Stationary equations in continuous time Markov chains
Author:
Rupert G. Miller
Journal:
Trans. Amer. Math. Soc. 109 (1963), 35-44
MSC:
Primary 60.65
DOI:
https://doi.org/10.1090/S0002-9947-1963-0157401-0
MathSciNet review:
0157401
Full-text PDF
References | Similar Articles | Additional Information
- [1] K. L. Chung, Markov chains with stationary transition probabilities, Springer-Verlag, Berlin, 1960. MR 0116388 (22:7176)
- [2] D. R. Cox and W. L. Smith, Queues, Methuen, London, 1961. MR 0133178 (24:A3012)
- [3] C. Derman, A solution to a set of fundamental equations in Markov chains, Proc. Amer. Math. Soc. 5 (1954), 332-334. MR 0060757 (15:722h)
- [4] -, Some contributions to the theory of denumerable Markov chains, Trans. Amer. Math. Soc. 79 (1955), 541-555. MR 0070883 (17:50c)
- [5] A. J. Fabens, The solution of queueing and inventory models by semi-Markov processes J. Roy Statist. Soc. Ser. B 23 (1961), 113-127. MR 0125660 (23:A2959)
- [6] W. Feller, An introduction to probability theory and its applications, Wiley, New York, 1950. MR 0038583 (12:424a)
- [7] F. G. Foster, On the stochastic matrices associated with certain queueing processes, Ann. Math. Statist. 24 (1953), 355-360. MR 0056232 (15:44f)
- [8] T. E. Harris, Transient Markov chains with stationary measures, Proc. Amer. Math. Soc. 8 (1957), 937-942. MR 0091564 (19:989b)
- [9] S. Karlin and J. McGregor, The differential equations of birth-and-death processes, and the Stieltjes moment problem, Trans. Amer. Math. Soc. 85 (1957), 489-546. MR 0091566 (19:989d)
- [10] -, The classification of birth and death processes, Trans. Amer. Math. Soc. 86 (1957), 366-400. MR 0094854 (20:1363)
- [11] D. G. Kendall and G. E. H. Reuter, The calculation of the ergodic projection for Markov chains and processes with a countable infinity of states, Acta Math. 97 (1957), 103-144. MR 0088106 (19:469d)
- [12] D. G. Kendall, Unitary dilations of one-parameter semigroups of Markov transition operators, and the corresponding integral representations for Markov processes with a countable infinity of states, Proc. London Math. Soc. 9 (1959), 417-431. MR 0116390 (22:7178)
- [13] E. Parzen, Stochastic processes, Holden-Day, San Francisco, Calif., 1962. MR 0139192 (25:2628)
- [14]
G. E. H. Reuter, Denumerable Markov processes and the associated contraction semigroups on
, Acta Math. 97 (1957), 1-46. MR 0102123 (21:918)
- [15] W. L. Smith, Regenerative stochastic processes, Proc. Roy. Soc. Ser. A 232 (1955), 6-31. MR 0073877 (17:502b)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 60.65
Retrieve articles in all journals with MSC: 60.65
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1963-0157401-0
Article copyright:
© Copyright 1963
American Mathematical Society