DIFFERENTIABLE OPEN MAPS ON MANIFOLDS

BY

P. T. CHURCH

Introduction. This paper contains a detailed discussion with proofs of results announced in [4].

Let M^n and N^n be n-manifolds without boundary, and let $f: M^n \rightarrow N^n$ be continuous. The map f is open if, whenever U is open in M^n, $f(U)$ is open in N^n; it is light if, for every $y \in N^n$, $\dim (f^{-1}(y)) \leq 0$. For $n \geq 2$ there is a canonical light open map $F_{n,d}: E^n \rightarrow E^n$ given by $F_{n,d}(x_1, x_2, \ldots, x_n) = (u_1, u_2, x_3, \ldots, x_n)$, where

$$u_1 + iu_2 = (x_1 + ix_2)^d \quad (i = \sqrt{-1}; \ d = 1, 2, \ldots).$$

For $n = 2$ it is well known that a nonconstant complex analytic function is open and light. Conversely, Stoilow [12] proved that every light open map is locally topologically equivalent to an analytic map, and thus to some $F_{2,d}$ ($d = 1, 2, \ldots$). In fact (1.10), if M^2 is compact and f is C^2 and open, then f has this canonical structure. The main object of this paper is to prove (2.1) that the corresponding conclusion holds for arbitrary n ($n \geq 2$), if we first remove an exceptional set of dimension at most $n - 3$. Examples are given, especially in §3, showing that the exceptional set and some of the hypotheses used are necessary.

Definition. As in [5] the branch set B_f is the set of points in M^n at which f fails to be a local homeomorphism.

Notation. If $f: E^n \rightarrow E^p$ is C^r, then f_i will be the ith component real-valued function, and $D_j f_i$ will be the first partial derivative of f_i with respect to its jth coordinate. If y is a point in E^n, then y_i will be its ith coordinate. The symbols M^n and N^p will refer to manifolds of dimensions n and p, respectively. The statement that $f: M^n \rightarrow N^p$ is C^m will imply that the manifolds are also C^m. The set of points in M^n at which the Jacobian matrix of f has rank at most q will be denoted by R_q.

The closure of a set X is denoted by $\text{Cl}[X]$ or \bar{X}, its interior by $\text{int} X$, and the restriction of f to X by $f|X$. A map is a continuous function, the distance between the points x and y is $d(x, y)$, and $S(x, \varepsilon) = \{y: d(x, y) < \varepsilon\}$.

1. General results.

1.1. Lemma. Let $h: E^n \rightarrow E^p$, $h \in C^m$ ($m = 1, 2, \ldots$), and let the rank of the Jacobian matrix of h at \bar{x} be at least q ($q = 1, 2, \ldots, n - 1$). Then there exist open neighborhoods U of \bar{x} and V of $h(\bar{x})$, and C^m diffeomorphisms (onto)
$k^1: E \to U$ and $k^2: V \to E^p$ such that $k^2 h k^1$, call it g, has the following properties:

1. For each $(p - q)$-plane α given by g_i constant ($i = 1, 2, \cdots, q$), $g^{-1}(\alpha)$ is a (single) $(n - q)$-plane given by x_j constant ($j = 1, 2, \cdots, q$).

2. For each x in $g^{-1}(\alpha)$, the rank of the Jacobian matrix of g at x is s if and only if the rank of the Jacobian of $g | g^{-1}(\alpha)$ at x is $s - q$ ($s = q, q + 1, \cdots, \min(n, p)$).

Proof. By reordering the variables, both dependent and independent, we may suppose that the determinant $\det[D_j h_i(x)] \neq 0$ ($i, j = 1, 2, \cdots, q$). Let W be a neighborhood of x such that $\det[D_j h_i(x)] \neq 0$ on all of W, and let $h: W \to E^q$ be defined by $h_i = h_i (i = 1, 2, \cdots, q)$. Since h has maximal rank at every point of W, we may apply the rank theorem [7, pp. 273-274]. Thus, there exists an open n-cell U in W about x and C^∞ diffeomorphisms $k^1: E^n \to U$ and $k: h(U) \to E^q$ such that $(k^2 h k^1)(x_1, x_2, \cdots, x_n) = x_i$ ($i = 1, 2, \cdots, q$). Using $V = h(U) \times E^{p-q}$, $k^2(x) = k_1(x_1, x_2, \cdots, x_q)$ ($i = 1, 2, \cdots, q$), and $k^2(x) = x_i$ ($i = q + 1, q + 2, \cdots, p$), conclusion (1) follows.

Given $x \in E^n$, let s be the rank of the Jacobian matrix of g at x. If α is the $(p - q)$-coordinate plane containing $g(x)$, then $J = (D_j g_i(x))$ ($i = q + 1, q + 2, \cdots, p$; $j = q + 1, q + 2, \cdots, n$) is the Jacobian matrix of $g | g^{-1}(\alpha)$ (as a map into α) at x. Since (by (1)) $D_j g_i(x) = 0$ ($i = 1, 2, \cdots, q$; $j = q + 1, q + 2, \cdots, n$), and $\det(D_j g_i(x)) \neq 0$ ($i, j = 1, 2, \cdots, q$), J has rank $s - q$, yielding (2). (Clearly, the same result holds if we interpret $g | g^{-1}(\alpha)$ as a map into E^p.)

Remark. If $p = n$ and if $f | U$ has Jacobian determinant non-negative or nonpositive, then, for each $(n - q)$-cell γ given by conclusion (1), $f | \gamma$ (i.e., $g | \gamma$) has Jacobian determinant non-negative or nonpositive (not "respectively," in general). In particular, if $q = n - 1$, then each map $f | \gamma$ is monotone.

1.2. Remark. If X is a compact set contained in $E^n = E^{n-r} \times E^r$, and if dim($X \cap (E^{n-r} \times \{x\}) \leq q - r$ for each x in E^r, then dim $X \leq q$.

Let $g: E^{n-r} \times E^r \to E^p$ be the projection map, and let f be the restriction of g to X. The proof, pointed out to the author by E. Connell, follows from an application of [9, pp. 91-92].

The following result is related to Sard's theorem [11].

1.3. Proposition. If $f: M^n \to N^p$, f and the manifolds are C^∞, then dim($f(R_q)$) $\leq q$ (where R_q is the set of points of M^n at which the Jacobian matrix of f has rank at most q). In particular, dim($f(M^n)$) $\leq n$. If f is also light then \(\dim(R_q) \leq q \).

Proof. Clearly, it is sufficient to prove the theorem for $f: E^n \to E^p$. If X_i is the set of critical points of f_i (the points at which all first partials are zero), then the measure of $f_i(X)$ is zero [10, p. 68, (4.3)] ($i = 1, 2, \cdots, p$). Thus, $\dim(\bigcap_{i=1}^p f_i(X)) \leq 0$. Since $R_0 = \bigcap_{i=1}^p X_i$, it follows that $\dim(f(R_0)) \leq 0$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
(In fact, for each \(u \) in \(f(R_0) \), there exists a coordinate \(p \)-cube \(C \) containing \(u \) such that the sides of \(C \) are coordinate \((p - 1)\)-planes, \(\text{diam}(C) < \varepsilon \), and \(f(R_0) \cap \text{bdy} \ C = \emptyset \).)

The proposition follows for \(p = 1 \) and all \(n \) and \(q \); we proceed by induction on \(p \).

Since each \(R_q \) is closed, \(f(R_q) \) is the countable union of compact sets; thus it is sufficient to prove that \(\dim(f(R_q - R_0)) \leq q \), i.e., to prove the result in the case that the rank is at least one at each point. Furthermore, it suffices to prove the conclusion for \(f|U \), where \(U \) is the open set given by (1.1) for \(f, q = 1 \), and an arbitrary point \(\bar{x} \). For each \((n - 1)\)-cell \(y \) given in (1.1) and each point \(x \) of \(R_q \cap y \), \(f|y \) (as a map into the corresponding \((p - 1)\)-cell) has rank at most \(q - 1 \) at \(x \). From the inductive hypothesis, \(\dim(f(R_q \cap y)) \leq q - 1 \). Thus \(f(R_q \cap U) \) meets each \((p - 1)\)-cell of (1.1) in a set of dimension at most \(q - 1 \). Since \(R_q \cap U \) is the countable union of compact sets, it follows from (1.2) that \(\dim(f(R_q \cap U)) \leq q \); thus \(\dim(f(R_q)) \leq q \).

If \(f \) is also light, then by [9, pp. 91-92] \(\dim(R_q) \leq \dim(f(R_q)) \). The condition that \(f \in C^n \) is necessary [17] in the above result for \(p = 1 \).

The following result is, for open maps, an extension of the inverse function theorem.

1.4. Theorem. Let \(f : E^n \rightarrow E^n \) be open and \(C \). If the rank of the Jacobian matrix of \(f \) at \(\bar{x} \) is at least \(n - 1 \), then \(f \) is locally a homeomorphism at \(\bar{x} \). In other words, \(B_f \subset R_{n-2} \).

Proof. For \(n = 1 \), the openness alone implies that \(f \) is a homeomorphism into. For \(n > 1 \), let \(U \) be the neighborhood of \(\bar{x} \) given by (1.1) for \(q = n - 1 \), and let \(y \) be one of the \(1 \)-cells. Since \(f(y) \) is contained in a \(1 \)-cell, and since the restriction \(f|y \) is open [20, p. 147, (7.2)], \(f|y \) is a homeomorphism (into). Thus, \(f|U \) is one-to-one and open, so that \(\bar{x} \notin B_f \).

1.5. Corollary. If \(f : M^n \rightarrow N^n, f \) open and \(C^n \), then \(\dim(f(B_f)) \leq n - 2 \). If \(f \) is also light, then \(\dim(B_f) \leq n - 2 \).

The proof follows from (1.2) and (1.4).

1.6. Corollary. Let \(f : M^n \rightarrow N^n, f \) light and \(C^n \). Then \(f \) is open if and only if \(B_f \subset R_{n-2} \).

Proof. If \(B_f \subset R_{n-2} \), then \(\dim(f(B_f)) \leq n - 2 \) by (1.2); thus \(f \) is open [5, p.531, (2.4)].

A sufficient condition for openness was given in [14] by Titus and Young. We observe that (for \(f \in C^n \)) the condition is necessary, and give an independent proof of the sufficiency.

1.7. Corollary. Let \(f : E^n \rightarrow E^n \) be \(C^n \) and light. Then \(f \) is open if and only if the Jacobian determinant \(J \) is non-negative or nonpositive everywhere.
Proof. If \(J \) is open, then, by (1.3) and (1.6), \(\dim(B_J) \leq n - 2 \); thus \(J \) does not change sign.

Suppose that \(J \geq 0 \) (or \(J \leq 0 \)). If the rank of the Jacobian matrix of \(f \) at \(\bar{x} \) is (at least) \(n - 1 \), then (from the remark after (1)) \(f|U \) is one-to-one. For each closed \(n \)-cell \(C \) in \(U \), \(f|C \) is a homeomorphism onto its image; thus \(f|\text{int } C \) is a homeomorphism onto its image, which is open by the theorem on invariance of domain. It follows that \(x \notin B_J \). Since \(B_J \subset R_{n-2} \), the conclusion follows from (1.6).

1.8. Theorem. If \(f: M^n \to N^n \), \(M^n \) compact, \(f \) open and \(C^n \), then \(f \) is light.

In fact, \(f \) is a pseudo-covering map \([5, \text{pp. 529 and 531, (2.4)}]\).

Proof. By (1.5) \(\dim(f(B_f)) \leq n - 2 \). By the second paragraph of the proof of \([5, \text{p. 531, (2.4)}]\) the restriction of \(f \) to \(M^n - f^{-1}(f(B_f)) \) is a \(k \)-to-1 covering map for some \(k \).

Suppose that for some \(y \) in \(f(B_f) \), \(f^{-1}(y) \) contains at least \(k + 1 \) distinct points \(y^i \) \((i = 1, 2, \ldots, k + 1)\). Then there exist disjoint open neighborhoods \(U^i \) of these points and \(\bigcap_{i=1}^{k+1} f(U^i) \) is an open set; thus it meets \(N^n - f(B_f) \), yielding a contradiction.

Remark. This result contrasts with the examples by R.D. Anderson \([1; 2]\) of monotone open (not \(C^n \)) maps. The compactness of the domain is necessary, as we see in (3.6).

1.9. Corollary. If \(f: E^n \to E^n \) is a \(C^n \) light open map, then point inverses are isolated. Moreover, if \(f: S^n \to S^n \) is \(C^n \) open with (Brouwer) degree \(d \), then, for each \(p \in S^n \), \(f^{-1}(p) \) has at most \(|d| \) points and \(|d| \) is the least such number.

Proof. The first conclusion follows from (1.3), (1.6), and \([5, \text{p. 530, (2.2)}]\).

For the second, since the Jacobian determinant is non-negative or nonpositive \([17]\), \(f^{-1}(p) \) has precisely \(|d| \) points, for each \(p \in S^n - f(B_f) \). In fact, \(f \) is a \(|d| \)-to-1 pseudo-covering map, and the rest of the conclusion follows from the proof of (1.8).

The corollary is related to \([16, \text{p. 329, Theorem A and p. 335, (6a)}]\).

1.10. Stoilow \([12]; \text{cf. [20, p. 198, (5.1)]}\) proved that a light open map \(f: M^2 \to N^2 \) is locally at each point topologically equivalent to the complex analytic map \(g(z) = z^d \) \((d = 1, 2, \ldots)\). (Manifolds are assumed to be without boundary.) For completeness we give now an independent proof in the case that \(f \in C^2 \). In particular, from (1.7) follows the apparently new result that: If \(f: M^2 \to N^2 \), \(M^2 \) compact, \(f \) open and \(C^2 \), then \(f \) has that local structure.

By (1.5) \(\dim(f(B_f)) \leq 0 \). Given any \(x \in B_f \), by restriction \([5, \text{p. 529, (1.4) and its proof}] \) there exists a pseudo-covering map \(g \) such that its domain \(V \) is a compact connected neighborhood of \(x \) in \(E^2 \), \(g(V) \) is a closed topological disk \(D \), and \((\text{bdy } D) \cap g(B_f) = \emptyset \). We may also suppose \([5, \text{p. 530, (2.2), conclusion (1)}] \) that \(g^{-1}(g(x)) = x \). Since each component of \(f^{-1}(\text{bdy } D) \) \((= \text{bdy } V) \) is a simple closed curve, \(V \) is a disk-with-holes.
Let U be an open 2-cell about x in int V. Let h be a pseudo-covering map given, as above, for $g | U$ and x; call its domain E and its range disk D'. If ∂E had two or more components (simple closed curves), then U would contain a disk whose image under g contained $D - \text{int}(D')$, contradicting the fact that $U \subseteq \text{int} V$. Thus E is a topological closed disk itself.

If B_h contains a point $y \neq x$, let γ be an arc in $D' - h(B_h)$, separating int(D') into two components X and Y such that $h(x) \in X$ and $h(y) \in Y$. Then $h^{-1}(\gamma)$ consists of k mutually disjoint arcs, where k is the degree of h, and thus it separates int E into $k + 1$ components. Precisely one of these components has image X (since $h^{-1}(h(x)) = x$), so that the other k have image Y, contradicting the fact that Y meets $h(B_h)$.

Thus $\{x\} = B_h$, and the conclusion is evident.

2. The structure theorem. In this section we give a structure theorem for differentiable open maps defined on compact manifolds, or (more generally) differentiable light open maps defined on arbitrary manifolds, comparing them with the maps $F_{n,d}$ defined in the introduction.

2.1. Theorem. Let $f : M^n \to N^n$ be C^1 and open ($n \geq 2$); let M^n be compact, or let f be light. Then there exists a closed set E, $\dim E \leq n - 3$, such that for each x in $M^n - E$ there exists a neighborhood U of x on which f is topologically equivalent to one of the canonical maps $F_{n,d}$ ($d = 1, 2, \cdots$). Moreover, E is nowhere dense in B_f unless f is a local homeomorphism.

Trivial examples show that "topologically equivalent" cannot be replaced by "diffeomorphically equivalent." The hypothesis that f is C^1 results from the use of (1.3).

Proof. Since f is light (1.8), $\dim(R_{n-3}) \leq n - 3$ (1.3); thus the set E may as well include R_{n-3}. To prove the first part of the theorem we may suppose that $n \geq 3$ and that the rank of the Jacobian matrix is at least $n - 2$ at every point. For each \bar{x} in B_f the restriction $f | U$ of f to some neighborhood U of \bar{x} has the structure of (1.1), where $q = n - 2$ and $p = n$. (We may as well suppose that $f | U$ is the g of (1.1).) Thus the domain and range of $f | U$ are $E^n = E^{n-2} \times C$, where C is the complex plane; for each $v \in E^{n-2}$ the restriction of f to the plane $\{v\} \times C$ is light and open [20, p. 147, (7.2)]. By (1.6) $B_f \subseteq R_{n-2}$, and by (1.1) $R_{n-2} \cap (\{v\} \times C)$ is the set of points at which $f | (\{v\} \times C)$ has rank 0; thus (1.3)

$$\dim(f(B_f \cap (\{v\} \times C))) \leq 0$$

and $\dim(f(B_f)) \leq n - 2$.

The rest of the proof of the first conclusion uses only the topological properties of $f | U$ found above, and not the differentiability of $f | U$.

Let A be a closed n-cell such that $\bar{x} \in \text{int} A$ and $A \subseteq U$. Since $\dim(f(B_f)) \leq n - 2$, there exists [5, p. 529, (1.4)] a connected open neighborhood V of \bar{x} such that
the restriction of \(f \) to \(V \) is a pseudo-covering map \(g \), and \(V \subseteq \text{int } A \). Choose \(\gamma \in E^{n-2} \) so that \(f(\bar{x}) \) is in the plane \(\{w\} \times C \) of (1.1). Since \(\text{Cl}[g(B_y)] \subseteq \text{cl}(B_f \cap A) \), \(\text{Cl}[g(B_y)] \) meets \(\{w\} \times C \) in a compact set of dimension 0. Let \(G \) be an open disk with center \(g(\bar{x}) \),

\[
G \subseteq g(V) \cap (\{w\} \times C).
\]

Let \(L \) be any straight line in \(\{w\} \times C \) through \(g(\bar{x}) \), and [9, p. 22, (D)] let \(a \) and \(b \) be points on opposite sides of \(L \cap G \) from \(g(\bar{x}) \), \(a \) and \(b \) disjoint from \((\{w\} \times C) \cap \text{Cl}[g(B_y)] \). It follows from [9, p. 48, Corollary 1] that there exist arcs \(\Gamma_i \) joining \(a \) to \(b \), \(\Gamma_i \) disjoint from \((\{w\} \times C) \cap \text{Cl}[g(B_y)] \) \((i = 1, 2) \), \(\Gamma_1 \setminus \{a, b\} \) contained in one component of \(G - L \), and \(\Gamma_2 \setminus \{a, b\} \) in the other.

Then \(\Gamma_1 \cup \Gamma_2 \) bounds a topological closed disk \(D \subseteq C \) such that \(g(\bar{x}) \in \{w\} \times (\text{int } D) \), \(\{w\} \times D \subseteq g(V) \), and \(\{w\} \times (\text{bdy } D) \) is disjoint from the 0-dimensional set \((\{w\} \times C) \cap \text{Cl}[g(B_y)] \). Thus, for all \(w \) sufficiently near \(\bar{w} \), the corresponding-disks \(\{w\} \times D \) will also be disjoint from \(\text{Cl}[g(B_y)] \). Let \(T^{n-2} \) be such a small closed \((n-2)\)-cell in \(E^{n-2} \) for which \(\bar{w} \in \text{int}(T^{n-2}) \) and \(T^{n-2} \times D \subseteq g(V) \). The restriction of \(g \) to the component of \(g^{-1}(T^{n-2} \times D) \) containing \(\bar{x} \) is also a pseudo-covering map; for convenience we now call this map \(g \) and its domain \(V \).

Each set \(g^{-1}(\{w\} \times D) \) is the closure of a region in the plane, each boundary component a simple closed curve. Thus, each \(g^{-1}(\{w\} \times D) \) is homeomorphic to the same disk-with-holes \(H \), and we will denote \(g^{-1}(\{w\} \times D) \) by \(H_w \).

For each \(w \) in \(T^{n-2} \), let \(g \mid H^w \) be denoted by \(g^w \); and let its branch set be denoted by \(B(g^w) \). Clearly, \(\bigcup B(g^w) \subseteq B_g \). Suppose that \(x \in \text{int } H^w \) but \(x \notin B(g^w) \). Choose an open neighborhood \(N \) of \(x \) in \(\text{int } V \) such that \(g^w \mid (N \cap H^w) \) is a homeomorphism. Let \(h \) be a pseudo-covering map whose domain contains \(x \) and is contained in \(N \). Then the degree of \(h \) is one, and \(h \) is a homeomorphism; therefore, \(x \notin B_g \). As a result, \(\bigcup_w B(g^w) = B_g \).

For each \(w \) in \(T^{n-2} \), the light open map \(g^w \) is topologically equivalent to a simplicial map [20, p. 198, (5.1)], and it follows from [17] that for some fixed natural number \(K \) depending only on \(H, B(g^w) \) contains at most \(K \) points. Let \(\alpha(w) \) be the number of branch points in \(H^w \) \((1 \leq \alpha(w) \leq K) \). Let \(Y \) be any open set in \(T^{n-2} \), and let \(\tilde{y} \) in \(Y \) be a point at which the function \(\alpha \) is maximal on \(Y \). Let \(p^j \) be the points of \(B(g^\tilde{y}) \), and let \(P^j \) be mutually disjoint sets open in \(H^\tilde{y} \) such that \(P^j \cap g^{-1}(g^j) = \{p^j\} \) \((i, j = 1, 2, \cdots, \alpha(\tilde{y})) \); note that \(p^j \) may be in \(g^{-1}(g^j) \) for \(i \neq j \). There exists a disk \(\{\tilde{y}\} \times D^i \) such that \(g(p^j) \subseteq \{\tilde{y}\} \times (\text{int } D^i) \); \(\{\tilde{y}\} \times D^j \subseteq \{\tilde{y}\} \times D \); and if \(J^j \) is the component of \(g^{-1}(\{\tilde{y}\} \times D^j) \) containing \(p^i \), then \(J^j \subseteq P^j [20, p. 131, (4.41)] \). Since \(g \) is a pseudo-covering map, \(J^j \) is a topological 2-disk, and \(g \mid J^j \) is topologically equivalent to the analytic map \(\mu(z) = z^d \) \((d = 2, 3, \cdots) \).

Since \(g(B_y) \) is compact and \(\bigcup_w B(g^w) = B_g \), there exists a closed \((n - 2)\)-cell \(W^i \subseteq Y, \tilde{y} \in \text{int } (W^i) \), such that \(g(B(g^\tilde{y})) \) is disjoint from \(\{y\} \times \text{bdy } (D^i) \) for all
If \(y \in W^i \). If \(S^i \) is the component of \(g^{-1}(W^i \times D^i) \) containing \(p^i \), we may suppose that \(W^i \) is chosen small enough that \(S^i \cap H^w \) is connected for all \(w \in W^i \) and that the \(S^i \) are mutually disjoint (\(i = 1, 2, \cdots, \alpha(y) \)). If \(W = \bigcap_i \text{int}(W^i) \), then \(B_g \cap H^w \subset \bigcup_i S^i \) (\(i = 1, 2, \cdots, \alpha(y) \); \(w \in W \)).

Suppose that for some \(w \in W^i \), \(B(g^w) \cap S^i = \emptyset \); then since \(g|S^i \) is a pseudo-covering map and \(\{w\} \times D^i \) is simply connected, \(g|(H^w \cap S^i) \), and thus \(g|S^i \), has degree 1 (i.e., is a homeomorphism). Since \(p^i \in B_g \cap S^i \), \(B(g^w) \cap S^i \neq \emptyset \), for all \(w \in W^i \). Because of the choice of \(y \) and the fact that the \(S^i \) are mutually disjoint, each set \(B(g^w) \cap S^i (i = 1, 2, \cdots, \alpha(y)) \) is a single point.

Let \(\rho^i: W^i \times D^i \to W^i \) be the projection map, and let \(\beta^i = \rho^i|B_g \cap S^i \). Then \(\beta^i \) is continuous, and one-to-one \(((\beta^i)^{-1}(w) \) is the single point of \(g(B_g \cap S^i) \cap \{w\} \times D^i) \). Since \(g(B_g \cap S^i) \) is compact, \(\beta^i \) is a homeomorphism onto \(W^i \). Let \(d^i \) be the distance from \(g(B_g \cap S^i) \) to \(W^i \times \text{bdy}(D^i) \), and let \(\Delta^i \) be the closed disk of radius \(d^i \) and center 0 in \(C \). Let \(\sigma^i: W^i \times \Delta^i \to W^i \times D^i \) be the map defined by \(\sigma^i(w, x) = ((\beta^i)^{-1}(w) + (0, x)) \), where + is vector addition, 0 is the origin of \(E^{n-2} \), and \(x \in D^i \) (in \(C = E^2 \)). Since \(\sigma^i \) is continuous and one-to-one, \(W^i \times \Delta^i \) is compact, \(\sigma^i \) is a homeomorphism (into). Since \(\sigma^i(W^i \times \{0\}) = g(B_g \cap S) \), it follows from the theorem on invariance of domain that \(g(B_g \cap S^i) \) is a tamely embedded \((n-2)\)-cell. By \([5, p. 533, (4.1)] \) \(g|S^i \) (i.e., \(f|S^i \)) is topologically equivalent to \(F_{n,d} \), for some \(d \) \((d = 2, 3, \cdots)\).

Let \(\Omega \cap \text{int}(T^{n-2}) \) be the maximal open set (possibly empty) such that \(g|g^{-1}(\Omega \times D) \) is locally, at each point, topologically equivalent to one of the maps \(F_{n,d} \). To review, we have seen that, for every open set \(Y \) in \(\text{int}(T^{n-2}) \), there exists (of course) a point \(\tilde{y} \in Y \) such that \(\alpha(\tilde{y}) \geq \alpha(w) \) for all \(w \in Y \); moreover, that there is an open neighborhood \(W \) of \(\tilde{y} \) with \(W \subset \Omega \). Thus \(\Omega \cap Y \neq \emptyset \). Since \(Y \) is an arbitrary open set in \(\text{int}(T^{n-2}) \), \(\Omega \) is a dense open set in \(\text{int}(T^{n-2}) \). Therefore \([9, p. 44, \text{Theorem IV 3}] \) its complement \(F \) in \(\text{int}(T^{n-2}) \) has dimension at most \(n - 3 \).

Let \(E \) be the set of points of \(B_g \) in \(g^{-1}(\{w\} \times \text{int}D) \) for \(w \in F \), and let \(\pi: \text{int}V \to \text{int}(T^{n-2}) \) (\(\text{int}V = g^{-1}(\text{int}(T^{n-2}) \times \text{int}D) \)) be the projection map. Then \(\pi(E) = F \), and, since \(\dim(B(g^w)) = 0 \), \(\dim(\pi^{-1}(w)) = 0 \) for all \(w \in F \). Since \(g|\text{int}V \) is a pseudo-covering map, \(\pi \) is a closed map and by \([9, pp. 91-92] \) \(\dim E \leq n - 3 \). This completes the proof of the first conclusion.

For the second conclusion, we will suppose throughout that \(B_f \neq \emptyset \). If \(E \) is somewhere dense in \(B_f \), then there exists an open set \(\Lambda \) in \(M^n \) such that \(\Lambda \cap B_f \neq \emptyset \) and \(\Lambda \cap B_f \subset E \). By the preceding argument, \(E \) is nowhere dense in the set of branch points at which the Jacobian matrix has rank at least \(n - 2 \). Then \(\Lambda \cap B_f \subset R_{n-3} \). Thus, if we still denote \(f|\Lambda \) by \(f \), it suffices to prove that \(B_f \neq R_{n-3} \) (if \(B_f \neq \emptyset \)).

First suppose that \(B_f \subset R_n \). Given \(\tilde{x} \in B_f \), let \(g \) be a pseudo-covering map given by \([5, p. 530, (2.2) \) and \(p. 529, (1.4) \)] on a neighborhood \(V \) of \(\tilde{x} \), \(V \subset E^n \), such that \(g|g^{-1}(g(B_g)) \) is a homeomorphism and \(g(V) = E \). Then \(g(B_g) \neq g(\tilde{x}) \) \([5, p. 535, (5.6)] \). It follows (see the first paragraph of the proof of (1.3)) from A. P. Morse's
Theorem [10] that for every point \(u \) in \(g(B_q) - g(\bar{x}) \) (and therefore in \(g(R_0) \)), there exists a closed \(n \)-cube \(X \) such that: \(q(\bar{x}) \in \text{int } X, u \notin X \), its faces are parallel to the coordinate \((n - 1)\)-planes, and those faces are disjoint from \(g(R_0) \). The restriction of \(g \) to each component of \(g^{-1}(\text{bdy } X) \) is a covering map onto \(\text{bdy } X \), and therefore that map is a homeomorphism. Since \(\bar{x} \in B_q \), the degree of \(g \) is at least two; since \(V \subset E^n \), \(g^{-1}(\text{bdy } X) \) separates \(V \) into at least three components, each of which maps onto one of the components of \(E^n - \text{bdy } X \). This contradicts the fact that \(g|_{g^{-1}(g(\overline{B_q})))} \) is one-to-one, so that \(B_f \not\subset R_0 \).

Thus \(B_f \not\subset R_{n-3} \), for \(n = 3 \). We continue by induction on \(n \). If \(n \geq 4 \) and \(B_f \subset R_{n-3} \), then there exists \(\bar{x} \) in \(B_f \) at which the Jacobian matrix has rank at least one. We may suppose, by restriction, that the rank is at least one everywhere, and that \(f \) is the \(g \) of (1.1) for \(q = 1 \). Let \(\gamma \) be the \((n - 1)\)-plane of (1.1) that contains \(\bar{x} \). Let \(h = f|_\gamma \), and let \(Q_{n-4} \) be the set of points in \(\gamma \) at which the Jacobian matrix of \(h \) has rank at most \(n - 4 \); then, by the second conclusion of (1.1), \(\gamma \cap R_{n-3} = Q_{n-4} \). Since \(B_h \subset \gamma \cap B_f, B_h \subset Q_{n-4} \), contradicting the inductive hypothesis. Thus \(B_f \not\subset R_{n-3} \) for \(n \geq 3 \) (unless \(B_f = \emptyset \)), yielding the second conclusion.

The following extension of the inverse function theorem was proved in [4].

2.2. Corollary. Suppose that \(f : E^n \to E^n, n \geq 3, f \in C^n \) and \(\dim(R_{n-1}) = 0 \) \((R_{n-1} \) is the set of zeros of the Jacobian determinant). Then \(f \) is a local homeomorphism.

2.3. Corollary. If \(f : E^n \to E^n \) is light and \(C^n \), then \(B_f = \emptyset, \dim(B_f) = n - 2 \), or \(\dim(B_f) = n - 1 \); the last case occurs if and only if \(f \) is not open.

Proof. Since \(B_f \subset R_{n-1} \), \(\dim(f(B_f)) \leq n - 1 \) (by (1.3)); since \(f \) is light, \(\dim(B_f) \leq n - 1 \). If \(\dim(f(B_f)) \leq n - 2 \), then \(f \) is open [5, p. 531, (2.4)], so that either \(B_f = \emptyset \) or \(\dim(B_f) = n - 2 \) (by (2.1)). Thus, \(\dim(f(B_f)) = n - 1 \) if and only if \(f \) is not open [5, p. 531, (2.3)]. If, in this case, \(\dim(B_f) < n - 1 \), then the Jacobian determinant of \(f \) would be either non-negative or nonpositive everywhere; thus (1.7) \(f \) would be open. As a result, \(\dim(B_f) = n - 1 \) if and only if \(f \) is not open.

2.4. Corollary. There exists a light open map \(f : E^5 \to E^5 \) which is not topologically equivalent to any \(C^5 \) map.

The map is that given by [6, p. 620, (4.3)], so that \(B_f \) is not a 3-manifold at any point. If \(f \) were equivalent to a \(C^5 \) map, then at a dense set of its points \(B_f \) would be locally a 3-manifold (2.1).

2.5. Remarks. Given a \(C \) map \(f : E^n \to E^n \), its directional derivative at \(x \) in the direction of the nonzero vector \((a_1, a_2, \ldots, a_n) \) is the length of the vector whose \(j \)th component is \(\sum_{i=1}^n a_i D_{ij} f_j(x) \). If \(f \) is a homeomorphism, it is called quasi-
conformal if (*) there exists \(B > 0 \) such that, for every point \(x \) in \(E^n \) and pair of vectors (directions) at \(x \), the ratio of the directional derivatives is less than \(B \).

(This definition is equivalent to that given in [8].) A nonconstant complex analytic function \(f \) satisfies condition (*) (for \(B = 1 \)) except on \(B_r \), which consists of isolated points. Thus, it would be natural to call quasi-conformal (or quasi-analytic) light maps in \(E^n (n > 2) \) which satisfy condition (*), except at those points at which all directional derivatives are zero, i.e., \(R_0 \). We now observe that the only such \(C^n \) maps are local homeomorphisms (for \(n > 2 \)).

Suppose that \(f \) is \(C^n \), light, and not a local homeomorphism. If \(R_{n-1} \subset R_0 \), then \(\dim(R_{n-1}) \leq 0 \) (by (1.3)). Thus \(f \) is a local homeomorphism (2.2), contradicting the supposition. If \(R_{n-1} \not\subset R_0 \), then there exists \(x \) at which the rank of Jacobian matrix is \(k \), where \(0 < k < n \). It follows from the definition of rank that there exist two vectors at \(x \) for which one directional derivative is positive, and the other is zero. Thus \(f \) does not satisfy condition (*).

We also remark that, except for local homeomorphisms, no \(C^n \) light open map is generic in the sense of Thom [14].

3. Some examples. Examples are given now to show that the exceptional set of dimension \(n - 3 \) in (2.1) and the compactness hypothesis in (1.8) are necessary.

3.1. Lemma. Given \(\delta_q > 0 \) (\(q = 1, 2, \cdots \)), there exists a \(C^\infty \) map \(\psi : E^1 \to E^1 \) with the following properties:

(1) \(\psi \) is an even function,
(2) \(\psi(r) = 0 \) if and only if \(r = 0 \),
(3) \(\psi'(r) > 0 \) for \(r > 0 \), and
(4) the 4th derivative \(\psi^{(4)}(r) \leq \delta_q (0 \leq r \leq 1/q; i = 0, 1, \cdots, q) \), where \(\psi^{(0)} = \psi \).

The proof is omitted.

3.2. Lemma. Given \(\epsilon_q > 0 \) (\(q = 1, 2, \cdots \)), there exists a \(C^\infty \) homeomorphism \(h : E^n \to E^n \) such that on each set \(S(0, 1/q) \) (where 0 is the origin) all \(h_1 \) and all partial derivatives of order at most \(q \) are bounded by \(\epsilon_q \).

Proof. Consider the class \(\mathcal{F} \) of all functions \(h : E^n \to E^n \) such that \(h_i(x) = \psi(r) \cdot x_i \), where \(r = x_1^2 + x_2^2 + \cdots + x_n^2 \) and \(\psi : E^1 \to E^1 \) is any \(C^\infty \) function. On each set \(S(0, 1/q) \) there exists constants \(\lambda_j > 0 \) such that each \(h_i \) in \(\mathcal{F} \) and all its partials of order at most \(q \) are bounded by \(\sum_{j=0}^q \lambda_j |\psi^{(j)}(r(x))| \). Let \(\delta_q < \epsilon_q / \sum_{j=0}^q \lambda_j \) (\(q = 1, 2, \cdots \)), and let \(\psi_0 \) be given by (3.1) for \(\{\delta_q\} \). Let \(h_i(x) = \psi_0(r) \cdot x_i \). That \(h \) is a homeomorphism follows from conclusions (2) and (3) of (3.1).

3.3. Lemma. Let \(U \) and \(L \) be, respectively, open and closed subsets of \(E^n \). Let \(f : U \to E^n \) be continuous, \(C^\infty \) on \(U - L \), and constant on \(U \cap L \); let \(V \) be a bounded open subset of \(U \) such that \(\overline{V} \subset U \). Then there exists a homeomorphism \(h : E^n \to E^n \) such that the restriction \(hf \big| V \in C^\infty \).
Proof. Throughout, symbols such as \(\overline{V} \) refer to closure in \(E^n \). Suppose that \(f(L) = 0 \). Let \(X_q = V \cap f^{-1}(S(0, 1/q)) \), let \(A_q = (X_q \cap V) - X_{q+1} \), and choose \(\alpha_q (0 < \alpha_q \leq 1) \) less than the distance \(d(A_q, L) \) \((q = 1, 2, \ldots) \). We will define \(h \) so that the partial derivatives (of all orders) of \(h f | V \), call it \(F \), are zero on \(L \cap V \); \(h \) will be given by (3.2), where we need now specify the \(\varepsilon_q \) \((q = 1, 2, \ldots) \).

The component functions (e.g., \(F_i \)) will be considered partials of order zero.

Suppose \(h \) is given by (3.2) for \(\varepsilon_q = \varepsilon_q, 0 = 1/q \). For \(x \in A_q, f(x) \in S(0, 1/q) \), so that \(|\varepsilon_i(x)| < 1/q \) \((i = 1, 2, \ldots, n) \).

Now suppose that numbers \(\varepsilon_{q,m} > 0 \) \((q = 1, 2, \ldots; m = 0, 1, \ldots, k; k \text{ fixed}) \) have been defined so that

1. any homeomorphism given by (3.2) for \(\{\varepsilon_{q,k}\} \) will satisfy (a) \(|P(x)| < 1/q \), for all \(x \in A_q \) and all partials \(P \) of \(F \) with order \(m \) at most the minimum of \(k \) and \(q \), and (b) \(P(x^0) = 0 \), for \(x^0 \in L \);
2. \(\varepsilon_{q,m'} < \varepsilon_{q,m} \), whenever \(m < m' \); and
3. \(\varepsilon_{q,m} = \varepsilon_{q,q} \), whenever \(m > q \).

Let this property of the sequence \(\{\varepsilon_{q,m}\} \) \((m = 0, 1, \ldots, k) \) be called \(\Psi_k \) \((k = 0, 1, \ldots) \); we have seen that there exists \(\{\varepsilon_{q,0}\} \) satisfying \(\Psi_0 \). We proceed by induction. Assuming a sequence \(\{\varepsilon_{q,m}\} \) \((m = 0, 1, \ldots, k) \) satisfying \(\Psi_k \), we will find numbers \(\varepsilon_{q,k+1} \) \((q = 1, 2, \ldots) \) such that \(\{\varepsilon_{q,m}\} \) \((m = 1, 2, \ldots, k + 1) \) satisfies \(\Psi_{k+1} \).

Given any partial \(P \) of \(F \) with order \(k \), a natural number \(j \) \((j = 1, 2, \ldots, n) \), and \(x^0 \in L \),

\[
D_jP(x^0) = \lim_{x_j \to x^0} \frac{P(x) - 0}{x_j - x_j^0}
\]

(since \(P(x^0) = 0 \), by \(\Psi_k(1) \)). Given \(x \in A_q \),

\[
\frac{|\varepsilon_{i}P(x)|}{|x_j - x_j^0|} \leq \frac{|P(x)|}{\alpha_q}.
\]

Now each such \(P \) is on \(\overline{V} - L \); a sum of products of partials of \(f \) and of \(h \), all of orders at most \(k \), each term having at least one partial of \(h \) as a factor. Since \(\overline{A} - L = \emptyset \), there is a uniform bound on the partials of \(f \) of order at most \(k \). For \(q \leq k \), let \(\varepsilon_{q,k+1} = \varepsilon_{q,q} \); for \(q > k \), let \(\varepsilon_{q,k+1} \) be chosen small enough so that \(\varepsilon_{q,k+1} \leq \varepsilon_{q,k} \) and, for any \(h \) given by (3.2) for \(\varepsilon_{q,k+1} \), \(\|P(x)\|/\alpha_q < 1/q \) (for all \(x \in A_q \) and for all partials \(P \) of order at most \(k \), a finite number of choices required for each \(q \)). Since \(L \cup \bigcup_{q=1}^{\infty} A_q \) is a neighborhood of \(L \), and since \(P|L = 0 \), all the partials of \(F \) of order at most \(k + 1 \) are 0 on \(L \), for \(h \) given by \(\{\varepsilon_{q,k+1}\} \). It follows that \(\{\varepsilon_{q,m}\} \) \((m = 1, 2, \ldots, k + 1) \) satisfies \(\Psi_{k+1} \).

Positive numbers \(\varepsilon_{q,m} \) \((q, m = 1, 2, \ldots) \) are defined, and the desired \(h \) is the one given by (3.2) for \(\varepsilon_q = \varepsilon_{q,q} \); all its partials are zero on \(L \).

To prove that \(F \in C^\infty \), it is sufficient to prove that each partial \(P \) is continuous
on L; let k be the order of P. By $Q_k(1)$, $|P(x)| < 1/q$ $(x \in A_q; q = k, k + 1, \ldots)$, so that $P(x) \to 0$ as $x \to x^0$, $x^0 \in L$.

3.4. Corollary. There exists $f : E^3 \to E^3$ $f C^\infty$, light and open, such that B_f has a point component.

The map given in [6, p. 614, (3.3)] is topologically equivalent to a map simplicial except at the origin 0, and thus it is equivalent to a map C^∞ except at 0. From (3.3) we have the desired result.

Although B_f need not be locally connected, it follows from (2.1) that for $f : E^3 \to E^3$, $f C^3$, light and open, each component K of B_f is locally connected. (Suppose that K is not locally connected; then it contains [20, p. 19, (12.3)] a subcontinuum H such that K is not locally connected at any point of H. At each point x of $H - E$, where E is the exceptional set of (2.1), there exists a neighborhood U such that the restriction $f|U$ is a canonical map $F_{n,d}$. Since $H \cap U$ is a tame arc, we have a contradiction.)

The example whose branch set has a Cantor set of point components [6, p. 614] is also equivalent to a C^∞ map. (Appropriate modifications of (3.2) and (3.3) are required.)

For another example of a C^∞ (3-to-1) open map, let z be a complex variable, t real, and let $f : E^3 \to E^3$ be defined by

$$f(z,t) = (z^3 - 3ze^{-2t^2} \sin^2 t^{-1}, t).$$

Then (with $z = x + iy$) B_f is the union of the curves $x = \pm e^{-t^2} \sin t^{-1}$ in the $(x - t)$-plane. Still another example is given in (2.4).

The following remark answers in the negative question II of [13, p. 266].

3.5. Remark. There exists a C^∞ 3-to-1 open map $f : E^3 \to E^3$ which is not topologically equivalent to any real analytic map.

We use the map above for which B_f has a Cantor set X of point components, or one with a sequence of point components converging to a point. It follows from (1.1) (see the proof of (2.1)) that $X \subset R_0$. Suppose that f is real analytic. Then R_0 is an analytic set (the zeros of $\Sigma_{j,i} (D^3 f)^2$), and thus [3, p. 141] is locally connected. Since $\dim(R_0) = 0$ (1.3), we have a contradiction.

3.6. Theorem. There exists a C^∞ open map $f : E^2 \to E^2$ which is not light.

Proof. The domain of f will actually be the square S given by $|x| < 1$ and $|y| < 1$; let L be the intersection of the y-axis with S. Let r^j $(j = 1, 2, \ldots)$ be any countable dense subset of $L - \{0\}$, and let $h : S \to S$ be given by $h(x, y) = (x, xy)$.

If $X_{j,k}$ $(j, k = 1, 2, \ldots)$ are the subsets of $h(S)$ defined by

$$2^{-j-1}(2k-1) \leq x \leq \left(\frac{3}{2}\right)^j 2^{-j-1}(2k-1),$$

then their closures are mutually disjoint and each
Let $g: h(S) \to E^2$ be a map such that

1. $g | (h(S) - \{0\})$ is a C^∞ local homeomorphism,
2. $g(h(S) - \bigcup_{j,k} X_{j,k})$ is the identity map,
3. $g(X_{j,k}) \subset S(0, 3 \cdot 2^{-2^{j-1}(2k-1)})$, and
4. there exists a point $p_{j,k}$ common to $n_{-1}(A_{j,k})$ and the line $y = r^j$ such that $g(h(p_{j,k})) = 0$ $(j,k = 1, 2, \ldots)$.

(By 1) and 3 is continuous at 0.)

Given any neighborhood U of r^j, there exists $p_{j,k} \in U$; since $g(h(r^j)) = 0$, it follows from conditions (1) and (4) that $g(n_{-1}(r^j)) \in \text{int}(g(n_{-1}(U)))$. Since the r^j are dense in L, and since $gh(S - L)$ is a (C^∞) local homeomorphism, gh is open. The result follows from (3.3).

Remark. Given any three natural numbers j, k, and n such that (1) $0 \leq j \leq \min(k - 1, n - 2)$, (2) $1 \leq k \leq n - 1$, and (3) $n \geq 2$, modifications of the above argument yield a nonlight C^∞ open map $f: E^n \to E^n$ for which $\dim(f(B_j)) = k$ and $\dim(B_j) = k$.

3.7. Remark. If $f: E^n \to E^n$ is C^n open, but not light, then for every k ($k = 1, 2, \ldots$) there exists x such that $f^{-1}(x)$ consists of isolated points, at least k in number. The proof is similar to that of (1.8).

4. A counterexample to a statement of Stoilow. In [13] S. Stoilow states that, if $f: E^3 \to E^3$ is light open, then $\dim(B_j) \leq 1$. His proof employs the following lemma [13, pp. 263-264]: Let $x \in E^3$, and let B_ρ be the geometric ball of radius ρ and center $f(x)$. Then there exists $r > 0$ and a compact neighborhood D of x such that $f|D$ is open and $f(D) = B_r$. There exist positive numbers ϵ_1 and ϵ_2 such that the number of components of $f^{-1}(B_\rho)$ is the same for all ρ with $0 < \epsilon_1 < \rho < \epsilon_2$. Moreover, for any such set of numbers ϵ_1, ϵ_2, and ρ, each component of $f^{-1}(\text{bdy}(B_\rho))$ is a 2-manifold. The last statement is false in general.

It appears that a modification of the proof of (2.1) using this statement would yield (2.1) for $n = 3$ and f light open but not necessarily differentiable. For this reason it seems worthwhile to give a counterexample here.

We write E^3 as $E^1 \times C$, where C is the complex plane, and let X_m be the set of (t, z) such that either $|t| \leq 2^{-m}$ and $|z| \leq 2^{-m}$, or $2^{-m} \leq t \leq 3 \cdot 2^{-m-1}$ and $|z - 2^{-m-1}| \leq 2^{-m-1}$ $(m = 1, 2, \ldots)$. Then $X_{m+1} \subset \text{int}(X_m)$, and there exists a homeomorphism $h: E^3 \to E^3$ such that $K_m = h(\text{bdy}(X_m))$ is a geometric 2-sphere about the origin 0. The map $hF_{3,2}$ is the desired counterexample f, since $f^{-1}(K_m) (= F_{3,2}^{-1}(\text{bdy}(X_m)))$ is not a 2-manifold while $f^{-1}(h(X_m))$ is connected $(m = 1, 2, \ldots)$.

Stoilow uses a characterization of compact 2-manifolds in E^3 due to Wilder [18, Theorem 21], and the sets $f^{-1}(K_m)$ fail to satisfy the first conclusion of that theorem. With a suitable modification of the sets X_m, the sets $f^{-1}(K_m)$ also fail to satisfy the second conclusion.
Added in Proof. J. Väisälä has kindly pointed out to the author the following simple example of a C^∞ map $f : E^2 \to E^2$ which is open but not light (cf. 3.6). For $z = x + iy$ and $x \neq 0$, $f(z) = \exp(-z/x^3); f(iy) = 0$. Except on the imaginary axis f is a local homeomorphism.

In *Images of critical sets*, Ann. of Math. (2) 68 (1958), 247–259, Arthur Sard considers maps f of $U \to E^n$ into E^n. He proves under very general differentiability hypotheses that if R_k is the countable union of sets of finite Hausdorff $(k + 1)$-measure, then the $(k + 1)$-measure of $f(R_k)$ is 0. It follows [9, p. 104] that $\dim(f(R_k)) \leq k$. Thus, in this case (1.3) is the consequence of a more general result. In general, however, R_k need not be the countable union of sets of finite $(k + 1)$-measure.

The author is grateful to Professor Sard for bringing this paper to his attention.

References

