple in the tree has a value. Case 1. (z)0 = 1. Then there is only one branch,

this terminates at its 0-position at an application of SI, and the tuple

(z,a) (= (z,a,b)) there has a value (namely a + 1). Case 4. (z)0 = 4. Because

{z}(a) (= {(z)2}({(z)3}(a),a)) is defined, so are both {(z)3}(o), say with value b,

and {(z)2}(b,a). Application of the hyp. ind. to {(z)3}(a)and {(z)2}(b,a) gives

the required conclusions. Case 9. (z)0 = 9. Since {z}(a) (= {z}(a,b, c) = {a}(b))

is defined, the hyp. ind. applies to {a}(b).

Part II. Assume {z}(a) undefined. Then, starting with (z,a) at the 0-position,

we can choose successively a next position at which the tuple has no value, either

ad infinitum or until the resulting branch terminates at an application of S9 as

described. The resulting infinite or finite branch has the stated properties; for

at a node, if the upper next position exists in the tree, the tuple at the lower has

a value so we must choose the upper, while at all positions below that upper

next position the tuple has a value, by Part I applied to the tuple at the lower

next position.

9.2. We now prove the result announced at the end of Part I in the last sen-

tence of Footnote 17. Our lemma is LIV, and (b) is answered using an argument

of Kreisel by LV. A completely defined extension 8.3 is a completion.

LIV. Let y2 be the primitive recursive function y„ constructed in the proof

of XXII for n = 2. Suppose z,w are indices of (¡>(a,o2,b), 6(a, b, c, x1), respec-

tively, where a,b,c consist of type-0 variables only. For values of a,b,c such

that 9(a,b,ct1) is defined for every general recursive t1: // <p(a,ol,b) is

defined for some completion o\ of Xx1 0(o,b, C, t1), then, for every completion

o\ of Xx1 ̂ (a.bjCT1), <j)ia,o2,b) is defined and

(90) <Ma,o-2,b) = {y2(z,w,0)}(a,b,c).
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(The right side of (90), and hence the left, is independent of the choice of the

completion <r2.)

Proof. Since by hyp. <p(a,oub), i.e. {z}(a,o-i,b), is defined, we can use in-

duction on {z}(—) (in the course-of-values version). For the notation in the

cases, cf. the proof of XXII.

Case 5. (z)0 = 5. Since {z}(a,b,ol,b) is defined, by Remark 8 so are

{(z^Kb.ffj.b), {(z)3}(0,bo,b,cr1,b),---,{(z)3}(a-l,ba_1,b,<T1,b) with respective

values b0,bl,---,ba. By the hyp. of the ind. on {z}(—) and the construction of

A and B,

bo = {(z)2}(b,«T2,b) = {j2((z)2,A,0)}(b,b,C,fl),

b, = {(z)3}(0,b0,b,<72,b) = {y2((z)3,B,0)}(0,b0,b,b,c,a),

K =  {(z)3}(a-l,ba_1,b,<r2,b) = {y2((z)3,B,0)}(a-l,ba_1,b,b,c,a).

Hence by Remark 8,

b„ =  {z}(fl,b,(T2,b) = (y2(z,w,0)}(a,b,b,c).

Case 8. (z)0 = 8. Subcase 1. n = (z)2 & p = 0, so o is a1. (We have

n=j = 2, p = 0.) Since {z}(a1,b) (ä a^Xa0 {(z)3}(oua°,b))) is defined,

la°{(z)3}((T1,a0,b) is completely defined, and by the hyp. ind. on {z}(—) and

the construction of A, for each a0, {(z)3}(o2,a°,b) is defined and =

{y2((z)3,A,0)}(a°,b, c). Thus, since b, c are numbers (not higher-type objects),

Xa° {(z)3}(<r2,a°,b) is a general recursive function. Hence by our hypothesis on

9, 9(b,c,Xa° {(z)3}(o-2,a°,b)), i.e. {z}(<r2,b), is defined. But then by XXII and

the construction of C, 0(b,c,Aa°{(z)3}(<72,a°,b)) = {ïi(w,C,0)}(b,c), i.e.

{z}(<72,b) = {y2(z,w,0)}(b,c).

Subcase 2. n # (z)2 V P # 0, so a is not a { This subcase cannot occur,

since a is the only function variable among o, o, b.

Case 9. (z)0 = 9. Subcase 2. p < (z)2>„. By hyp., {z} (a, b, ou b)

(= {a}(i),<T1,t)) is defined. Hence by the hyp. ind. on {z}( —), {a} (b,o2,e)

=   {y2(a,S1(w,a),0)}(b,b,c).  So  (z}(a,b,ff2,b) = {?2(z,w,0)}(a,b,b,c).-

We say (x)(Ey)(z)R(x,y,z) is recursively fulfillable, if, for some general

recursive ß1, (x)(z)R(x,ß\x),z) is true (Kleene [10, p. 69]).

LV. Suppose (A) R(x,y,z) is general recursive, (B) (x)(Ey)(z)R(x,y,z)

is true, but (C) (x)(Ey)(z)R(x, y, z) is not recursively fulfillable. Let R(ßl,x)

s R((x)0, /JHWoXWi), RtfJ1) = R(ß\a2(ß^)). Then (a2)(Eß^)R(a2,ß^)
is true, but (a2)R(a.2,Xxx(^2,x)) is false for every general recursive x(a2, x).

Proof. First, from (B) by the transformation (x) (Ey) (z) R (x, y, z) =

(Eßi)(x)(z)R(x,ß\x),z) = (Eß^)(x)R((x)0,ßl((x)0),(x)1) s (Eß>)(x)R(ß\x)

=    (a2)(Eßl)R(ß\a2(ßl))= (a2)(Eß1)R(a2,ß1),   (a2)(Eß1)R(a2,ß1)   is   true.
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Second, by (C), for every general recursive ß1, (Ex)R(ßl,x). So the function

9(ß*) = pxR(ßl,x), which by XVI and (A) is partial recursive, is defined for

every general recursive ßl, and

(91) (ß1)ßHen.TecR(ß1,d(ß1))-

Consider any general recursive x(oc2,x), say with index z. Let w be an

index of Xxß1 öijß1). Let 92 be any completion of 9. By LIV, for every x, x(02,x)

= {y2(z,w,0)} (x). So Xx #(02,x) is general recursive. Now were (a2)R(a2, Xx x(u2, x))

true, we would have R(92,Xxx(92,x)), i.e. R(Xx x(92,x),92(Xx x(92,x))), i.e., since

Xxx(92,x) is general recursive and 9(ßl) is defined for every general recursive

ßl, R(Xx x(92,x),0(Xx x(92,x))), contradicting (91).

Remark 9. Advancing quantifiers in

(92) (x){(£y)r1(x,x,>') V (Ey)T1(x,x,y)}

gives R(x,y,z) = Tt(x,x,y) V Tt(x,x,z) as an example of a predicate R(x,y,z)

satisfying (A)-(C) of LV. This simplifies slightly the second of the two original

examples in Kleene [10, pp. 69-71].

9.3.   As our theory stands, we cannot strengthen XXII to have

(a) 4>(c,Xx"'1 9(a,b,c,x"-1),b) at {yn(z,w,p)}(o,b,c)

(for the y„ constructed there or any other completely defined y„) under merely

the self-evident condition that Xx"-1 9(a,b,c,t"_1) be completely defined. Thus

(with n = 2, a empty, p = 0 and b = a):

LVI. There is a partial recursive function (¡)(a2,a) such that

Xac (^(Xx1 fl(a,c,T'),fl) is partial recursive for no completely defined 9(a,c, x1)

with c (empty or) consisting of variables of types ^  1.

Proof.    Let

2 { 0 if f^a.a.x),
y(o ,x,a) =¿  y(x,a) ^   { .
Ay '       KK     '        \ py(y ï y) otherwise,

4>(o2,a) m o2(Xx x(a2,x,a)).

Then Xx x(&2,x,a) is completely defined if and only if (x)Ti(a,a,x); and hence,

under our condition for S8 in 3.7, (p(o2,a) is defined exactly in this case. Let

(p(a,c) cu <¡>(Xxl 9(a,t,xl),a) for a 9 as stated, and let (¡)(a) ~ (¡)(a,c0) where c0

comes from c by substituting 0 for the number variables and Xy 0 for the function

variables. Then (¡>(a) is defined exactly if (x)F1(a,a,x), and hence by XXXI and

IM p. 331 Example 3 is not partial recursive. Neither is <t>(a,t), since the class

of the partial recursive functions of variables of types 0 and 1 is closed under

substitution (using XXXI, XVII and IM Lemma VI p. 344 with Theorem

XVII (a) p. 329; or by LXI (95) below).

Discussion. This failure of the principle that substitution of a recursive

function for a variable of a recursive function should produce a recursive function
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is connected with the special character of our type-2 and higher objects. As intro-

duced in 1.2, and interpreted in 3.7 (where for the first time we had to consider

them with partial functions as arguments), they are functionals which are de-

fined exactly for completely defined functions as arguments. A general recursive

functional Xx1 8(a,x1) with a of types :g 1 however depends on only finitely

many values of its function argument x1, and so is most naturally to be regarded

as defined for some incompletely defined t1. (For a including objects of type 5ï 2,

Xx1 6(a,x1) may depend on all values of t1.)

In order to have an unqualified extension of IV to partial recursive functions,

we should have to extend our types 2,3,4, •■■ to include functionals that may

be defined for some incompletely defined arguments and need not be defined

for all completely defined ones. Then in applying S8, only those values

of XaJ"2xi<xJ,aJ~2,b) would be used which are required by the particular aJ.

This is what is happening now (for a" = Xxn~16(a,b,c,xn~1) as the a-*) in

computing the right member {yn(z,w,p)}(a,b,c) of (a) with the y„ of XXII, while

for the left (j)(a, crj, b) the convention of 3.7 is in force.

The theory thus extended may be of interest. However, after some prospecting

in this direction^ 9), we have decided upon continuing for the present to restrict

our "ultimate" variables (the a,b,c of (a), though not for the left side the

o"ô; and the variables of the \¡/x, ---^¡m 3.14, though not the i¡/l,---,i¡/¡ themselves)

to range over the (unextended) types introduced in 1.2 and interpreted for partial

arguments by 3.7.

9.4. For n = 1, (a) will hold (inessentially restated) for a new yx (called yi).

For n > 1, (a) will hold, for a y'„, when the Xx"'1 6(a,b,c,x"~1) is taken from a

special class, for each member <rn0 of which the computation of Co(tb-1) will use

every value of r"-1. These results are given in LXI, toward which we first es-

tablish:

LVII. There is a primitive recursive function y' with the following property.

For each n ^ 1, write y'n(z,w,p) = y'(n,z,w,p). Suppose a. contains exactly p

type-n variables, z is an index of <p(a, a", b), and for n = 1 if or n > 1) w is an

index of Oit, a,b,c)(o/ 6(bx,---,bq,a,b,c) where (a,b,c) contains exactly q>0

type-n variables a",---,a"). Then for values of a, b,c such that Xt ö(i,a,b,c) for

n = l(ATn"1ö(an1(TB_1),"-,aJ(Tn"1),a, b, c) for n > 1) is completely defined,

= <j"0 say, and </>(a, ff¿¡, b) is defined, {y¿(z,w,p)}(a,b,c) is defined and

(93) <b(a,Xt 0(t,a,b,t),b)   =  {y'x(z,w,p)}(a,b,c)        (n = l),

(94) <¡>(<x,Xxn-1 6(ocl(xn-1),-,oinq(xn-1), a,b,c),b)

_ = {y'n(z,w,p)}(a,b,c) (n>l).

(19) An extension of the theory in this direction may be called for in connection with a

simultaneous specialization or restriction in the other direction considered end 3.1 and in Foot-

note 9, which may make the extension easier to handle than in the most general setting.



112 S. C. KLEENE [July

Proof. We follow the same general plan as for XXII. But there is no induc-

tion on n. We take y'(0,z,w,p) = 0.

For n = 1, the cases are treated as for XXII (Case 8 Subcase 1 not arising),

except for the í (or t°) being taken now as the first variable of the 9, and except

for a modification in the treatment of Case 9 Subcase 2 also made for n > 1,

where we present it. This modification is not necessary for LVII, but is used for

LIX and LX.

For n > 1, we take y'„(z, w, p) = 0 except for Ix(z) &(z), >n > p & Ix(w) & (w), „ > 0

&(2exp(w)ln) • (z), \p„ ■ (w)1.The cases are treated generally similarly to those

for XXII, except Case 8 Subcase 1, and except for the modification in Case 9

Subcase 2. In the case demonstrations of (94) by induction on {z}( —), we tacitly

assume we are dealing with values of a, b, c such that

At 9(<x",(t), -,<(t), a,b,c)

is completely defined. For abbreviation we write q = (w), „.

Case 5. (z)0 = 5. We express 9(b„---,bq,u,b,b,c) as 9,(bl,---,bq,b,b,c,u) with

indexA = n(0,(w),o — i,(6,(w)„0,q, w», and further as 9(b„ ■■■,bq,a,b,b,b,c,u)

withindexB = n(0,q + l,n(0,q + 1, <6,4-(w)„0,(w)liO -I- 1, <6,4-(w)„0,(w)ljO +1,

í(A,4)»)). Next we introduce the function \p(b,b,c,u) having as index

C=y'„((z)2,A,p), which by the hyp. ind. on {z}(—) will have the value i//(b,AT

9,(a"(z),---,oiq(i),b,b,c,u),b) when the latter is defined. Similarly we introduce

l(a,b,b,b,c,u) with indexD = y'„((z)3,B,p). The rest of the index construction,

and the proof that y'„(z,w,p) = H = <4,(C)!,F,G> has the desired property, are

as for XXII, or using Remark 8 stated with y'n instead of y„.

Case 8. (z)0 = 8. Write j = (z)2. Subcase 1. n —j &p = 0, so a = a.'. We

have <p(er, b) = o(ka.i~2 x(a, aj~2, b)). When this is defined for o = It 9(a((r),

— ,<x;J(T),b,c) (then /(At ö(^'(t), •••,a¿(T),b,c),aJ_2,b) is defined for every aj~2 ),

its value is

oíalíV"2 /(At 0ia{(T),-,a4y(T),b,c),aJ-2,b)),-,

<UaJ'"2 Z(At 9i4ix),-,aq\x),b,c),ai-2,b)),b,c).

First we express 9ib„ ■■■, bq, b, c) as 9(b„ ■•■, bq, olj~2 b, c) with index

A = 7t(0,(sg(j -2))-q,(6,pj ~2-(w),,j^-2,(w),j^2, i(w,pj^2)y). Next we intro-

duce /(a7-2, b, c) with index B = y'„((z)3,A, 0); by the hyp. ind. and the construction

of A, this will have the value /(At 0(ai(Y), •••,a^(T),b,c),a-'_2,b) when the latter

is defined, which is the case when (j}(a,b) is defined for a = At0((tJ(t), —,

a^(T),b,c). So it will suffice to make y'„(z,w,p) an index of the function

<Kb,c) a 0(a{(AaJ'"2/(aJ'"2,b,c)),-,a¿'(AaJ'~2/(aJ'"2,b,c)),b,c). To obtain this in-

dex, we first build /¡(b,c) a a/+1(AaJ_2/(a-/_2,b,c)) with index

C, = itO",i,<8,(B)1,j,<6,(B)1,;,i,B»)       (i = 0,-,q-l).
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Now 4>(b,c) a 9(xo(b,c),---,xq-i(b,c),b,c), which we must construct by S4, etc.,

as in the proof of V. We need

Xo(b2>--;bq,b,c) a Xo(b,c),

Xi(b3,--;bq,b,c) at Xi(b,c),

X,_2(b?,b,c) a xa_2(b,c),

x,_i(b,e) a z4-i(b,c).

For i ^ g - l,let Zo>i(b,c,b/+2,-,b,) a X;(b,c) with index D0 , = <C¡, 2«"(i + 1));

and for t + 1 ̂  g - (t + 1), let

&+1,i(b(q+i)-^ ((+1), • ■ -, bq, b, c, b¡+2, • ■ -, bq ¿_ (f+1}) a x,(b, c)

with index Dt+1),= <6,(D0ii)i,0,(D0>j)i,o - 1,DM>. Now Xi(bi+2, — ,brb,c)
has as index D¡ = D9^_(i+1)i. Finally we need

<t>0(bi,---,bq,b,c) = 0(b1,---,b4,b,c),

<t>i(b2,—,bq,b,c) a¡ 0o(Zo(í>2.—»V^.O.bj,•■-,&,,b,c),

«W&s.—>&«,&> c) a¡ 0i(Zi(í»3»—.^í>,c),b3,—,b4,b,c),

^4_!(b4,b,c) a 04_2(x4_2(b4,b,c),b4,b,c),

<Kb,c) a </>«(b,c) a 0,-i(z,-i(t>.c),b,c).

Here <¡)0(bu •••, b4,b, c) has as index E0 = w; and for i + i^q, <pi+ i(bi+2,---, b4, b, c)

has as index Ei+1 = <4,(D,)1,Ei,Di>. Thus (p(b, c) has as index y'„(z,w,p)= F = E4.

Subcase 2. n^jyp^O. If n^j-2, we express 0(b1,--,b4,a-',b,b,c) as

0(b1,---,b4,aJ,aJ_2,b,b,c) with index A as in Subcase 1; while if n =j — 2, we

express it as 0(bo,b1,---,b4,aJ,aJ-2,b,b,c) with index A= (6,2-pJ±2-(w)1,0,

(w)i,o, (6,2-pj + 2 -(w)uj - 2,q,i(w,2-pj^2)}}. We continue as for XXII.

Case 9. (z)0 = 9. Subcase 1. p £ (z)2>„. Let y'„(z,w,p) =<9, [(w),/2«],(z)2>.

Subcase 2. p<(z)2n. Now 0(a,b,or,b) ^ {a}(b,ff,e) and 9(bu---,ba,a,b,b,t)

= {S1(<6,(w)1,0,^,w>,a)}(b1,-",b4,b,b,c). When <£(a,b,<r,b) is defined, a is an

index for b,ff,e, whence (a)! = (z)2. So, for values of a,b,b,c which make

o0 = Xx9(anl(x),■■■,a"(x),a,b,b,c) completely defined and (j)(a,t),(T0,b) defined, the

hyp. ind. on {z}(—) gives that

<l>(a,b,cr0,b) m {y,¡(fl,S1«6,(w)1,0,í,w>,fl),p)}(b,b,c)

* {(^g|(«)i-(z)2|)-7,;(«,S1«6,(w)1,0,g,w>,a),p)}(b,b,c).

So it will suffice to take y'n(z,w,p) = S5(D,g,n,z,w,p) where D is an index of

Xgnzwpabbc{(sg\(a)l-(z)2\)-{g}(n,a,S1({6,(w)l,0,q,wy,a),p)}(b,b,c) and g is

an index of y'. To obtain D, we pick an index e of

Xgnzwpa (sg\(a)l-(z)2\)-{g}(n,a,S1«t6,(w)1,0,q,w},a),p),
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and define thence A, B0, Bi+1, C, D as before, except that for A and B0 the pn_x

becomes 2* and for B0 and C the 4 becomes 6.

9.5. If in the computation tree for {z0}(g0) (at the 0-position), (z,g) occurs

at an 5 + 1-position not the lower next position to a node by S5b, we write

(z0,g0) y- (z,g). For example, in the first tree of Remark 8, in any case

(z,a,b,o,b) y- ((z)2,b,<j,b); but (provided tuples shown do not occur also at posi-

tions not shown) not (z,a,b,o,b)y- (z,0,b,o,b); while for a > 1 (with the same pro-

viso) (z,a,b,o,b) y- ((z)3,0,b0,b,o-,b) only if {(z)2}(b,ff,b) is defined (with value b0),

as otherwise the position shown as occupied by ((z)3,0,60,b,o-,b) would be non-

existent. The relation y~ is transitive.

If (z,g) occurs in the computation tree for {z0}(g0) at an s + 1-position not the

lower next position to a node by S5b, but in the path from the 0-position to this

5 + 1-position no intermediate position occurs not the lower next position to a node

by S5b, we write (z0,g0)^-°(z,g). (Thus (z0,g0)^-° (z,g) -♦ (z0,g0)<>- (z,g).) If

(zo>9o)r- (z>gXwe can find (z0,q0),---,(z„q,) (I ^ 1), where (z„g,) is (z,g), such

that (zo'9o)(^0(zi'9i)^° '"' y-° (zi>9(); to do this, we pick a particular s + 1-

position as described for (z0,g0) y~ (z,g), and select in order along the path

from the 0-position to this s + 1-position each tuple not at the lower next po-

sition to a node by S5b.

If (z0,g0) y- (z,g), then, relative to a particular choice of the s + 1-position in

question and thus of a path from (z0,g0) to (z,g), a correspondence between some

of the members of g0 and the same objects occurring as members of g is established

through the identifications of certain of the objects at the individual schema

applications and transitivity. Thus, in Remark 8, if (z,a,b,o,b) y- ((z)3,0,fo0,b,o-,b)

(for the shown occurrence of the latter), the b,c,b of the former correspond

1-1 in the given order to the b,o-,b of the latter, while the a of the former, and

the 0,b0 of the latter, have no mates.

Take z,w,^,a,a",b,c as in LVII with completely defined a" = Xt {w} (r,a,b,c) for

„ = l (= W1 {w}«^""1),•••,a"(Tn_1),a,b,c)forn > 1),notassuming{z}(a,ffn,b)

defined; we call (y'„(z,w,p),a,b,c) a y'-transform of(z,a,an,b) on (the indicated oc-

currence of) a".

We shall consider y'-transforms of tuples (z0,Q0)y- (zx,Qi)y- (z2,Q2)y- ••• on

corresponding occurrences of d" throughout g0,gi,g2,-" or an initial segment of

9o>9i>92>""- Specifically, an occurrence of a" in g0 may be specified, and the

occurrences in question are this and the corresponding occurrence in each of

g1;g2, ••• so long as there is one (relative to choices of the s + 1-positions in

question); or no occurrence of a" in g0 may be specified, and then the initial

segment is empty. By a y'-transform of(z¡,Q¡) on a" when such an occurrence of

a"is missing from g¡ we mean (z,-,g;) itself.

9.6. LVIII. Let (z0,g0)^-(z,g), where a specified one of g0, or none, is

a". Consider a given y'-transform (z0,g0)t of (z0,g0) on a". Then there is a

y'-transform (z,g)+ o/(z,g) on a" such that (z0,Q0)i y- (z,g)t.
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Proof. From (z0,go)Mz>9) we obtain (z0,g0)^-° (zuQjy ••• ̂ ° (zhQ¡) =

(z,g) (/ ^ 1). Using the transitivity of £>~, it will accordingly suffice to prove the

theorem with £— replaced by ^—° in the hypothesis (but not in the conclusion).

Then if g0 does not contain a", neither does g, and the conclusion follows trivially.

In the alternative case, we change the notation to write (z0,g0), (z,g) as (z,a,<x",b),

(z^g), taking z,w,p,a,o",b,t as in LVII with completely defined a" - Xt {w}(t,a,b,i)

forn = 1(=At"_1 {w}(a"(Tn-1), •••,a4(TB~1),a,b,c) for n > 1), not assuming

{z}(a,o-",b) defined. It will suffice, given that (z,a,cr",b)^>-° (zl5g), to find a /-trans-

form (z1,q)x of (z1,q) on a" such that (y'n(z,w,p),a,b,c)^- (zj,,g)+.The same cases

come under consideration as in the proof of LVII.

Case 5. (z)0 = 5. By the first figure in Remark 8 restated for y'„, (zx,g)

has to be one of ((z)2,b,<r,b), ((z)3,0,bo,b,(T,b),---,((z)3,a-l,ba_1,b,cr,b). Then by

the second figure, it suffices to take as (zi,g)t the corresponding one of

(y'„((z)2,A,p),b,b,c,a), (y'n((z)3,B,p),0,b0,b,b,c,a), -, (y,;((z)3,B,p),a-l,b(I_1,b,b,c,fl).

Case 8. (z)0 = 8. Subcase 1. n =j &p = 0 (only for n > 1). Then a = aJ

and (zl5g) is ((z)3,a,aJ~2,b) for some a1'2. By the construction of y'„(z,w,p),

we have in particular (since q > 0) (y'n(z,w,p),b,t) £- (D4_1,b,c) = (D04_1,b,c)

= (i(Ci_1,lXb,c) = (C4_!,b,c)^ «8,(B)1J,<6,(B)1J,«-l,B»,b1,c1)'[wtere

bi.Ci is b,c with ^advanced to the front] y((6,(B)t,j,q -l,B>,aJ 2, bi.Ci)^

(B,aJ_2,b,c) = (y'n((z)3,A,0),a J'~2,b,c). But the last is a /-transform of

((z)3,<x,or'~'2,b) on a. Subcase 2. n ^ j V P =£ 0. Then (z1;g) is ((z)3,aJ,aJ_2,b,<r,b)

for some aJ~2. But

(y'„(z,w,p),aJ,b,b,c) y (y'„((z)3,A,p + sg|n - (j -*- 2)|),aV~2,b,b,c),

which is a y'-transform of (z1;g) on a.

Case 9. (z)0 = 9. Subcase 1. p^(z)2„. Then g does not contain a, so

(Zi,g) is its own y'-transform on a; and (y'n(z,w,p),a,b,c)y(zl,çi). Subcase 2.

P < (z)2,n- Then a is (a,b), (z1;g) is (a,b,<r,e), and, e.g. for n > 1,

(y¿(z,w,p),a,b,b,c) = (S5(D,g,n,z,w,p),a,b,b,c)^- (D,g,n,z,w,p,a,b,b,c)

^- (C,{A} (g,n,z,w,p,a,b,b,c),g,n,z,w,p,a,b,b,c)

= (C,(sg |(a)! - (z)2|)-y¿(a,S1(<6,(w)1,0,^vv>,a),p),g,n,z,w,p,a,b,b,c)

y (B0,(l%\(a)1-(z)2\)-y'n(a,S1((6,(w)1,0,q,wy,a),p),b,b,c,g,n,z,w,p,a)

= (B0,y;(a,S1(<6,(vv)1,0,^w>,a),p),b,b,c,£,n,z,w,p,a)

[for, (a)i = (z)2, since otherwise (z,a,o,b) would come under S9 with the a not

an index for the b, and so would be the only tuple into the tree, contradicting

(z,o,<a)c-o(2i,8)]

y (y;(fl,S1«6,(w)1,0,g,w>,fl),p),b,b,c),

which is a y'-transform of (a,b,<r,e) on a.

Cases 1, 2, 3, 7. (z)0 = 1,2,3,7. These cases cannot occur, since the compu-

tation tree for {z}(a,<r,b) would then have no further tuple (z1;g).
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Remark 10. Except in Case 8 Subcase 1 we have the like for the function

y„ of XXII.

LIX. // (z,g) comes under S9 with the a not an index for the b, and (z,g)f

is a y'-transform of (z,g) on a", then either (z,g)t itself, or a tuple (u,h) with

(z,g)t^-(u,h), comes under S9 with the a not an index for the b.

Proof. If g does not contain (a specified occurrence of) a (so (z,g)t is (z,g)),

or g contains a but Subcase 1 of Case 9 for LVII applies, (z,g)t itself comes

under S9 with the a not an index for the b. If g contains o and Subcase 2 applies,

then, e.g. for n > 1 (cf. the calculation in Case 9 for LVIII),

(z,g)t = (y'n(z,w,p),a,b,b,t)

c~ (B0,(sg|(a)i - (z)2|)-yn(a,S1(<6,(w)1,0,g,w>,a),p),b,b,C,g,n,z,w,p,a)

[where B0 = <9,[(w)1/2«-6],[(w)1/23+1]>]

= (B0,0,b,b,c,g,n,z,w,p,a)

[for, a is not an index for the b, i.e. for (b,cr,e), so either (a), # (z)2, or Ix(a)

whence y'^a^dô^w),^^}^)^) = 0], which comes under S9 with the a not

an index for the b (since 0 is not an index).

LX. In LVII, for values of a, b, c such that Xt 0(i,a,b,c) for n = 1

(At""1 0(a"(Tn"1),-",a^(Tn_1),a,b,c)/or n > 1) is completely defined, = on0 say,

{y'„(z,w,p)} (a,b,c) is defined only if (¡>(<x,ol,b) is defined.
Proof. Assume <p(a,Gn0,b) (= {z}(<x,on0,b)) undefined. We shall infer that

{y'n(z,w,p)} (a,b,c) is undefined. By LUI, in the computation tree for {z} (a,o0,b)

there is a branch either infinite or terminating at an application of S9 with the

a not an index for the b. If along this branch we take in order all but the tuples

from the lower next positions to nodes by S5b (only finitely many of which can

occur consecutively, since the second member a of the tuple is decreased by one

between such a node and its lower next position), we obtain a sequence

(z,a,<T0>b) = (z0,g0)^° (zi,g!)^° (z2,g2)^° —, either infinite or terminating at an

application of S9 with the a not an index for the b. In both cases, by LVIII there

is a  corresponding sequence (y'n(z,w,p),a,b,c) = (z0,g0)i" <- (zi,g0+^ (z2,g2)+

<,-of y'-transforms on o0. This is infinite in the first case; and in the second

case, by LIX it or an extension of it terminates at an application of S9 with

the a not an index for the b. Hence by LUI, {y'„(z,w,p)}(a,b,c) is undefined.

9.7.   Combining LVII and LX:

LXI. In LVII, for values of a,b,c such that Xt 0(i,a,b,c) for n = i

(Xzn~19(<x",(Tn~i),-,oiq(Tn~1),a,b,c)for n > 1) is completely defined:

(95) <b(a,Xt9(t,a,b,c),b) * {y',(z,w,p)}(a,b,c)    (n = 1),

(96) ¿(Mt""1 ̂ oftt"-V^(O>0,b,e),b) * ij,Xz,w,p)}(u,b,c)     (n>l).
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9.8. We shall now provide for indefinitely many substitutions of functions of

a suitable class. To do this we adjoin the substitution schema S4j" of Remark 1

in 1.6 for a function of this class as the Xa'~l/(•••) of the schema. The class

will be the subclass of the functions Xx6(---) considered in 9.4-9.7 obtained by

making the 9 primitive recursive. This assures that Xx9(---) will be completely

defined whatever the values of a,b,c. This subclass will suffice for our applications,

but we could employ instead any other such subclass the indices w of the mem-

bers of which constitute a general recursive class of numbers.

We accordingly define the partial' (general') recursive functions in the same

manner as the partial (general) recursive functions were defined in 3.7 except

admitting the additional schema

S4'.l <Ko) * HXl 9it,á),a) (4,<n0,-,nr},g,h,l>,

where 9 is primitive recursive, and

S4V 0>1)   chi^^iPiXx'-^iaiixJ-1),-,^-1)^),^  <4,<n0,-,nry,g,h,j>,

where a includes exactly the n¡ > 0 type-j variables a{, •••,«^ and 9ibx, -",bn ,a)

is primitive recursive. The presence of the new schema extends the indexing, and

indices in the new sense we call indices'. A function introduced by an applica-

tion of S4' shall have the index' shown at the right opposite the schema, where

g is an index' of \j/, and h is a primitive recursive index of 9 (cf. 4.1). Schema S9

requires restatement as

S9'. (¡>ia,b,t)^{a}'ib) <9,<n0,-,nr>,<m0,-,ms>>,

where {a}'{b) is the value for b as arguments of the function with the index' a,

if a is an index' for b and that value is defined, and is undefined otherwise.

In a computation tree for {z}'(a) (cf. 9.1), an application of S4'.l (S4'j, j > 1)

constitutes a new kind of "node", with infinitely many lower next positions,

corresponding to the values of t (of xJ~ *) and giving rise collectively to a func-

tion rather than a number, namely the function Xt 0(i,a) (the function

XxJ~1Oi<xJiixJ~1),---,aLJ„JixJ~1),a)) for use as the first argument in the tuple for

\¡/(Xt 0(i,a),a) (for i¡/(XxJ~19(---),a)) at the upper next position. Since the 8 is

primitive recursive, the tuple at each lower next position has a value, and so the

upper next position will always be in the tree.

9.9. In an irredundant partial' recursive description of a function 0(a) of

variables a of maximum type r ^ 1, each function has the same maximum

type r of its variables (cf. I) ; and hence the r does not increase (unless from 0

to 1) in computing {z}'(o) (cf. 5.1). We have versions II', III', XII'-XVI',

XVIII'-XXr, LIU' of II, III, XII-XVI, XVHI-XXI, LIII (in III', applications

of S6 may have to be added in placing new fe's in the 0's of applications of S4'.j,

j > 1).
9.10. LXII.   Each partial' igeneral') recursive function is partial igeneral)

ecursive.
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Proof. (A) There is a primitive recursive function ô such that, for each

index' z for a, if {z}'(a) is defined, then ({<5(z)} (a) is defined and)

{z}'(a) = {¿(z)}(a).

We take ô(z) = 0, except for Ix'(z) (using XIX'), when the appropriate fol-

lowing case shall apply. We use induction on {z} '( — ) (analogous to 3.8) in proving

that, when {z}'(a) is defined, {z}'(a) = {<5(z)}(a). That a primitive recursive <5

exists satisfying all the specifications will follow using the recursion theorem (as

for y„ of XXII but more simply).

Cases 1,2,3,7.   (z)0 = 1,2,3,7. Let ô(z) = z.

Case 4. (z)0 = 4 &(z)4 = 0. Let <5(z) = (4,(z)uô((z)2),ô((z)3)y. By the case,

{z}'(a) =¿ {(z)2}'({(z)3}'(a),a). Assume {z}'(a) defined. Then {(z)3}'(a) is defined,

= b say, and {(z)2}'(b,a) is defined, = {z}'(o). By the hyp. ind., b = {<5((z)3)}(a)

and {z}'(a) = {<5((z)2)}(b,o). Now {5(z)}(a) = {<5((z)2)}({<5((z)3)}(a),a) = {z}'(a).

Case 4'. (z)0 = 4 &(z)4 > 0. Write ; = (z)4. Let <5(z) = y;.(<5((z)2),(z)3,0). By

the case, PRI((z)3), and {z}'(ct) a: {(z)2}V',a) where ej = Xt{(z)3}(t,a) if

;= 1 (=ATJ'-1{(z)3}(aÍ(TJ_1),-,a¿.(T-''"1),a) if j> 1). Assume {z}'(a) defined.

Then {(z)2}V,a) is defined, and by hyp. ind. = {3((z)2)}(aJ, a). By LVII,

{«5((z)2)}(y,o) = {y;.(«5((z)2),(z)3,0)}(a). So {z}'(a) = {3(z)}(a).

Case 9'. (z)0 = 9. Then {z}'(a,b,c) a; {a}'(b). Assume (z}'(a,b,c) defined.

Then {a}'(b) is defined, so a is an index' for b, so (a)t = (z)2. By hyp. ind.,

{a}'(b) = {ö(a)}(b). So {z}'(a,b,c) = {(s?| (a), - (z)2|W(a)}(b). It will suffice to

take <5(z) = S2(D,d,z) where D is an index of Idzabc{(sg |(a)1 -(z)2\) ■ {d}(a)}(b)

and d is an index of 8. To obtain D, pick an index e of Xdza (sg \(a)1— (z)21) • {d} (a),

let A = i(e,[(z)J2]), B0 = <9,23-(z)1,(z)2>, and define B;+1, C, D as for XXII

Case 9 Subcase 2 (except that in C, 4 becomes 3).

(B)   For the ô,z,a of (A), if {z}'(a) is undefined, so is {<5(z)}(a).

Assume {z}'(a) undefined. Then by LIU', in the computation tree for {z}'(a)

there is a branch, either infinite or terminating at an application of S9' with

the a not an index' for the b, along which each tuple has no value. Define £=-',£-°'

analogously to ^-,^-° in 9.5. Omitting from this branch the tuples at lower next

positions to nodes by S5b (only finitely many consecutively), we find a sequence

(z,o) = (z0,g0)5=-°'(z1,g1)^°'(z2,g2)^°' •••, either infinite or terminating with

(z,,g,) coming under S9' with the a not an index' for the b. To this sequence we

shall correlate another sequence (¿(z),a) = (z0,g*),(zf,g*),(z2,g2), •••   so   that

(0 (z*,Q*) = (z?+1,g*+1) ((z* 8*)y (z*+ i»fli* i))if (z¡+1>9¡+1)comes from (Zi,g;) by

an application of S4' (otherwise), and (ii) if (z,,g() comes under S9' with the a

not an index' for the b, there is a (u,h) with (z*g*)5^- (u,I)) which comes under

S9 with the a not an index for the b. The first case under (i) can occur consec-

utively only finitely many times, since in an application of S4' the first member

of the tuple is decreased. Hence when the original sequence is infinite,

(z*g*)^(zf+1,g,*+1) holds for infinitely many i. Using (ii) also, it will follow

by LIII that {<5(z)} (a) is undefined.
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We define (zf,g*) by recursion on i (simultaneously establishing (i)) so that it

is a kf-fold y'-transform (<5(z¡),g¡)* of (<5(z¡),g¡), i.e. the result of performing

y '-transformations successively on k, objects o\l, —, cr£¡" (k, ^ 0). Basis.

(z*o,Q*) = (o(z),a)(ko = 0). Ind. step. Given (z*,g*) = (5(zi).0i)*. and that

(z;+1,gi+1) exists, consider the case by which (z;,g¡) ^-°'(z¡+1,g¡+1). In all but

Case4'(<5(zi),g,)£>- (<5(zi+1),gi+1), as is obvious in Cases 4, 5,6, 8(1,2, 3, 7 cannot

occur), and in Case 9' is confirmed by the following calculation:

(ô\zd,Qd = (S2(D,d,z),a,b,c)

y (D,d,z,a,b,c)

y (C,{A}(d,z,a,b,c),d,z,a,b,c)

= (C,(sg | (a), - (z)2 \) • ô(a),d,z,a,b,c)

y (B0,(^\(a),-(z)2\)-ô(a),b,c,d,z,a) [where B0 = <9,23-(z)„(z)2 >]

= (B0,c)(a),b,c,d,z,cr) [for, a is an index' for b, since (zi+1,g¡+1) exists,

so (a), = (z)2]

y (ô(a),b) = (<5(zi+1),gi+i).

Applying LVIII k¡ times successively to (¿(z¡),g¡)^- (<5(zí+1),g¡+1), we obtain a

k¡-fo\d y'-transform (<5(zi+1),g¡+1)* of (<5(zi+1),g¡+1) such that (ô(z),q)#

y (ö(zi+,),Qi+i)*. Letting ki+, = ki and (z^^gf+O = (<5(zi+1),gí+1)#, thus

(z*,8*)^-(z*+u8?+i)- In Case 4'> (z;+i>9;+i) is at the upper next position, since

the tuples at the lower next positions all have values (end 9.8); so

(z,+i,gi+1) = ((zf)2,g,+i). Taking

(z*+1,8*+1) = (z*8?) = (<5(z;),g,.)* = (y'M*ùù(*à*0)tii*,

(z¡+i>9¡*i) is a fe( + 1-fold y'-transform of (<5(z¡+1\g¡+1) (fe¡+1 = fe¡ 4- 1).

Finally, (ii) will follow from the lemma: //(z,g) comes under S9' with the a

not an index' for the b, and (z*,g*) is a k-fold y'-transform of (c5(z),g), then

there is a (w,h) with (z*,g*)^ (u,h) which comes under S9 with the a not an

index for the b. This we prove by induction on k. Basis. (z*,g*) = (<5(z),g). Now

(ô(z),Q) <=- (B0,(¿g\(a), - (z)2\)-ó(a),b,c,d,z,a) [where B0 = <9,23-(z)1,(z)2>]

= (Bo,0,b,c,d,z,a) [for now a is not an index' for b, so either (a), J= (z)2, or

Ix'(íi) whence «5(a) = 0], which comes under S9 with the a not an index for the

b [since 0 is not an index]. Ind. step. (z*,g*) is a fc 4- 1-fold y'-transform of

((5(z),g). Then there is a fe-fold y'-transform (z*,gf) of (<5(z),g) with (z*,g*) a

simple y'-transform (z*,8?)+ of (zf,gf). By hyp. ind., there is a iu„h,,) with

(zî>8Î)r~- (Mií)i) which comes under S9 with the a not an index for the b. By

LVIII, iz*,Q*)*y- (u„b,,)f for a suitable simple y'-transform (m15Í)i)+ of iu„f),).
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By LIX, either (u^b,^ itself (call it (u,h)), or a (u,I)) with («i,bi)+^-(w,b)> comes

under S9 with the a not an index for the b. Now (z*,g*) = (z*,Q*)x ^-(«,h).

9.11. LXIII. Each partial (general) recursive function is partial' (general')

recursive.

Proof. (A) There is a primitive recursive function ô' such that, for each

index z for a, if (z}(u) is defined, then {z}(o) = {<5'(z)}'(a).

Let <5'(z) = 0 unless Ix(z).

Case 4.   (z)0 = 4.   Let <5'(z) = <4,(z)1,á'((z)2),¿'((z)3)>.

Case 9. (z)0 = 9. We want {<5'(z)}'(a,b,c) * {(sg\(a)i ~ (Ai \)-ó"(a)}'(b),

which we obtain by taking ô'(z) = S2(D,d,z) etc. as for LXII.

(B) For the ô',z,a of (A), if {z}(a) is undefined, so is {<5'(z)}'(a).

Given, in the computation tree for {z}(a), a branch (z,a) = (z0,g0)) (zi>9i)>

(z2,g2), ••• either infinite or terminating in a tuple (z„g,) coming under S9 with

the a not an index for the b, we obtain the like in the computation tree for

{¿'(z)}(a) by correlating (<5'(z,),g,) to (z¡,g;), and whenever (z;,g;) comes under

S9 supplying after (<5'(z;),gf) (= (S2(D,d,z),a,b,c)) the tuples which lead from it

to (B0,(sg |(a)! -(z)2|)-(5'(a),b,c,d,z,a) where B0 is <9,23-(z)u(z)2y and, when

a is an index for b, further to (<5'(a),b).

10. The first recursion theorem. 10.1. We seek a version of the first recursion

theorem IM p. 348 (also cf. pp. 234, 326). The equation £(x¡, ■•-,x„) ̂  F(l^;x1,---,x„)

of IM becomes

(a) C(a) « F(C;a),

where a is a list of variables of our types 1.2, ( ranges over partial functions of

a, and F(£;a) belongs to a suitable class of functionals.

We now restrict F(£;ct) to belong to the class of the 'normal recursive func-

tionals', which will suffice for our applications. In 10.6 we shall see that some

such restriction is necessary.

A normal recursive functional F(£;a) is one describable (i.e. AaF(£;a) is

derivable uniformly from £; cf. 1.8, 1.9) using the simple schema

SO' <Hb,c) - C(b)       <0,<n0,-,nr>,<»i0,-,m,»

to introduce Ç, and further the schemata S1-S8, S4'(= S4'.j for j ^ 1,9.8), and

S5 U(a',b)-  x(b) <5,(n0,-,nry,g,h}.

The i/^'s and /'s for the applications of S4-S6, S8, S4', S5' are to be functions

previously described using the same schemata SO', S1-S8, S4', S5', but the 0's

for S4' are to be primitive recursive, i.e. describable using only S1-S8. The

function variable £ (introduced by SO') ranges over partial functions (of m0, ■•■,ms

variables of types 0,■■■,s, respectively), like the \¡il,---,\¡/l last sentence of 3.14.
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S5' gives a strong form of definition by cases; in an application of S5', to

compute 4>ia,b), when a = 0 we compute only ^(b), and when a/Owe compute

only lib) (cf. XV and IM Theorem XX(c) p.337(20), in contrast to IM #Fp.229

and Theorem XVII (b) p. 329).

10.2. By the function (j) computed by the recursion (a), for a normal recur-

sive F, we mean the function </>(a) such that, for each a, 4>ia) has the value ob-

tained for £(a) by the following computation procedure when this procedure

leads to a value, and $(ci) is undefined otherwise. The procedure consists in

identifying ((a) with F(£;a), computing (or attempting to compute) the latter,

via the applications of S1-S8, S4', S5' used in its description, from Ciby) for

certain b/s as called for by the applications of SO', while computing those Ç(bj,)'s

(if they can be computed) by the same procedure. (Similarly for other sorts of

functionals F(£;a) such that, in the computation of F(£;ct) for given a, values

of Ciby) are called for only for certain b/s arising in the course of the compu-

tation. How the by's arise will be clear for each sort of F(£;a) considered.)

Indices (similar to the indices of 3.5, 3.7 and the indices' of 9.8) can be used

in formulating the computation procedure more explicitly. In general, indices

serve as code numbers to say at each stage of a computation what schema applies

and thus what step is to be performed next. In the present situation with F

normal recursive, the indices are those dx, ■■-,dk determined in the usual manner

(cf. 3.5) from a description (hu---,(j)k of F(£;a) by the present schemata. Using

(a), we identify Ç(a) with the last function (j)kia) (=¿ F(Ç;a)), having the index dk.

At an application of SO', the computation does not terminate with a value of

dby) being supplied by an "oracle" (with indefinition if Ciby) is undefined), as

it would in simply computing F(£;a) for r an "ultimate" function argument;

but instead, the recursion (a) is utilized again with the index at the next step

becoming dk.

As in 9.1 and end 9.8, the computation of </>(a) by (a) can be arranged on a

tree. The 0-position is occupied by the tuple idk,a). After a position y occupied

by a tuple idy,by,cy) coming under SO' (i.e. with (dy)0 = 0), there is a single

next position occupied by idk,by).

We have an analog of induction on {z}(-) (end 3.8) for the present compu-

tation procedure and indices. This may be taken in the course-of-values version,

so that in proving a property of (d,a), where d is any one of dx, ■■-,dk and id,a)

has a value, we assume (dr ay) to have the property for any position y after the

0-position of the computation tree for (d,a). We call this induction over the

computation (o/the value of id, a), or, when d is dk, of 0(a)) by the recursion (a).

10.3. LXIV. // F(£;a) is normal recursive, the function <p computed by

(a) is a solution o/(a)/or £ such that any solution </>' for ( is an extension of <j>,

and this solution (p is partial recursive.

(20) On IM p. 338, after "Second Method" insert ", for Q\,---, Qm simultaneously defined".
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Proof, (i) For each a, <¡>(a) a¡ F((/>;a). By the computation procedure for the

function tp, we compute (or attempt to compute) <¡>(o), for given a, by computing

F(£;a) from y(by) for certain b/s, where Ç(by) is taken to be whatever we obtain

(a value, or indefinition, making F(£;a) undefined, if we obtain no value) for

F(C;by) by the same procedure. So, for each of the b/s, £(by) at <p(by). Thus the

computation procedure makes <j)(a) ̂ F(0;a).

(ii) If, for each a, <p'(a) at F(^';a), then <p' is an extension of <j). Consider

any a for which 0(a) is defined; we must show that 4>'(d) (is defined and) = </>(a).

But 4>(a) = the result F(0;a) of computing F(£;a) using as value of the Ç(by)

at each application of SO' the number <¡)(by). By the hypothesis of an induction

over the computation of 4>(a) by the recursion (a), for each such by, (p'(by) = <t>(by).

So the computation makes 4>(a) = F(0;a) = F(0';a). This with </>'(a) at F(0';a)

gives </>'(a) = (p(a).

(iii)   4> is partial recursive.

To prove this, first we pick a variable z not used in writing a given

description of F(£;a) by SO', S1-S8, S4', S5'. Consider each application of

SO' in this description; say (^(b^c,) - ((b,) is introduced. Replace ( by {z}',

so that instead 0|(z, b¡, c;) a: {z}'(b¡) is introduced by an application of S9'

(cf. 9.8), and follow this by a series of applications of S6 to bring the

variable z to the end (cf. II), so that altogether the application of S9' and the

applications of S6 introduce 0¡(b¡, c¡, z) a: <p¡(z, b¡, c¡) at {z}'(b¡). This "spoils" the

description, but as in the proof of III it becomes a description again when we

further replace each other function in the original description by a function with

z inserted as an additional variable at the end. To this description we suffix'an

application of S6 to bring the variable z to the front in the final function ij/(z,a).

Next we eliminate successively the applications of S5', each time operating

on the earliest one remaining in the description. This application introduces say

(j>(a,b,z), where <p(a,b,z) at ip(b,z) if a = 0, at x(b,z) if a # 0. Adapting the proof

of XV (cf. 9.9, 3.13), we insert an additional variable a (distinct from those

already used) at the end in the parts of the description leading to \¡/(b,z) and

X(b,z), and bring the a to the front by S6. Thus we obtain descriptions of

\jj(a,b,z) at \¡/{b,z) and #(a,b,z) ~ #(b,z). In these, only S1-S8, S4', S9' are used,

so \¡/(a,b,z) and x(a,b,z) have indices' e0 and eu respectively. We now introduce

( e0 if a = 0,
7t(a,b,z) =       °

[ e1 it a ^ U

by S1-S6, p(c,a,b,z) at {c}'(a,b,z) by S9', and finally (¡)(a,b,z) a¡ p(7i(a,b,z),a,b,z)

~ {7t(a,b,z)}'(a,b,z) by S4.

Now the given description of the normal recursive functional F(Ç;a) by SO',

S1-S8, S4', S5' has been transformed into a description of a partial' recursive

function i¡/(z,á) by S1-S8, S4', S9'. By the recursion theorem XIV (cf. 9.9, 3.12),

there is an index' e of ip(e,a), i.e. a number e such that
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(97) {e}'(«) * He, a).

For (B) below, we shall assume a particular construction of this e using the me-

thod of proof of XIV. We shall show ((A) and (B)) that 0(a) ̂  {e}'(a). The partial

recursiveness of 0(a) will follow by LXII, since {e}'(a)is partial'recursive (by XII').

(A) For each a, if 0(a) is defined, then {e}'(a) iis defined and) = 0(a). Con-

sider the part of the computation of <¡>ia) by (a) which consists in computing

F((;a) from the Ç(by)'s introduced by SO' and evaluated as (j)(by). By the hypoth-

esis of an induction over the computation of (j)(a) by (a), for each such

by, {e}'(by) = 0(b7). Via the foregoing transformation of the given description

of F(£;a) into one of ip(z,a), there corresponds to the said part of the compu-

tation of (¡>(a) a computation of \j/(e,a) from the {e}'(by)'s introduced by the

corresponding applications of S9' which gives \j/(e,a) = F(0;a) = 0(a). Using

(97), {e}'(a) = <Ka).
(B) For each a, if {e}'(a) is defined, so is 0(a). We assume e = Sl(f,f) where

S\u,y) = <4,[(u)1/2],«,<2,[(u)1/2],y>>, and/is the index' of Xya iA(S1(v,y),a)

constructed as follows. Let g be the index' of Azay iA(z,a) which results by intro-

ducing the new variable y at the end into each of the functions in the above

description of \¡/ = Xza \¡j(z,q). Let g0 = n(0,f,(6,(g)„0,(g)uo - l,g», which is

an index' of Xzyaip(z,a). Let h be an index' of XyaSi(y,y). Let/= (4,(h),,g0,hy.

Now along a branch of the computation tree for {e}'(o) including the upper

next position at each node, there occur in order (via only S4 and S6) the tuples

(e,a), (f,f,d), (g0,e,f,a), (g,e,a,f). Thus the tuple for {g}'(e,a,f) occurs in the com-

putation of {e}'(a). Now consider the part of the computation (or attempted

computation) of 0(a) which consists in computing F(£;a) from the ^(b^'s called

for by applications of SO' for certain b/s and evaluated (if possible) as (¡>(by).

By the relationship between the descriptions of F(£;a) and *p(z,á), corresponding

applications of S9' in the computation (or attempted computation) of \j/(e,a)

introduce {e}'(by) for the same b/s. By the construction of g, there correspond

in turn applications of S9' in the computation of {g}'(e,a,/) which introduce the

same {e}'(by)'s. So far each of the b/s in question, (e,b,,) occurs (before the

0-position) in the computation of {g}'(e,a,f), and hence of {e}'(a); and by the

hypothesis of an induction on {e}'(—) in the course-of-values version, 0(by) is

defined. Thus the values (¡>(by) of the £(b,,)'s called for in the said part of the com-

putation of 0(a) exist; and 0(a) is defined.

10.4. We give also a relativized version LXIV* of the first recursion theorem

LXIV (with LXIV included as the / = 0 case). Consider assumed functions

^!,—,i/f, or briefly *P, where \¡/¡ is a partial function of mi0, ■■■,miSl variables

of types 0, —,s¡, respectively.

We define the functions partial' (general) recursive in 4* in the same manner

as the partial' (general') recursive functions were defined in 9.8 except adding

the simple schema
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SO'.i <pib,c) =i Mb) <0,<no,-,nr>,<m/o,-,mto(>,i>

for introducing each one i¡/. of the functions *P. The 0's for S4' are still to be

primitive recursive absolutely. The indices' become indices' from *P and S9'

becomes

S9',p. <j>ia,b,c) * {a}'vib) <9,<«o,-,»r>.<m0,-,mJ».

Relativized versions II'*, III'* etc. of II', III' etc. (cf. 9.9) hold (in the second

alternative of LIU'*, the branch may terminate at an application of SO'.i with

the i/>;(b) undefined).

A normal recursive functional F(£,*P;a) is as in 10.1 except adding SO'.i to

introduce \j/¡ (i = 1, •••,/)•

LXIV*.    // F(£,T;ct) is normal recursive, the function <p computed from *F by

(a*) C(a)^F(C,T;a)

is a solution of (a*) for Ç. such that any solution <p' for £ is an extension of <p,

and this solution (j) is partial' recursive in x¥.

10.5. The relation '</> is partial' recursive in XP' is transitive, i.e. if the *P

are in turn partial' recursive in (zero or more) partial functions 0, then <t> is

partial' recursive in 0. For, say 0 are 0i,---,0p (p ^0), where 0j is a partial

function of qJ0, •••, qJtj variables of types 0,---,tj, respectively. Write

m¡= <mí0, ••-,»!,•*> (i = l,••-,/) and q¡= (qjo,---,qj,j'> (j=\,---,p). Simi-

larly to Kleene [17, §4]:

LXV.    There  is a primitive  recursive function tr"".mr,qi.q" such that:

If (j) is partial' recursive in *P with index' z, and *P are partial' recursive in 0

with respective indices' yi,---,yi, then (h is partial' recursive in 0 with index'

tr""-"»'"'.q>(z,yi,-,yi).

Proof.   We write trmi."»*»•••••«»  as tr simply. Let tr(z,yx, —,yl) = 0 unless

Ix'mi.m'(z) (using XIX'*). (Cf. 9.11 and earlier.)

Case 0'. i. (z)0 = 0 & (z)3 = i (i = l,--,l). Let tr(z,y„-,y,) = i"11--**

(y„[(z)i/(z)2]) (using XXI'*).

Case 9'. (z)0 = 9.Lettr(z,yi,---,yl) = Sl+2(D,t,z,yx,---, y¡) where D is an

index' from 0 of Xtzyx ■■•y,abc {(sg|(a)x-(z)2\)-{t}'@(a,yx,■■-,y,)}'e(b) and

t is an index' from 0 of tr.

10.6. A functional F(£;a) is primitive [partiai] recursive if AaF(£;a) is

primitive [partial] recursive uniformly in the partial function Ç = Xa C(a) in the

sense of 1.9 [of 3.14]. By the convention stated in 3.14, the function <p described

by an application of S0.1 with i¡/x = i shall be undefined for arguments which
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make any of the XaJ~~2 zt(aJ-2,b) (the Xt foO.b), Xo x3(<r,b) in the illustration of

SO. i in 1.8) incompletely defined.

For the normal recursive functionals 10.1, C is introduced by a more restricted

schema SO' than the S0.1 allowed for the primitive recursive functionals; but also

S5' is admitted (and S4' retained).

For an unrestricted generalization of the first recursion theorem IM p. 348,

the F(£;a) for (a) would be any partial recursive functional. However the general-

ization does not hold (under the convention of 3.14 for the functionals) even

for the subclass of the partial recursive functionals obtained from the normal

recursive functionals by liberalizing SO' to S0.1 (S4' becoming redundant).

LXVI. 7/ F(£;a) is a partial recursive functional, then the function <p com-

puted by (a) is a solution of (a) for £ such that any solution tp'for £ is an exten-

sion of (j). But a partial recursive F can be chosen so that this function <p is not

partial recursive.

Proof.   Cf. LXIV. (iii) Adapting the example for LVI, let

£(l,lx C(2,T1,<a,x»,a)     if b = 0,

F(Ç;b,x\a) at   - 0     if b = 1 V  [& = 2 &ri((a)o,(fl)0,(a)i)],

. r(2,xi ,a)     otherwise.

Suppose the (j>(b,xl,a) computed by (a) with this F were partial recursive. Then

using LXI (95) with 0(i,a,b,c) = 0, so would be tp(a) at <p(0,Xt 0,a). But from the

computation procedure for ^(b,!1^) by (a), we see that <p(a) is defined if and

only if (x)7\(a,a,x).

10.7. In 5.1 we introduced the function Xzaa1 ■■■ar{z}[a,al,---,ar] for

studying the partial recursive functions without showing it to be itself partial

recursive, though there is a calculation procedure for it similar to that for the

functions introduced by S9. There, with only XXII-XXHI to handle substitution

for function variables, we were only in a position to show, by a direct but metic-

ulous construction of indices (similar to that in the proof of XXV but more

complicated), that an extension of it is partial recursive. If it were not itself partial

recursive, there would be a gap in the defense of Church's thesis for our partial

recursive functions (with variables as in 1.2, 3.7) in the form corresponding

to IM Thesis I+(a) p. 332 (rather than I+(b)). In showing that it is itself partial

recursive, we could employ a direct index construction with LXI replacing XXII,

but we prefer to use the first recursion theorem LXIV.

LXVII.   For each r ja 0, Xzaa1---ar {z}[a,ai,---,ar] is partial recursive.

Proof. A computation procedure for {z} [a,a},---,a.r] is determined from that

for {z}(a) (3.9, beginning 5.3, 9.1) by the definition of {z}[a,a1,---,ar] in terms

of {z} (a) in 5.1.

Consider the following recursion, where k = (z)3 (cf. 5.4).
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C(z,a,ai,---,ar) a¡ (a)0 + 1 if Ix(z) &tp(z) ^ r & (z)0 = 1   (Case 1),

at (z)2 if Ix(z) &tp(z) ^r & (z)0 = 2    (Case 2),

a: (a)0 if Ix(z) &tp(z) ^ r & (z)0 = 3    (Case 3),

at C((z)2,2^«^)-fl•ÍI,."> ■ UPitiA1,•;or)
i<a

if Ix(z) & tp(z) ^ r &(z)0 = 4     (Case 4),

a C((2)a, ri/'.ífl,/+',al'-'0ír)iftx(z)&tp(z)ár&(z)0 = 5&

(a)o = 0   (Case 5a),

(98) ~ C((z)3,2(fl)0^- 3«I'tfl/2]-"1.°-n P¡(+2+ '.«S -,«0

¡<a

if Ix(z) & tp(z) ^ r & (z)0 = 5 & (a)0 > 0   (Case 5b),

« «(z)4,(n#,/+i)-/>ia)o-( n tfw.-.oo
i<k k<i<a

if Ix(z) & tp(z) ^ r & (z)0 = 6 & (z)2 = 0    (Case 6.0),

at C((z)4,a,a\-,aj-\Xv( [T pf <»»•♦.^W*.

(    il       pr(t,))i),a7+1,-,ar)iflx(2)&tp(z)gr
4<i<oiJ(u)

& (z)o = 6 & (z)2 =j    (Case 6.j for j = 1, •••, r),

at (a1((a)0))o if 1*00 &tp(z) ^ r & (z)0 = 7 (Case 7),

a: (a2(Ax Ç((z)3,2x ■   TT Pffi>«S -»«Otto
¡<n

if Ix(z) & tp(z) ^ r & (z)0 = 8 & (z)2 = 2        (Case 8.2),

a¡ (aW~2C((z)3,«V."s«'~>2*'~2(D)-    Il    P%Vm\

«,-1, -,ar)))0 if Ix(z) & tp(z) g r & (z)0 = 8 & (z)2 = j

(Case 8j for j = 3,—,r),

« C((a)o, FI P¡",>i + ,,a\-,ar)inx(z) & tp(z) ̂  r & (z)0 = 9

& Ix((a)0) & (a)0il = (z)2        (Case 9),

a: £(z,a,a1,---,ar) otherwise   (Case 10).

The right side of (98) is a functional F^z^a1, •••,ar) defined by exhaustive

mutually-exclusive cases. The functions Xv••• substituted in Cases 6.j (j — 1, ••■,/•)

and 8j* 0' = 3, —,r) are of the form of the Xx 0(---) for S4', while the substitutions

of Xx ••• in Case 8.2 and Xo'~2 ■■■ in Cases 8.;' 0' = 3, •••,?-) are directly as argu-

ments of the function variables and thus come under S8. The other operations
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in building the expressions given for the values in the cases can be effected using

only S1-S7, after introductions of £ by SO'. Finally, the case hypotheses are prim-

itive recursive (with number variables only), so the definition by cases can be

handled by iterated use of S5' with S1-S6. Thus F(Ç;z,a,a1,—>«r) is normal

recursive, and by LXIV: The function 0 computed by (98) is partial recursive.

Next we show by induction over the computation of 0 by (98) that: For any

z,a,ax,— ,ar, if 0(z,a,oc1,—,ocr) is defined, then {z^a.a1, —,ar] (is defined and)

= 0(z,a,a1, —,ar). When 0(z,a,a1,—,ar) is defined, one of Cases 1-9 of (98)

must apply, since in Case 10 there is an infinite branch in the computation tree

(cf. LUI). Consider that part of the computation of 0(z,a,a1,—,ar) which

consists in computing F(Ç;z,a,a}, — ,ar) from the £(zy,a,,,aj, —,ay) introduced by

SO' for zero, one or more r-I-2-tuples (zy,ay,<xy, —,ay) and evaluated as

4>(zy,ay,a}y, —,ap. In each of Cases 1-3, 7, there are no such r 4-2-tuples, and

the same value is given outright to ï((,;z,a,a},---,ar) as {z^a.a1, —,ar] has in

the case; so {z} [a,a1, —,ar] = (¡>(a,a1,-■■,&*). In each of Cases 4-6, 8, 9, the value

of F(£;z,a,a1, —,ar) is made to depend on that of Ç for the same r + 2-tuples

(zy,ay,(xy,---,oiy) as in the first step in the computation of {z}[a,a1,—,ar],

by the same formula. By the hyp. ind., for each such r 4- 2-tuple,

{zy}[ay,ay;---,cQ = 0(zray,aj, — ,av);

and hence

{z}[a,a1,---,ar] = F(0;z,a,a1, —,ar) = 0(z,a,a1,—,ar).

Finally, by a similar induction over the computation of {z}[a,0Ll, • ••,ar] :

For any z,a,a},---,cf,   if  {z} [a,a1, —,ar]  is defined,   so  is <f>(z,a,a1, ■•-,&').

10.8. LXVIII. The partial recursive functions constitute the least class of

functions which to each list *P of I ^0 functions in the class and each normal

recursive functional F(Ç,*F;a) contains the function 0 computed from *F by

the recursion (a*) of 10.4 and which is closed under the schema

S4'.0 0(a) ^0(0(a), a) <4,<n0,-,nr>^,A>.

where 0(a) is primitive recursive, and the schemata S4'.j (j = 1,2,3, •••) of 9.8,

as operations generating (j)from \¡i.

Proof, (i) By LXIV*, the 0 computed (from *P) by (a*) for such an F is

partial' recursive in *P, and so by LXV for 0 empty with LXIII and LXII is

partial recursive when *P are partial recursive. By S4 (cf. 3.7) and LXI, the class

of the partial recursive functions is closed under S4'.j (j = 0,1,2, ••■).

(ii) Conversely, consider any partial recursive function <¡>, of variables

(a„---,ano,a\,■■■,oí¡¡1,---,ct[,---,ar„r) (= b) with nr > 0 if r > 0. Introducing b as

parameters into (98), we compute by (a) (i.e. (a*) with the *P empty) a function 0

such that {z}[a,a1,-",ar] at 0(z,a,a1,—,ar,b). Using (13) in 5.1, we thence ob-

tain 0! by S4'.0-S4'.r (cf. the proof of V in 1.6), provided that n, > 0 for 2 ^j ^
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r — 1 (otherwise the (a{, "',a¿,> of 2.1 which we would substitute for aJ does

not satisfy the requirement n} > 0 for S4'.j).

(iii) To deal with the case that not all of n2,---,nr-x > 0, we use recursions

(a*) to introduce successively sets of functions like {z)[a,a}, •••,</] but with

1,2, -,r- 2 of the variables a2, ■■■,ar~1 missing. Then we will need to substitute

<a{, ■••,a¿jr> for aJ only for those ;'s for which n¡ > 0. The parameters b, which

we will not write, can be carried in each of the recursions. For example, suppose

r = 6 and we have already introduced the functions with 2 of a2, a3, a*, a5

missing; and consider {z} [a, a Sa4, a6], which has 3 missing. The recursion for

this is like (98) for r = 6, except that Cases 6.2, 6.3, 6.5, 8.2, 8.3, 8.5 are missing,

and in Case 8.4 the expression for the value is

(a\Xa2 {(z)3}[a,a1,<<r2>,a4,a6]))0,

using the previously introduced Azaaxa2a4a6 {z} [0,0c1, a2, a4, a6], call it \jj. The

right side is a normal recursive functional ï((„\li\z,a,a},a*,a.6). So, since \j/ is al-

ready in the class, the function <p = Xzaa.xaAa6 {z)[a,a},a.*,a.6] computed by

(a*) for this F is in the class.

Discussion. Thus (a*) for normal recursive F suitably understood can replace

S9. Indeed, a finite number of particular applications of (a*) suffices for all

partial recursive functions 4>i of variables of types ^ a given r, if we allow

the subsequent substitutions to have the more general forms i^(0(b,c),b),

il/(Xt9(t,b,c),b),ijj(XxJ-19(ai(xj-1), -,a((TJ'-1),b,c),b) (/> 1; ni> 0). This avoids

the use of indices, if one accepts without indices the notion 10.2 of the function

computed by a recursion (a) or more generally computed from *F by (a*). We

did use indices in a supplementary explanation of that ; but there is the following

difference. In computing {z}(a) for a given z and a (3.7-3.9), infinitely many

different indices may occur. In describing via indices the computation by (a*)

for a given F but any a, only the finitely many indices d1,---,dk are used; we

can say that only finitely many kinds of computation situations occur.

Remark 11. A definition of 'partial' and 'general recursive function' by

using (a) for a normal recursive F instead of S9 has been available for the type-0

and type-1 cases in IM Example 4 pp. 350-351 and, for type 1, its uniformly

relativized version. (The subsequent substitutions in Theorems IX, IX*, XIX

pp. 288, 292, 330 use S4 and not simply S4'.)

11. Degrees and sections. 11.1. One of our principal objectives in devel-

oping the notions of partial and general recursiveness for functions of variables

of types > 1 was to make available relative general recursiveness for functions

of variables of types > 0 (cf. the introduction to Part I)(21).

(21) Thus in [14] we were forced to forgo a relativized version of the theory except for the

case all independent variables are of type 0 (cf. [14, Footnote 4]). Our first work in the present

area, specifically on the notions formulated in [42] and [39], was in 1952 in connection with the

first work on [14] (presented to the Association for Symbolic Logic, December 29, 1952).
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11.2. The objects whose relations of relative recursiveness we shall be con-

sidering are the total (i.e. completely defined) functions Xa 0(a), where a is a

nonempty list of variables of the types 0,1,2, ••• called pure in [18,5.2], with

values of type 0; these functions ¿a0(a) themselves (and numbers) are of special

types in the terminology of [18, 5.2]. Predicates (and sets) are included in the

treatment via their representing functions(22).

11.3. The relations '0 is partial recursive in 0' and '0 is general recursive

in 0' are defined in 3.14(23).

These relations are reflexive; e.g. if 0 is 0(c,y2,y3), we obtain

<Kc,yi,y2) =ü 0(c,Ai x2(t,y\, yl),XaX3(o,yl2,y2))

by S0.1 in 1.8 after using VI to obtain

x2(t, y\, yl) = yl(t),       xa«, yl y\) = vli«)-
11.4. As in 10.4 and 10.5, let *F be \¡tx, ■■-,0, (I = 0) where 0, is a partial

function of mi0,---,m¡s¡ variables of types 0,---,s¡, respectively; 0 be 9x,---,9p

(p = 0) where 9j is a partial function of qjo,---,qjti variables of types 0,---,t¡,

respectively; and write m¡ = <ml0,---,mls¡>, q¡ = iqjo,—,qjtjy.

LXIX.    There   is   a   primitive   recursive   function   tre""-•""'•'".q" such

that: If 4> is partial recursive in *F with index z, and *P are partial re-

cursive in 0 with respective indices yx,---,y¡, then an extension of <f> is partial

recursive in 0 with index tremi.m,m.qp(z,yx,---,y¡). For 1 = 0, tre«'-'9p(z)

= z simply.

Proof for   / > 0.  For illustration,  say 1=1, m = mx = <1,1,1 >.  We  write

tre<i,i.i>;«i.up as  tre   simply,   we take tre(z,j>) = 0 except for Ix<1,M>(z)

(using the relativized version XIX* of XIX), when the appropriate one of the

following cases shall apply. That a primitive recursive function tre exists satis-

fying the specifications in all of the cases will follow using the recursion theorem

(as for XXII, LXV). We use induction on {z}*(-) (3.14, 3.8) in proving that,

for each a for which 0(a) (= {z}*(a)) is defined, {zf (a) = {tre(z,v)f(a). This

proof is to be given in each of the following cases, with the simple case hypoth-

esis for the definition of tre(z,y) supplemented by the hypothesis of the theorem.

Case 0. (z)0 = 0. Suppose 0(a) is partial recursive in t]/ with index z, and \ji

is partial recursive in 0 with index y. Then 0(a) is introduced by S0.1 in 1.8;

writing a = (c,b), 0(a) =s 0(c,Aí z2(i,b), Xoy>3io,b)) where Xi and ^3 are partial

recursive in 0 with indices (z)3 and (z)4, respectively. Consider an a for which

(22) The basis is available for the treatment of objects of all finite types [18, 5.2], via 1.5,

[18, 5.3 and 5.4].

(23) Indices from <P (required in 3.14) are assigned to functions introduced by applications

of SO./ in 1.8 in the manner illustrated there with the variables of y, written in an order of non-

decreasing type; thus in the example, h2 and h3 are indices from *? of %i and #3> respectively.

(We can, continuing the convention following S1-S8 in 1.3, write the variables of ip, in other

orders, but these shall not give rise to additional indices from *P.)
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(j)(a) is defined; by the convention of 3.14, Xt Xi(Ub) and XoxAa$) are com-

pletely defined, so by hyp. ind., for each t, Xi(Lb) = {tre((z)3,y)} ®(i,b), and,

for each a, x3(<r,b) = {tre((z)4,>>)}e(ff,b). Thus the functions xi(t,b), x3(<r,b)

with the following indices from 0 are extensions of x2(Ub), foO^b), respectively.

X2: A = tre((z)3,>>).

X'3: B = tre((z)4,y).

The functions #2(c,o-2,b,r) at x2(i,b), x3(c,b,<r) a: x3(o-,b) have the following indices

from 0 (using the relativized versions XX*, XXI* of XX, XXI).

X'2:C =  <6,<l,0,l>-(A)1,0,(A)lj0,<6,<l,0,l>-(A)1,2,(A)1>2,

i".*(b(0,(A)1(0-M,A),<1,0,1»».

X"3: D =  <6,<l>-(B)1,0,(B)1>0,t"."W1,(B)U-1,B),<1))>.

Next consider the function ^(c.ff^b) with the following index from 0 (using

the relativized version XXII* of XXII; cf. 4.4).

<A,:E = y]'."0>,C,0).

For values of a (= (c,b)) for which <j)(a) is defined, so a1 = Xtx2(t,b) is

completely defined, and also of o2 for which ^(CjCr^cr2) is defined, by XXII*

i/r1(c,(72,b) = {E}e(c,(T2,b) = ^(c,Aíx2(c,ff2,b,í),<T2) = i/f(c,Xtx2(t,b),o2). Finally

consider the function \p2(c,b) with the following index from 0.

<l>2-. F = yV.8>(E,D,0).

For values of a(= (c,b)) for which 0(a) is defined, so a2 = Xo x3(a,b) is com-

pletely defined and \pi(c,o2Jû) is defined, by XXII*

^2(cb) = {Ff(c,b) = McM xï(c,b,o),b) = Hc,Xt x2(t,b),XoxAe,b)) = 0(a).

Thus ip2(c,b) is an extension of 0(a). Let tre(z,.y) = F.

Case 9. (z)0 = 9. 0(a,b,c) at {a}*(b). Let tre(z,y) = S2(D,t,y) where D is an

index from 0 of Xtyabc {{t}& (a,y)}& (b) and t is an index from 0 of tre.

Proof for / = 0. Consider any a for which 0(a) (= {z}(a))is defined. By LUI,

each tuple in the computation tree for {z} (a) is defined. This computation tree is

already one for {z}@(a); the extra cases for SO./ in which a tuple would be de-

fined in the tree for {z}0(a) but not in that for {z}(a) do not arise. Thus

0(a) = (z}e(a).

Remark 12.    For   / = 0,   by   using   a   more   complicated   index   function

trej1.'" (briefly, tre0), 0 itself is partial recursive in 0. Let tre0(z) = 0 except

when Ix(z). In Case 9, let tre0(z) = S2(D,i,z) where D is an index from 0 of

Aízabcj/sglta)! - (z)2 |) • {r}e(a)}e(b) and t is an index from 0 of tre0. (Cf.

9.11 and earlier.)



1963] RECURSIVE FUNCTIONALS AND QUANTIFIERS 131

11.5. Applying LXIX with *F and 0 single functions 0 and 0 (I = p = 1)

and all the functions total: The relation '0 is general recursive in 0' is transitive.

Remark 13. We stated LXIX for partial functions, even though we are

primarily interested in total functions, since e.g. in Case 4 0(a) = Zi(x(d),a)

with 0(a) total, Xi(c> <U may not be total.

11.6. Applying LXIX [Remark 12] with T empty (/ = 0) and 0 a single

function 0 (p= 1): If 0 is general [partial] recursive, 0 is general [partial] re-

cursive in any function 9.

Applying LXIX with 4* a single function 0 and 0 empty: If 0 is general re-

cursive in a general (or partial) recursive function 0, 0 is general recursive.

Remark 14. Under the convention of 3.14, a function 0 may be partial

recursive in a partial recursive function 0 without being partial recursive; e.g.

0(a) ~ ij/(Xx x(x, a)) for the x(x, a) of the proof of LVI with 0(a) = 0.

11.7. By 2.1-2.4 for each fc.Z^l, <ak,ß'y = <y\yj> (where f = ak and

yJ = ß' if k Ú I, y' = ß' and yj = a" if k> I) = <y',yJ>J' = <mp/(yi),mp/(y'')>

= {XxJ-»mp/iy,xJ-'),XxJ- ' mpj(yJ',xj~l) y = XxJ~l <mp/(y',xJ~ '),mpjiy,xJ~l)>,

which is of the form Xx]'1 0(TJ~',y\y') where 0(tj 1, y*, y') is primitive recursive.

So by 1.9, for each k, I ^ 1, (a\ß'y is a function of type 7 = max(k, I) primitive

recursive (uniformly) in ak,ßl; a fortiori, by 3.14, (ak,ßly is general recursive

(uniformly) in ak,ßl.

By 2.4, «ak,ß'y)k0 = ak for k^l [((ak,ß'y)\ = ak for k > I], whence (for

k, I ^ 1) via 2.1-2.4, 1.9 and 3.14, afc is general recursive (uniformly) in <<**,/?'>.

Similarly, ßl is general recursive (uniformly) in <ak,jS'>.

Applying LXIX with <afc/>, (a*/), ym as the 0, VF, 0: If a* and ß' are each

general recursive in ym, then <a*,/?! > is general recursive in ym.

11.8. For pure-type objects, relative partial and general recursiveness can

be expressed most simply via 1.9 extended to include S9, as remarked in 3.15

and used in 7.3, 7.4 Part (b) and 7.9; in particular: a* is general recursive in

/?' if and only if there is a partial recursive function 0(T*_1,y!) such

that, for each t*-1,o*(t*_1) = 0(t*-1,/?'). — The index constructions required for

this extension of 1.9 to include S9 were passed over in silence in Part I. We give

them now for importing (exporting) a single function \¡ik into (out of) the list

*F of arguments. By repetitions, the general form of the result will follow.

(a) For T, m¡ as in 11.4 with l^k^i and \j/k total of pure type j > 0, let

«Pt = (0J,...; i¡/k_l, \¡/k+í, ■••, 0/).   There   is   a   primitive   recursive function

im"".m'k(z) with the following property. //0(a) is partial recursive in^V with

index z, then im""'""'''"'*(z) is an index from *Pt of a function <p(a,aj) such that

0(a) at 0(a,0t). (When i¡/k varies, if the index z is uniform in ipk,(j)(a) at 0(0,0*)

for all \¡/k.)
Proof.   Let im"".m"\z) (write   it   im(z) simply) = 0   unless Ix"".m'(z)

(using XIX*). Note that 7 = 1 + tp(mk) (cf. 4.1).
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Case 0. (z)0 = 0. Subcase 1. (z)2 ± k. Let im(z) = jv«^«»»*««»»"'-»

•nt<M*^2Pi?3'h*3 ■ Subcase 2. (z)2 = k & j = 1. Let im(z) = «(l/z),,,,

<7,Pr(z)i»- Subcase 3. (z)2 = k &j > 1. Let im(z) = jcCW*)i. ¡,<$,p¡iz)ü

<6,Pj ■ Pj-2 • (z)i^(z)i j,im((z)3)> >).

Case 9. (z)0 = 9. Write a = (a,b,c). Let im(z) = S2(D,/,z) where D is an index

from mk of XizabcaJ {(sg\(a), - (z)2 \)-{i}'Vk(a)Y¥k(b,^) and i is an index from

Vk of im.

(b)  For *P eíc. as in (a), í/iere is a primitive recursive function ex"".m''k(z,q)

with the following property. Let a be a list of variables including at least q of

type j, and let b be a with the qth type-} variable 0t removed. If 0(a) is partial

recursive in y¥k with index z, then Xb 0(a) is partial recursive in *P uniformly

in i¡/k with index ex""-"'m"*(z,q).

Proof.   Let ex(z,q) = 0 except when Ixmi."»-«**+>.»»(z).

Case 0.   (z)0 = 0. Let

ex(z,?) = 3f(z)>/^5(zh+SE((z)^t,ni<lh(z,^2/'ir3((z)i + 3,', + (Wi+3,,,^(z,''j)) -

Case 6. (z)0 = 6. Subcase l.(z)2^/Letex(z,q)=<6,[(z)1/pJ],(z)2,(z)3,ex((z)4,i)>.

Subcase 2. (z)2 =/Sub2case 1.^1. Let ex(z,4) = <6,[(z)jpjj,(z)3 ■>- sg((z)¡+q),

ex((z)4,q - sg((z)3"^ q))). Sub2case 2. g = 1. Let ex(z,g) = ex((z)4,(z)3).

Case 7.   (z)0 = 7.   Subcase   1. j^lsjq^l.   Let  ex(z,g) = <7,[(z)1/pi]>.

Subcase 2.   ; = g = 1. Let ex(z,g) = <0,[(z)!/2],fe>.

Case 8.   (z)0 = 8. Subcase 1. (z)2 5e j V 3 ^ 1. Let

ex (z,g) =  <8,[(z)1/pJ,j,ex((z)3,g + ig| (z)2 - j" |) >.

Subcase 2.   (z)2 = j & q = 1.   Let ex(z,qr) = <0,[(z)1/pJ],fe,ex((z)3,l)>.

11.9. Since '0 is general recursive in 0' is reflexive and transitive (11.3, 11.5),

the functions of special types 11.2 are partitioned into equivalence classes by

the relation '0 is general recursive in \¡i, and vice versa' as in Kleene-Post [19,

1.2]. Everything in [19, 1.2 and 1.3] goes through now with no essential change.

In particular (but extending [19, 1.2] to include raising types), the proof of

XI (with S0.1, and 2.1-2.4 as in 11.7) correlates to each function u(o), where a is

a nonempty list of variables the highest of whose types is m, a type-m + 1 function

Aama"1+1(a'") of the same degree (= a itself, if a is already of a pure type). We

call this the pure-type function correlated to a.

By passing first from a(a) for a as above to the predicate a(a) = w (which is

of the same degree, since a(a) = pw\_a(a) = w] and XVI holds in a relativized

version XVI*), and then applying XI to the representing function of this pred-

icate, we are led from a(a) to a correlated set of type m objects (i.e. a function

of the pure type m + 1 taking only 0 and 1 as values) of the same degree.

Corresponding to [19, end 1.2], the cardinality of the set of the degrees into

which (the set of the functions of) a given special type is partitioned is the car-

dinality of the type (2So when the independent variables are all of type 0).
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Using 11.6, the recursive functions again constitute the least degree 0. We

define a U b as the degree of (a*,/?') where ak and ß1 are pure-type objects of the

degrees a and b, respectively (cf. 11.7); it depends only on a and b. Formulas

(l)-(9) of [19] hold.

11.10. We now understand by a section ä the set-theoretic union of all the

degrees ;£ a given degree a ; thus ä consists of all the functions (predicates and

sets) ßib) general recursive in a given function <x(a) of the degree a.

A degree a is determined by any one <x(a) of its members, a section a by the

highest degree a it includes as subset or by any one a(a) of its members of that

degree; and we may write a = dg(oc), a = sc(a) = sc(a).

11.11. We say a degree a (section a) is a kdegree ^section), or is generated

by a type-k object, if it contains a member (a member of its highest degree) of

the pure type k; in this case, we may write a as ''a (a as *i).

11.12. Each ^degree (^section) is also an 'degree ('section) for each / ^ k. For,

mpj^a*) is primitive, a fortiori general, recursive in oc* (cf. 2.3, 11.7); and by (7)

ak is likewise general recursive in mp[(a4). Thus mp^a*) is a type-/ object of the

same degree as a*.

11.13. We say a type-A: object a4 is reducible (io type-l) if there is a type-Z

object a' (Z < k) of the same degree as a*.

In this case, we may also speak of the *degree ka = dg(ak) [the Section

ka = sc(afc)] as being reducible if rom type k to type I), though it is not the degree

[section] itself that is being reduced but its type description (the prefixed superior

index).

11.14. By an m+1degree m + 1a [m+1secif'on m + 1a], or the m + ipart of a [of a],

we mean the subset of a [of i] consisting of those functions (predicates and

sets) whose independent variables are of types = m, i.e. whose correlated pure-

type objects are of types :g m + 1.

This notation may be combined with that of 11.11; thus m+1i is the set of

the functions of variables of types = m which are general recursive in a type-k

function ak of degree a.

If *a is irreducible, then *a is empty for I < k.

11.15. By [19, 1.4] iEx)Tlia,a,x) is a predicate of degree a', depending only

on the degree a of a, with a' > a. (' was called a "jump" operation on degrees.)

We state an analogous result for higher types.

Using    the     T    of    XXXVIII,     for    each     r^l     let N(ar+1, y0 =

inr)iEr1)Tiiy%y\°Lr+\n',r1)andJ[a'+l] = Xy'Nia'+1,yr)rJ"for "jump").

LXX.    For each r = l:

(99) dg(J[ar+1]) depends only on dg(ar+1).

(100) dg(a'+1) i£ dg(/r+1) -> dg(J[a'+1]) ^ dg(J[/r+1]).

(101) dg(ar+1)<dg(J[ar+1]).
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Proof. (99) and (100). As before [19, p. 384], it will suffice to show that, if

Gcr+1 is recursive in ßr+1, then J[ar+1] is recursive in J[ßr+1]. But, slightly modify-

ing the proof of XLIV, N{^\{f)í)=(rf){E^~í)T(J,ftBr*í,rf,^~i) for some
number/ (by (73) with XXIII and 11.8), so iV(ar+1,yr) = N(ar+1,(</,yr»1)

= N(jf+1, </,/».
(101). By XVI* (cf. 11.9), ar+1 is recursive in Xa.rwar+l(ar) = w. Slightly mod-

ifying the proof of XLIV, ar+1((ar)2) = («0? = (Y)(£f -1)T(/,aV+V,<T')
by (73) etc., so ar+1(ar) = w = A/(ar+1,</,w,ar». Thus using S8, etc'

Xarw ar+1(ar) = w, and hence <xr+1, is recursive in J[ar+1].

Suppose J[a'"+1], with representing function Ayr0(yr), were recursive in ar+1.

Then by XXXV 0(yr) = w, and (by substituting 0 for w) N(a.r+1,yr), would be

r + 1-expressible in =,+,-, ar+1 with a prenex r + 1-expression in which all

type-r quantifiers are existential. Applying the proof of XXXVIIa, we would

then obtain Nia'+'y) in the form (Enr)(ir~1)R(yrAr+1,nr,^-1)with a (primitive)

recursive R. But by the proof of XL with ar+1 as the b (observing that the b

is held constant in that proof), this is absurd.

11.16. The type-2 object E of 8.2 we now write also 2E; and generally, for

each k = 2,3,4, •••, we define a type-fc object fcE by

W-i) =   ( 0 if (Fat-2)[a"-V"2) = 0],

\ 1 otherwise.

(Raising the types of all variables by the same amount k — 2, the formulas in

8.2 for the representing function of a1 = ß1 in terms of 2E and vice versa gen-

eralize from k = 2 to any k ^ 2.)

XLVIII can now be stated as: !Sc(2E) = the hyperarithmetical number-theoretic

functions.

11.17. LXXI. (a) // a is general recursive in 2E, so is (Ex)T"(a,a,x).

(b) For each k ^ 3, if a*-1 is general recursive in *E, so is J[a*-1]-

Proof, (a) By (79), 11.8 and XXIII. (b) A/(a*-1,y*-2) = (nk~2)(Eik-3)

T((yk-2)°o,yk-2,ak-\nk-2, ^3) = (n"-2)^2)^"-2)», yk'2, a*"1, nk~2,

Pm*-3(£* 2))(by(6)). Let0(e\ <f 2,nk 2,yk 2,ak x) be the representing function

of r((y"-X yk~2, a*-1, nk'2, pmt_3(ê"~2)) (constant in £*). Using S8 etc., let

9(sk,nk~2,yk~2,a''1) = ek(Xe-2 H^e~\rik-2,yk-2,a'-1)) and tp^y'-2^-1)

="sg(6l(V"2 sg(0(eV"2,yi"2,at_1)))).Then 0(et,yk"2,afc"1)isprimitive recursive,

and 0(*E,yk~2,a*~1) is the representing function of N(ak~1,yk~2); so fora

particular ak~ ' general recursive in *E, using 11.8 J[ak~x] is general recursive in *E.

11.18. LXXII. For k = 2,3,-: dg(*E) (sc(fcE)) is an irreducible kdegree

('section).

Proof for k = 2. By XLVIII, the contrary would imply that there is a hyper-

arithmetic number-theoretic function a of highest degree, which is known not

to be the case. A more direct proof is similar to the :
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Proof for k > 2. Suppose sc(*E) were reducible. Then by 11.12 sc(*E) = sc(a*_1)

for some a*"1 (i.e. the type k can be reduced by 1, if it can be reduced at all).

This is absurd, since by (101) ./[a*"1] would be of higher degree than a*-1,

while by LXXI (b) J[a*_1] would also be recursive in fcE.

11.19. Substituting relative ¿¿-recursiveness 8.1 for relative general recursive-

ness (S10 of 8.1 replacing S9 in 3.14) in the definitions of degree, section, etc.,

we get corresponding notions with the prefix "p-". The transitivity of relative

¿¿-recursiveness, and the extension of 1.9 to include S10, are immediate, index

constructions like those in 11.4 and 11.8 not being required.

XLVII can now be stated as: 1/¿-sc(2E) = the arithmetical number-theoretic

functions [2/¿-sc(2E) = the arithmetical functions of type-Oand type-1 variables].

11.20. It is an open problem whether the arithmetical number-theoretic func-

tions are the jsection of any type-2 object a2. If they are, the a2 and their genera-

tion from it are so devious that no arithmetical function x exists such that, for

each k, xik) is an index from a2 of Lkia) (or, putting X'k,a) = {x(/c)}a2(a),A

would be the representing function of Xka Lkia) and arithmetical, which is absurd;

cf. [16, p. 198], 8.3, 8.4). Relative general recursiveness seems a more funda-

mental relation than relative ^-recursiveness (when they differ, §8); cf. §3 (Church's

thesis extended), [39; 41; 42]. From this standpoint, the arithmetical functions

are a less natural class of functions than the hyperarithmetical, which by XLVIII

are exactly those general recursive in the simplest irreducible type-2 object 2E

which comes to mind(24).

(24) Another irreducible type-2 object is Ei where

t 0if(/3)(£x)7'1("')p',((a)S,(a)^),
Ei(a) =

\ 1 otherwise,

with the T-predicate of IM p. 292, or the equivalent obtainable as in 5.24. In our notes, March 6,

1957, we conjectured that the number-theoretic predicates recursive in E2 might exhaust the

set of the predicates expressible in both 2-function-quantifier forms (n^ o £¿, in the notation

of Addison [31, p. 127] ), to which they all belong (similarly to XLVIII, the first part). We planned

to show that the predicates recursive in E ¡ include all predicates recursive in predicates of the

Addison-Kleene ^-hierarchy for y e 02o [33] as well as those obtainable by extending that

hierarchy through the constructive higher number classes as we then proposed to define them

(adapting [34, §6] in the direction of [36, §5]). However we felt that publication in this area

should await a closer scrutiny of the constructive higher number classes than we then had time

to make. Soon thereafter the constructive higher number classes were discussed by Wang [46]

and then more thoroughly by Kreider and Rogers [43]. Other type-2 objects with the same

degree, and hence the same isection, as E¡ are E,' and E, where

t 0 if iß) (Ex)T^(a(0),  x), t 0 if (ß) (Ex) [a(ß(x)) = 0],
E'/(a) = E,(a) =

I 1 otherwise, [ 1 otherwise;

these come from E¡ via [14, p. 320, Proof for n = 0 and Footnote 14] with [16, XIX* (cf. XXVII)].

Using Ei, Togué in [45] and in an unpublished manuscript seen by us in September 1960 covered

some of this ground. Subsequently Shoenfield [44], using a result of Addison [32], disproved

the above conjecture.
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11.21. The reducible 2degrees are isomorphic with the 'degrees, with all

the complexities of fine structure found in [19], Spector [27], etc. A priori, one

would expect a similar complexity of fine structure for the irreducible 2degrees.

But, at the moment, it is not even known whether there is an irreducible 2degree

<dg(2E), or whether there is an irreducible type-2 object a2 such that isc(a2)

is a proper subset of the hyperarithmetical functions. One approach would be

to try to generalize some one of the operations which have been used in [19],

Spector [27], etc. to construct a host of degrees between two levels of the arith-

metical hierarchy [10; 16, §2] into a uniform operation, which will constitute a

type-2 object a2, and then to investigate dg(a2) and ,sc(ol2). Another open ques-

tion is whether, for some type-2 objects a2 and ß2, ,sc(cc2) = ,sc(ß2) but

sc(a2) # scijß2).

11.22. We next prepare to extend XLVII to higher types (in LXXV).

LXXIII (an extension of XXXV). For each r^l: If a function 0(a) of

variables a of types ^ r + 1 is partial recursive in (total) functions ¥ of vari-

ables of types ^ r, then a completion (0(a) = w)' of 0(a) = w (cf. 9.2) is

r+ l-expressible in =, 4-, -, *P, with a prenex r + l-expression in which all

the type-r quantifiers are universal, and also one in which all are existential.

Proof. As before, except that "(0(a) = w)'" replaces the last "0(a) = w" in

Part (b).

11.23. Analogously to F-height in 8.3, we can define the ßr+2-height of a

description of 0(^+2,a1,-,ano,a},-,an11, -.aT1, -,<C\>A."-X./0 by

S1-S5, S6.0-S6.r,S7, S8.2-S8.(r + 2), S10.

LXXIV. For each r^l: Suppose cp(ßr+2,a„ •••,a„;.11, ß'„ -,ÄTP,pw+1) is

partial p-recursive with a description of jSr+2-height h. Then there are a function

<p(au-X;.\,ß\,-,ßn„ßr+i) and a predicate W1.Ä.-.ÄU0r+1) ex-

pressible in the h-itype-r)-quantifier form with primitive recursive scope with

isay) existence first (for h>0)such that (a) 0(a1,—,o£r~_11, ß[, ■">#,' ßr+1)

is an extension of

0(r+2E,a1,-,oC.\,Ä,-,Ä,,p*+1),

and (b) Xa,---a¿~_\ (j)(a,, —,a£l,, ß[,---,ßr„r, ßr+1) is partial p-recursive in

ßr,-,ßl, ßr+\Xßr~l Rh(ß'-\ßr„:;ß'Kr,ß'+1) uniformly in ß[, -,ßrnr, ß' + 1.

Similarly without the ßr+l.

Proof (with the /?r+1), by induction on the length of the given description

of 0(j8'+2,ai,-) by S1-S8, S10. For h = 0, Rh(ß'-\ßr,,- ,ßrnr,ßr+1) = 0 = 0

simply.

Cases 1, 2, 3, 7. <p(ß'+2, a,,--) is introduced by SI, S2, S3 or S7. Then the

)8r+2-height h = 0, and 4>(ßr+2,a„--) is independent of ßr+2. Defining <¡>(a„--)

by the same respective schema, <¡>(a„ —) = 0(r+2E,a1, •••) and Xa, •■■ccn''rZ1,,<j>ia„---)

is primitive, a fortiori partial p-, recursive absolutely or (for S7 with r = 1) uni-
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formly in ß\, and hence in ß\, -,ßl,ßr+l,Xßr~1 R„(ß'~\-) uniformly in

ßu -,ßl,ßr+\ for Rh(ß"\ •••) = 0 = 0.

Case 4. 0(/?r+2,a1, •••) a¡ il/iß'^xiß'*2,^,-),^,-) by S4. By hyp. ind.

there are \j>(c,au---) and Rlhl (x(au •••) and R2¡h2) with the properties (a) and (b)

with respect to \p(ß'+2,c,au---) (to x(ßr+2>au•"))'> and ft = raax(huh2). Letting

0(a1; •••) ~ \¡/(x(a1,---),a1,---), clearly (a) is satisfied with respect to 0(/T+2,a1, •••).

For /t > 0, since h}th¡ (i = 1,2), we can consider the existential ^¡-(type-r)-

quantifier expression for R¡,,. as of the existential /¡-(type-r)-quantifier form, so

(again adapting the proof of XLIV) by XXXVIII, for some

fi,Rithi(ßr-1,ßr1,-,ß:r,ßr+1)^(Qx)S(fi,ßr-\ß[,-,ßr„r,ßr+1,x) where (Qx) is the

prefix in question and S is T or T according as h is even or odd, whence

Ri>i<(j8'-1,...) = ÄÄ«/i,pv-1>,/ri,.-.,Är,j8'+1)for

R^ß'-\ß\,-,ßl,ß'")=(Qx)S((ßr-X,(ßr-\,ß'u---,ßl,ßr+\*).

Case 8.7 (2gj < r + 2). 0(/T+2,a1,-) ^W~2x(J?r+2,^~2,«i>"-)) where

/Fis one of a?,a?,-,aï"1,ft,)?'*l, by S8.7. By hyp. ind., there are z({y"2,a1,-)

and Rh(ßr~i,ß\,---,ßrnr,ßr+i) with the properties (a) and (b) in relation to

x(ßr+2,CJ~2,al,---). This Rh suffices as the Rh for this case, and we take

0(a1,-)^)SW"2x(íJ"2,«i, -))•
Case 8.(r + 2). 0(/T2,a1; -)~ ßr+2(Xirx(ßr+2,e\au •••)) by S8.(r + 2). By

hyp. ind. there are zß'.fli,-) and Rh^(ß'-\t;T,ß\,-,ßrnr,ß'+i) with the prop-

erties (a) and (b) for x- Now let

(102) ^  |0if(£f)Wf.ai,-)-0],
\ 1 otherwise,

this being undefined if A(*rx(<ir,ai,---) is incompletely defined. Since jc({'«!,•••)

is an extension of ^C+2E,^r, al,---), 0o(oi,"-) is an extension of 0(r+2E,a1,---).

By (b) of the hyp. ind., Xal---ar~}ix(£,T,al,---) is partial /t-recursive, a fortiori

(by XVI*) partial recursive, in'?,ßr1,-,ß'Hr,ßr+\Xß'-1Rh_1(ß'-1,?,ß\,-,

ßl,ßr+1) uniformly in ?,ßru—,ßr„r,ßr+1. Hence by LXXIII, a completion

Aai-"oC-11(*(í,»ai»"-) = 0)' of Xai---arn~}t x(^r,au---) = 0 is expressible

(uniformly in C,ß\, ••■,ßnr,ßr+1)in a prenex form, consisting of a prefix of type-r

and lower-type quantifiers only, with all those of type r existential, applied to a

scope formed by prepositional calculus from prime formulas built out of

al,---,arn~}i, =, + , • , <T, ßri,"-,ßür,ßr+1 and the representing function of the pred-

icate Xß'~iRh-i(ß'~i,---). Using 7.7(b), by introducing only some type-0

quantifiers, this representing function can be replaced by the predicate itself.

Considering each occurrence of the latter (expressible in an (h - l)-(type-r)-

quantifier form) as of the appropriate /t-(type-r)-quantifier form, we can as in

[14, the proof of Theorem 5] or 7.13 advance and contract quantifiers to trans-

form the original scope to an expression in the /¡-(type-r)-quantifier form with
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existence first. Using this expression in place of the original scope, prefixing to

it the original prefix and to that (££r), the resulting expression comes to an

/¿-(type-r)-quantifier expression P(ax,---,(xrn~}i,ßri,---,ß^r,ßr+1) with existence

first. Then Xax ■■■otr„r_i P(au-) is primitive, a fortiori partial p-, recursive in

ß],---,ßl,ßr+\Xß'-rRhißr-\ßi---,ß;r,ß'+l)umformlymß\,---,ßl,ßr+1when

we   take   R^/T1, ß\, -, ßr„r,ß'+i)  =  W1)?, -, i^X-u (?-%, - ,

irX + nl-l^--Aßr-X+---+n,-2,---Aßr-%+---+nr-i-lJu---Jl,ßr+1)-K0W\et

(103) ^u--,^\ru--u^^'{lttJ^

Clearly (b) is satisfied ; and (a) is satisfied because this makes <b(a t, ■ ■ ■) an extension

of 0o(«i, •••) and thence of 0(r+2E,a1, ■••).

Case 10. <j)(ßr+2,ax, ■■■) sí py[x(ßr+2,au---,y) = 0] by SIO. Use the hyp. ind.,

with the Rh for the x as the Rh.

11.24. LXXV (an extension of XLVI1). For each r = 0 and each k

(0 < k ^ r + 2): kp-sc(r+2E) is exactly the set of the functions of order r + 1

with variables of types < k.

Proof for r > 0. (a) Suppose 0(a) with variables a of types < k ^ r + 2 is

/¿-recursive in r+2E, so by 1.9 extended (cf. 11.19) 0(a) = 0(r+2E,a) where

0(/T+2,a) is partial /¿-recursive. We must show that 0(a) = w is r + 1-expressible

in general recursive predicates. There will be no loss of generality in supposing

the variables a include either none or just one of type r + i (e.g. were there two

ß\+i,ßr2+1, we could pass to a function 0t with one ßr+1 by substituting

(ßr+1)o,(ßr+1)i, draw our conclusion for <f>x, and then substitute </?1r+1,j32+1>

for ßr+1). Consider the case of one type-r + 1 variable ßr+1, so that the vari-

ables a are the ax, ■■-,0Lr~}l,ßrx, ■■-,ßr„r,ßr+1 of the first case of LXXIV (for zero,

we would instead apply the second case of LXXIV). Since Aa0(a) = Aa0(r+2E,a)

is completely defined, by LXXIV Xax ■■• anoa[ ■■■ a^".1, 0(a) is p-, a fortiori general,

recursive in ß[, - , ßr„r, ß'+\ Xß''1 Rh(ßr~\ ß\, - , ßrnr, ßr+1) uniformly in

ßu---J«rJr+i- Hence by XXXV with 7.7, Xax --anowa.\ •••a^".11 0(a) = w is

r + 1-expressible in =, +, -, Xa.r~lwßrx(a'~l) = w,---,Aar_1w)S^(a''"1) = w,

Xarwßr+l(a.r) = w^ß''1 Rh(ßr-1,-) uniformly in ß[,-,ß^,ßr+1 (with a prenex

form in which all type-r quantifiers are universal, and one in which all are exis-

tential). But Rh(ßr~\---) is expressible in an Ji-(type-r)-quantifier form with re-

cursive scope. By advancing quantifiers suitably (as in the proof of XLV), we

can obtain either h + l-(type-r)-quantifier form for 0(a) = w with a,w as the

variables (i.e. ß[,---,ßr„r,ßr+1 are now included).

(b) Let a be variables of types = r + 1, and consider any function 0(a) of

order r + 1, i.e. 0(a) = w is of order r + i. By XXXVila, then 0(a) = w is ex-

pressible in one of the forms (cj (for a,w as the a of (cx)), say with h > 0 type-r
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quantifiers; and by XXXIX the R can be chosen to be primitive recursive. Then

as in the proof of LXXI(b), using h + 1 applications of S8.(r + 2), the represent-

ing function of 0(a) = w is primitive, and using S10 0(a) itself is p-, recursive

in r+2E.

11.25. Now we establish an extension to higher types of part of XLVIII.

LXXVI.    For each r 2; 0: Each predicate of variables of types < r + 2 general

recursive in r+2E is expressible in both one-(type-r + l)-quantifier forms.

Proof. Say P(a), with variables a of types < r + 2, is general recursive in

r+2E. Let 0(a) be the representing function of P(a), so P(a) = 0(a) = 0. By 1.9

extended to include S9 (cf. 11.8), there is a partial recursive function 0(a,£r+2)

such that, for each a,0(a) = 0(a,r+2E). By XXVI (for z an index of 0(a,er+2),

and w = 0) and (13), there are primitive (a fortiori, p.-) recursive predicates

R(a,sr+2,ßr+\0 and S(a,sr+2,ßr+1,?) such that, for each a,

Pía)   = 03r+1)(£f)K(a/ + 2E,j3r+1,O

(104)

= i£/r+1)(<r)S(a,r+2E,/r\o.

Say the representing functions of R and S are p and o. By LXXV (and 1.9 ex-

tended to include S10; cf. 11.19), p(a,r+2E,ßr+1,ir) is of order r + 1, so using

also XXXVIIa R(a,r+2E,j?r+1,<D ( = p(a,r+2E,ßr+1,Cr) = 0) is expressible in

one of the forms (c¡); likewise S(a,r+2E,ßr+i,^r). Now an application of the

method of proof of XXXVIIa with (104) brings P(a) to both one-(type-r + 1)-

quantifier forms.

11.26. We do not know whether the converse of LXXVI holds.

The hyperarithmetical number-theoretic predicates were characterized in a

number of equivalent ways, among them by expressibility in both one-(type-l)-

quantifier forms [16, p. 210], and by general recursiveness in 2E (using XLVIII).

Of these characterizations, that by general recursiveness in 2E has the most

appeal to us: the hyperarithmetical predicates are exactly those definable con-

structively except for using quantification over the natural numbers, embodied

in 2E(cf. [38, p. 150]).

It cannot be presumed that all of the characterizations equivalent to one an-

other in the case of number variables only will be equivalent at the higher types,

i.e. that their natural extensions to predicates with variables of higher types

are equivalent to one another. The facts will have to be investigated. (The situa-

tion was similar for general and partial recursiveness.)

We now propose (generalizing from hyperarithmetical = hyper-(order-l)) to

define the hyper-(order-r) predicates to be the predicates general recursive in

,+1E (r ^ 1). In particular, the hyperanalytic predicates shall be those general

recursive in 3E. (Cf. 7.3.) We are primarily concerned with the case that the
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variables do not exceed in type the order in question, as the theory thus far avail-

able is limited to this case. The notion extends to functions via their representing

predicates. (Cf. 7.1.)

11.27. Many questions arise in connection with the foregoing extension to

higher types of the notion of hyperarithmeticity in the version general recursive-

ness in 2E and the extensions of its equivalents at type 0, on which we have work

in progress which we hope later to report in print.

We shall close this discussion by proposing one method of obtaining for r > 1

a hierarchy within the hyper-(order-r) predicates of variables of type r — 1 similar

to that of the hyperarithmetic number-theoretic predicates given by the predicates

Hy for yeO (cf.[16, p. 210] or [38, p. 149]). It will be an open question whether

this new hierarchy exhausts the hyper-(order-r) predicates of type-r—1 variables.

To get a hierarchy of (some) such predicates, we could simply adapt the de-

finition of Hy for yeO to the new type r —1 of the independent variables by

substituting the new jump operation J of 11.15 for the old one ' of [19; 16],

etc. However, it seems clear that this would not take us all the way through

the hyper-(order-r) predicates, because the system O will not contain notations

for all the ordinals which could be servicable now. For, as we use / (with or-

dinals already definable) to build new predicates, the possibility will arise of

defining new ordinals recursively in the new predicates. This possibility did not

arise in the case r = 1, because by Spector's [26, Theorem 6 Corollary 2 p. 161]

no more ordinals are definably recursively in any hyperarithmetical predicate

than recursively absolutely. What is called for now is a simultaneous generation

of predicates of a hierarchy and of ordinal notations. Thus, at any stage, we

should be able to construct a fundamental sequence of ordinal notations recursive

in any predicate already defined, and to form an infinite join [19, 3.1] of pred-

icates already defined indexed by the notations of that sequence. There is no

loss of generality in taking the predicate in which the fundamental sequence is

recursive as the first of the predicates to be joined. This leads us to the following

definition, for r^2(25).

When yr is the representing function of a 1-place predicate G(ar_1),

we may write J[yr] as J\G~\. In the following, we may write Hry(ixr~1) as //r(y,ar_1)

for typographical simplification with complicated y.

Orl. le O" and Ififoc"1) = 0 = 0. Or2. If y e Or, then 2" e O' and y <¿ 2y

and H2y = ./[//£]. Or3. If y defines yB general recursively from Hu as a function

of n0, where yQ = u and (n)[y„eOr &yn <r0 )>„+1], then 3-5y-7"eOr and

(«)[}>„ <b 3-5*-7"] and /^.^„(cT1) = JET(y«-»& (<z,",)1). Or4. If
xeOr, yeO', zeO", x <r0y and y <r0z, then x <r0z. O'S. aeOr and a <'0b

only as required by 01-Or4.

(25) The definition was proposed by the author in a seminar at the University of Wisconsin

in the summer of 1960. An investigation of it is included in the Ph. D. thesis of D. A. Clarke [35].
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