Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Recursive functionals and quantifiers of finite types. II


Author: S. C. Kleene
Journal: Trans. Amer. Math. Soc. 108 (1963), 106-142
MSC: Primary 02.70
DOI: https://doi.org/10.1090/S0002-9947-1963-0153557-4
MathSciNet review: 0153557
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [10] S. C. Kleene, Recursive predicates and quantifiers, Trans. Amer. Math. Soc. 53 (1943), 41-73. MR 0007371 (4:126b)
  • [IM] -, Introduction to metamathematics, Van Nostrand, New York, North-Holland, Amsterdam, Noordhoff, Groningen, 1952. MR 0051790 (14:525m)
  • [14] -, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312-340. MR 0070594 (17:4g)
  • [16] -, Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc. 61 (1955), 193-213. MR 0070593 (17:4f)
  • [17] -, Extension of an effectively generated class of functions by enumeration, Colloq. Math. 6 (1958), 67-78. Errata: P. 68 l. 17, for `` $ {\varphi _{2b}}(a)$"read" $ {\varphi _{2b}}(2a)$"; the continuation from p. 67 of Footnote 1 should begin ``(Added 17 December 1957.)", and in the fifth line the final ``$ _0$'' should be ``$ _O$". P. 69 l. 3 from bottom of text, for ``$ \theta $'' read ``$ \Theta $". P. 70 l. 4, for `` $ \langle 0,m,i\rangle $'' read `` $ \langle 0,{m_i},i\rangle $"; first line of §4, delete ``a"; fourth line of Footnote 6, for ``$ \theta $'' read ``$ \Psi $". P. 74 in (15), for ``$ h(y,a,b)$'' read ``$ h(y,b,a)$". P. 75 l. 8, for ``$ {y^y}$'' read ``$ {y_n}$"; l. 5 from below, for ``$ a{ + _O}b$'' read `` $ {a + '_O}b$". P. 76 l. 11, for ``$ < _O'$'' read ``$ < '_O$"; l. 12, for ``$ ({c_2}$'' read ``$ {(c)_2}$"; in the definition of $ \psi (s,n + 1)$, for `` $ U({(n)_{{\rm {lh}}(n)\dot - 1}}\dot - 1)$'' read `` $ U({(n)_{{\rm {lh}}(n)\dot - 1}}\dot - 1)$"; l. 17 from below, for ``1's'' read ``1's". P. 77 top of display, for ``l'' read ``1"; third line of P 237, the inferior ``O'' should be inferior to inferior, and for ``y, s'' read ``y's". P. 78 l. 1, the inferior ``O'' should be inferior to inferior. MR 0118672 (22:9443)
  • [18] -, Countable functionals, Constructivity in Mathematics, pp. 81-100, North-Holland, Amsterdam, 1959. Errata: P. 81, in the third line of the publishers' note, for ``281, 285'' read ``285, 281"; third line of Footnote 2, for `` $ {\Pi _{i < x}}\exp \,{\Pi _{j < y}}{p_j}^{\psi (i,j) + 1}$'' read `` $ {\Pi _{i < x}}{p_i}\exp .{\Pi _{j < y}}{p_j}^{\psi (i,j) + 1}$"; p. 83 definition of $ {\alpha ^{(2)}}(s)$ middle line, for first ``$ {(s)_1}$'' read `` $ {(s)_1} + 1$"; p. 86 proof of theorem third line, for `` $ (\max {({r_0},{r_1}))_s}$'' read `` $ {(\max ({r_0},{r_1}))_s}$"; p. 94 in both formulas displayed in Case 6, change ``2'' to ``$ {p_k}$", the inferior-to-superior ``k'' to inferior-to-superior ``0", the inferior ``$ i + 1$'' to inferior ``i", and the next (inferior-to-superior) ``i'' to ``$ i + 1$", and in the second line of the first of these formulas, the superior ``i'' should be inferior to superior. MR 0112837 (22:3686)
  • [19] S. C. Kleene and E. L. Post, The upper semi-lattice of degrees of recursive unsolvability, Ann. of Math. (2) 59 (1954), 379-407. MR 0061078 (15:772a)
  • [25] E. L. Post, Degrees of recursive unsolvability, Abstract 54-7-269, Bull. Amer. Math. Soc. 54 (1948), 641-642.
  • [26] C. Spector, Recursive well-orderings, J. Symbolic Logic 20 (1955), 151-163. MR 0074347 (17:570b)
  • [27] -, On degrees of recursive unsolvability, Ann. of Math. (2) 64 (1956), 581-592. MR 0082457 (18:552d)
  • [31] J. W. Addison, Separation principles in the hierarchies of classical and effective descriptive set theory, Fund. Math. 46 (1958), 123-135. MR 0131357 (24:A1209)
  • [32] -, On the Novikov-Kondo theorem, abstract of a paper delivered at the Symposium ``Infinitistic methods", Warsaw, 2-9 September 1959, 2 pp. (mimeographed).
  • [33] J. W. Addison and S. C. Kleene, A note on function quantification, Proc. Amer. Math. Soc. 8 (1957), 1002-1006. MR 0091243 (19:934b)
  • [34] A. Church and S. C. Kleene, Formal definitions in the theory of ordinal numbers, Fund. Math. 28 (1936), 11-21.
  • [35] D. A. Clarke, Hierarchies of predicates of arbitrary finite types, Univ. of Wisconsin, Ph. D. thesis (in preparation).
  • [36] S. C. Kleene, On notation for ordinal numbers, J. Symbolic Logic 3 (1938), 150-155.
  • [37] -, Recursive functional and quantifiers of finite types I, Trans. Amer. Math. Soc. 91 (1959), 1-52. Errata: P. 7 l. 16, for ``on'' read ``in"; l. 2 from bottom of text, for `` $ \tau _n^{j - 1}$'' read `` $ {\tau ^{j - 1}}$". P. 9 first line of 2.4, for `` $ {\rm {mp}}_{jo}^m$'' read `` $ {\rm {mp}}_{{j_0}}^m$". P. 16 just above third display, for ``are false'' read ``$ \ne 0$"; just below, for ``index'' read ``an index". P. 18 last two lines of XXI, for `` $ = \phi (\mathfrak{a})$ with $ \lambda (\iota (z,\langle {{m_0}, \cdots ,{m_s}} \rangle )) = \lambda (z)$'' read `` $ \simeq \phi (\mathfrak{a})$". P. 20 l. 5, for ``$ ({w_1})$'' read ``$ {(w)_1}$"; l. 6, change first ``$ \dot - $'' to ``$ - $". P. 21 l. 4 from below, for first `` $ {\tau ^{j - 1}}$'' read `` $ {\tau ^{j - 1}}$". P. 23 l. 9, for ``)'' read ``]". On p. 24 in the right column of the table for Case 6, and on p. 25 in the display l. 8 from below, change ``2'' to ``$ {p_k}$", the inferior-to-superior ``k'' to inferior-to-superior ``0", the inferior ``$ i + 1$'' to inferior ``i", and the next (inferior-to-superior) ``i'' to ``$ i + 1$". P. 25 l. 2, the superior colon should be a superior semicolon. P. 30 l. 6 from below, for ``second'' read ``last". P. 37 l. 10 from below, for ``$ ){)_4}$'' read ``$ {)_4})$". P. 43 l. 1, for `` $ {\beta ^r}$'' read `` $ {\alpha ^r}$". P. 46, read ``$ \simeq $'' instead of ``='' in lines 4, 10, 12 and in the two left occurences in (76), P. 51 Item 14, for ``ibid.'' read ``ibid. vol. 80". P. 52 Item 21, the title should read ``Interpretation of analysis by means of constructive functionals of finite types". MR 0102480 (21:1273)
  • [38] -, Mathematical logic: constructive and non-constructive operations, Proceedings of the International Congress of Mathematicians, 14-21 August 1958, Cambridge, Cambridge Univ. Press, 1960, pp. 137-153. Errata: P. 146 l. 1, for ``proavble'' read ``provable"; p. 149 l. 8, for `` $ {H_{n + 1}}(a)$'' read `` $ {H_{(n + 1)}}(a)$". MR 0114750 (22:5569)
  • [39] -, Turing-machine computable functionals of finite types I, Logic, Methodology and Philosophy of Science, Proceedings of the 1960 International Congress, Stanford, Calif., August 24-September 2, Stanford Univ. Press, Stanford, Calif., 1962, pp. 38-45. MR 0186542 (32:4001)
  • [40] -, Turing-machine computable functionals of finite types II, Proc. London Math. Soc. (3) 12 (1962), 245-258. MR 0186543 (32:4002)
  • [41] -, Lambda-definable functionals of finite types, Fund. Math. 50 (1962), 281-303. MR 0186544 (32:4003)
  • [42] -, Herbrand-Gödel-style recursive functionals of finite types, Recursive function theory, Proc. Sympos. Pure Math. Vol. 5, pp. 49-75, Amer. Math. Soc., Providence, R. I., 1962. MR 0141594 (25:4992)
  • [43] D. L. Kreider and Hartley Rogers, Jr., Constructive versions of ordinal number classes, Trans. Amer. Math. Soc. 100 (1961), 325-369. MR 0151396 (27:1381)
  • [44] J. R. Shoenfield, The form of the negation of a predicate, Recursive function theory, Proc. Sympos. Pure Math. Vol. 5, pp. 131-134, Amer. Math. Soc., Providence, R. I., 1963. MR 0142449 (26:18)
  • [45] Tosiyuki Tugué, Predicates recursive in a type-2 object and Kleene hierarchies, Comment. Math. Univ. St. Paul. (Tokyo) 8 (1960), 97-117. MR 0110639 (22:1515)
  • [46] Hao Wang, Remarks on constructive ordinals and set theory, Summaries of Talks Presented at the Summer Institute of Symbolic Logic in 1957 at Cornell University (mimeographed 1957; 2nd ed., Communications Research Division, Institute for Defense Analyses, 1960) pp. 383-390.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 02.70

Retrieve articles in all journals with MSC: 02.70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1963-0153557-4
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society