Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stationary equations in continuous time Markov chains


Author: Rupert G. Miller
Journal: Trans. Amer. Math. Soc. 109 (1963), 35-44
MSC: Primary 60.65
DOI: https://doi.org/10.1090/S0002-9947-1963-0157401-0
MathSciNet review: 0157401
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] K. L. Chung, Markov chains with stationary transition probabilities, Springer-Verlag, Berlin, 1960. MR 0116388 (22:7176)
  • [2] D. R. Cox and W. L. Smith, Queues, Methuen, London, 1961. MR 0133178 (24:A3012)
  • [3] C. Derman, A solution to a set of fundamental equations in Markov chains, Proc. Amer. Math. Soc. 5 (1954), 332-334. MR 0060757 (15:722h)
  • [4] -, Some contributions to the theory of denumerable Markov chains, Trans. Amer. Math. Soc. 79 (1955), 541-555. MR 0070883 (17:50c)
  • [5] A. J. Fabens, The solution of queueing and inventory models by semi-Markov processes J. Roy Statist. Soc. Ser. B 23 (1961), 113-127. MR 0125660 (23:A2959)
  • [6] W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1950. MR 0038583 (12:424a)
  • [7] F. G. Foster, On the stochastic matrices associated with certain queueing processes, Ann. Math. Statist. 24 (1953), 355-360. MR 0056232 (15:44f)
  • [8] T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8 (1957), 937-942. MR 0091564 (19:989b)
  • [9] S. Karlin and J. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489-546. MR 0091566 (19:989d)
  • [10] -, The classification of birth and death processes, Trans. Amer. Math. Soc. 86 (1957), 366-400. MR 0094854 (20:1363)
  • [11] D. G. Kendall and G. E. H. Reuter, The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states, Acta Math. 97 (1957), 103-144. MR 0088106 (19:469d)
  • [12] D. G. Kendall, Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, Proc. London Math. Soc. 9 (1959), 417-431. MR 0116390 (22:7178)
  • [13] E. Parzen, Stochastic processes, Holden-Day, San Francisco, Calif., 1962. MR 0139192 (25:2628)
  • [14] G. E. H. Reuter, Denumerable Markov processes and the associated contraction semigroups on $ l$, Acta Math. 97 (1957), 1-46. MR 0102123 (21:918)
  • [15] W. L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. Ser. A 232 (1955), 6-31. MR 0073877 (17:502b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.65

Retrieve articles in all journals with MSC: 60.65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1963-0157401-0
Article copyright: © Copyright 1963 American Mathematical Society

American Mathematical Society